Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
    • Advisor
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 工程科學及海洋工程學系
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/18555
Title: 材質分割與分類於SVG漫畫壓縮之應用
Texture segmentation and classification for SVG Comic Compression
Authors: Tsung-Han Lin
林琮翰
Advisor: 張瑞益
Keyword: 圖像分割,可變向量圖形,支持向量機器,機器學習,動態輪廓模型,影像壓縮,
Image segmentation,Scalable Vector Graphic (SVG),Support Vector Machine (SVM),Machine Learning,Active Contour Model,Image Compression,
Publication Year : 2014
Degree: 碩士
Abstract: 在攜帶式裝置上,點陣格式的漫畫在縮放時會導致漫畫的品質降低。雖然將漫畫以轉換為向量形式可以避免此問題,向量漫畫有較大的檔案大小及較慢的顯像速度。我們提出一個以SVG格式為基礎的壓縮方法,能在將點陣漫畫轉換為SVG時,降低轉換後的檔案大小及顯像時間。我們先使用材質分割技術將漫畫分為材質與非材質區域,接著在將圖像轉換為SVG時將材質區域以SVG中的<Pattern>元素儲存來達到效果。在材質分割時我們使用CSGV(Composite sub-band Gradient Vector)作為特徵值,以SVM(Support Vector Machine)分類漫畫中的每個區域。再使用基於KL (Kullback-Leibler)距離及Split-Bregman方法進行演算的動態輪廓模組來增加分割準確率。我們對此方法以若干合成的漫畫進行實驗。實驗結果顯示此方法能讓向量漫畫在攜帶型裝置上達到更高的品質與效能。處理過的SVG圖檔,平均能減少55.3%的檔案大小及61.37%的顯示時間。此外,這方法也同時能使用在內含複數材質的漫畫上。
In portable device, scaling raster manga would result in reduced manga quality. Although converting manga into vector format could avoid this problem, vector manga has larger file size and slower rendering speed. We present a compression method based on SVG format, which can reduce file size and rendering time when converting raster manga into SVG format. We first use texture segmentation techniques to partition manga into texture segments and non-texture segment, then we use <pattern> element to store texture segments when converting manga. In image segmentation, we use Composite Sub-band Gradient Vector as texture descriptor and use Support Vector Machine to classify every area in manga. Then we use Active Contour Model, which based on KL (Kullback-Leibler) distance and Split-Bregman method, to enhance accuracy of segmentation. We conduct some experiments using several manga to test this method. Result shows this method can let vectorized manga have higher performance on portable device. In average, Segmentation accuracy is 93.3%, reduced file size is 55.3% and reduced rendering time is 61.37%. In addition, this method can also be applied on manga with multiple textures.
URI: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/18555
Fulltext Rights: 未授權
Appears in Collections:工程科學及海洋工程學系

Files in This Item:
File SizeFormat 
ntu-103-1.pdf
  Restricted Access
3.45 MBAdobe PDF
Show full item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved