請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/18356
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 林浩雄(Hao-Hsiung Lin) | |
dc.contributor.author | Chang- Ying Chen | en |
dc.contributor.author | 陳昶穎 | zh_TW |
dc.date.accessioned | 2021-06-08T01:01:13Z | - |
dc.date.copyright | 2015-02-04 | |
dc.date.issued | 2014 | |
dc.date.submitted | 2014-12-02 | |
dc.identifier.citation | 參考文獻
[1] M. Sze, “Physics of semiconductor devices,” 3rd Ed, Wiley, p.328, 2007. [2] D. J. Frank, R. H. Dennard, et al., “Device scaling limits of Si MOSFETs and their application dependencies,” Proc. IEEE, Vol.89, p. 259, 2001. [3] G. Wilk, R. Wallace, et al., “High-K gate dielectric: Current status and materials properties considerations,” J. Appl. Phys., Vol. 89, p. 5243, 2001. [4] E. Yu, D. Wang, et al., “High electron mobility InAs nanowire field-effect transistors,” Small, Vol. 3, p. 326, 2007. [5] K. Mistry, “Intel’s Revolutionary 22 nm Transistor Technology,” p.10,2011, http://download.intel.com/newsroom/kits/22nm/pdfs/22nm-Details_Presentation.pdf. [6] M. L. Anton and J. Bauer. “(2008). III-V material : latest developments and perspectives. ” [7] B. C. Lai, J. C. Yu, and J. Y. Lee, “Ta2O5/Silicon barrier height measured from MOSFETs fabrication with Ta2O5 gated dielectric,” IEEE Electron Device Lett., Vol. 22, No. 5, p. 221-223, 2001. [8] J. C. Yu, B. C. Lai, and J. Y. Lee, “Fabrication and characterization of metal-oxide-semiconductor field-effect transistors and gated diodes using Ta2O5 gate oxide,” IEEE Electron Device Lett., Vol. 21, No. 11, p. 537-539, 2000. [9] J. Y. Lee and B. C. Lai, “ Ferroelectric and dielectric thin films, edited by H. S. Nalwa, New York: Academic press, ” 2001. [10] A. I. Kingon, J. P. Maria, and S. K. Streiffer, “Alternative dielectrics to silicon dioxide for memory and logic devices,” Nature, Vol. 406, No. 6799, p.1032-1039, 2000. [11] M. Gutowski, J. E. Jaffe, C. L. Liu, M. Stoker, R. I. Hegde, R. S. Rai, and P. J. Tobin, “Thermodynamic stability of high-k dielectric metal oxide ZrO2 and HfO2 in contact with Si and SiO2,” Appl. Phys. Lett., Vol. 80, No. 11, p. 1897-1899, 2002. [12] D. Park, Y. King, Q. Lu, T. J. King, C. Hu, A. Kalnitsky, S. P. Tay, and C. C. Cheng, “Transistor characterization with Ta2O5 gate dielectric,” IEEE Electron Device Lett., Vol. 19, No. 11, p. 441-443, 1998. [13] D. Y. Petrovykh, M. J. Yang, and L. J. Whitman, “Chemical and electronic properties of sulfur-passivated InAs surfaces,” Surface Science., Vol. 523, p. 231-240, 2003. [14] M. Milojevic, C. L. Hinkle, et al., “Half-cycle atomic layer deposition reaction syudies of Al2O3 on (NH4)2S passivated GaAs(100) surfaces,” Appl. Phys. Lett., Vol. 93, p. 252905, 2008. [15] N. Eassa, D. M. Murape, et al., “Chalcogen based treatment of InAs with [(NH4)2S/(NH4)2SO4],” Surface Science., Vol. 605, p. 994-996, 2011. [16] H. D. Trinh, E. Y. Chang, et al., “Effects of Wet Chemical and Trimethyl Aluminum Treatments on the Interface Properties in Atomic Layer Deposition of Al2O3 on InAs,” Jpn. J. Appl. Phys., Vol. 49, p. 111201, 2010. [17] C. A. Lin, M. L. Huang, et al., “InAs MOS devices passivated with molecular beam epitaxy-grown Gd2O3 dielectrics,” J. Vac. Sci. Technol. B ., Vol. 30, p. 02B118, 2012. [18] H. D. Trinh, Y. -C. Lin, et al., “Effects of Postdeposition Annealing Temperatures on Electrical Characteristics of Molecular-Beam-Deposited HfO2 on n-InAs/InGaAs Metal-Oxide-Semiconductor Capacitors,” Appl. Phys. Express., Vol. 5, p. 021104, 2012. [19] Q. H. Luc, E. Y. Chang, H. D. Trinh, H. Q. Nguyen, B. T. Tran, and Y. C. Lin, “Effects of annealing processes on electrical properties of the atomic layer deposition Al2O3/In0.53Ga0.47As metal oxide semiconductor capacitors,” Jpn. J. Appl. Phys., Vol. 53, p. 04EF04, 2014. [20] L. B. Ruppalt, E. R. Cleveland, et al., “Atomic layer deposition ofAl2O3 on GaSb using in situ hydrogen plasma exposure,” Appl. Phys. Lett., Vol. 101, p. 231601, 2012. [21] J. W. Seo, Ch. Dieker, J.-P. Locquet, G.Mavrou and A. Dimoulas, “HfO2 high-k dielectrics grown on (100)Ge with ultrathin passivation layers: Structure and interfacial stability,” Appl. Phys. Lett., Vol. 87, p. 221906, 2005. [22] 林文台, “Hf/ Si0.85Ge0.15 界面反應及電性研究,” 行政院國家科學委員會專題研究計劃成果報告. [23] M. Copel and M. C. Reuter, “Decomposition of interfacial SiO2 during HfO2 deposition,” Appl. Phys. Lett., Vol. 83, p.3398, 2003. [24] W. C. Lee, et al., “MBE- grown high k gate dielectrics of HfO2 and (Hf-Al)O2 for Si and III-V semiconductors nano-ellectronics,”J. Crystal Growth., Vol. 278, p. 619-623, 2005. [25] H. Kim, Chi On Chui, Krisshna C. Sarawat and Paul C. Mclntyre, “Local epitaxial growth of ZrO2 on Ge (100) substrates by atomic layer epitaxy,” Appl. Phys. Lett., Vol. 83, p.2647, 2003. [26] P. Masson, J. L. Autran, et al., “Frequency characterization and modeling of interface traps in HfSixOy/HfO2 gate dielectric stack from a capacitance point of view,” Appl. Phys. Lett., Vol. 81, p. 3392, 2002. [27] H. Liu, Q. Kuang, et al., “Frequency dispersion effect and parameters extraction method for novel HfO2 as gate dielectric,” Sci . China, Vol. 53, p. 878, 2010. [28] M. Sze, “Physics of semiconductor devices, ” 3rd Ed, Wiley, p. 216, 2007. [29] L. Pereira, et al., “Performances of hafnium oxide produced by radio frequency sputtering for gate dielectric application,” Materials Science and Engineering B, Vol. 109, p. 89-93, 2004. [30] J. F. Watts and J. Wolstenholme, “An Introduction to Surface Analysis by XPS and AES.” [31] C. D. Wagner, et al., “ Handbook of x-ray photoelectron spectroscopy.” [32] Jang-Hyuk Hong, Woo-Jong Choi, Jae-Min Myoung, “Properties of ZrO2 dielectric layers grown by metalorganic molecular beam epitaxy,” Materials Science and Engineering B, Vol. 70, p. 35-40, 2003. [33] Tae-Hyoung Moon, et al., “Growth and characterization of MOMBE grown HfO2,” Applied Surface Science, Vol. 240, p. 105-111, 2005. [34] H. Y. Yu, et al., “Energy gap and band alignment for (HfO2) x„(Al2O3)1-x on (100) Si,” Appl. Phys. Lett., Vol. 81, p. 376-378, 2002. [35] M. Copel and M. C. Reuter“Decomposition of interfacial SiO2 during HfO2 deposition,” Appl. Phys. Lett., Vol. 83, p. 3398-3400, 2003. [36] Wilhelm Melitz, et al., “Scanning tunneling spectroscopy and Kelvin probe force mircoscopy investigation of Fermi energy level pinning mechanism on InAs and InGaAs clean surfaces,” J. Appl. Phys, Vol. 108, 023711, 2012. [37] M. P. J. Punkkinen, et al., “Oxidized In-containing III-V(100) surfaces: Formation of crystalline oxide films and semiconductor-oxide interfaces,” Phys. Rev. B, Vol. 83, 195329, 2011. [38] E.J. Kim, et al., “Border traps in Al2O3/In0.53Ga0.47As(100) gate stacks and their passivation by hydrogen anneals,” Appl. Phys. Lett., Vol. 96, 012906, 2010. [39] R. Engel-Herbert, Y. Hwang, and S. Stemmer, “Comparison of methods to quantify interface trap densities at dielectric/III-V semiconductor interfaces ,” J. Appl. Phys, Vol. 108, 124101, 2010. [40] C. H. Wang, et al., “InAs hole inversion and bandgap interface state density of 2×1011cm-2eV-1 at HfO2/InAs interfaces,” Appl. Phys. Lett., Vol. 103, 143510, 2013. [41] S. Koveshnikov, W. Tsai, I. Ok, J. C. Lee, V. Torkanov, M. Yakimov and S. Oktyabrsky, “Metal-oxide-semiconductor capacitors on GaAs with high-k gate oxide and amorphous silicon interface passivation layer,” Appl. Phys. Lett., Vol. 88, p. 022106, 2006. [42] Hau-Yu Lin, et al., “Influences of surface reconstruction on the atomic-layer-deposited HfO2/Al2O3/n-InAs metal-oxide-semiconductor capacitors,” Appl. Phys. Lett., Vol. 98, 123509, 2011. [43] L. Lin and J. Robertson, “Defect state at III-V semiconductor oxide interfaces,” Appl. Phys. Lett., Vol. 98, 082903, 2011. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/18356 | - |
dc.description.abstract | 本論文利用分子束磊晶系統串聯另一腔體搭配電子槍蒸鍍系統以及氧氣電漿在超高真空環境下建構一先成長III-V族材料再臨場成長氧化物的系統,其中由於分子束磊晶系統本身擁有反射式高能電子繞射儀,以作為磊晶即時表面監控。而此論文中在矽基板上成長二氧化鉿,針對氧氣電漿參數對氧化層影響進而改變氧氣流量以及射頻功率,以達到本系統最佳條件。而最後利用此最佳條件成長二氧化鉿於砷化銦基板上,並針對不同的介面處理而得到較佳的結果。 | zh_TW |
dc.description.abstract | In this paper, we focus on the oxygen plasma how to affect the oxide quality. And we change the oxygen flow and the RF power to optimize our hafnium oxide which grow on silicon. And we use the best growth parameter to grow hafnium oxide on indium arsenic. We hope we can get a better result by different surface treatments . | en |
dc.description.provenance | Made available in DSpace on 2021-06-08T01:01:13Z (GMT). No. of bitstreams: 1 ntu-103-R01943020-1.pdf: 1830355 bytes, checksum: af74069ecfaa05bc4cb0b13764de670c (MD5) Previous issue date: 2014 | en |
dc.description.tableofcontents | 目錄
論文摘要......................................................................................................i Abstract.......................................................................................................ii 圖目錄.........................................................................................................v 表目錄......................................................................................................viii 第一章 序論..........................................................................................1 1.1電晶體之發展趨勢...........................................................................1 1.2 砷化銦材料介紹.............................................................................2 1.3 高介電係數材料介紹.....................................................................3 第二章 成長氧化鉿之實驗步驟與研究方法......................................5 2.1 矽 (Si) 基板的準備.......................................................................5 2.2 砷化銦 (InAs) 基板的準備...........................................................5 2.3 二氧化鉿(HfO2)薄膜之成長.........................................................6 2.4 電極之製作.....................................................................................6 2.5 氧化物磊晶系統.............................................................................7 2.6 二氧化鉿蒸鍍速率測試...............................................................10 2.7 穿透式電子顯微鏡.......................................................................10 2.8 X射線光電子能譜學.....................................................................11 第三章 二氧化鉿成長於矽基板製作與分析....................................12 3.1 二氧化鉿成長於矽基板(50nm HfO2/ Si)....................................12 3.2 Pt/50nm HfO2/ Si 之電性分析.....................................................13 3.3 Pt/50nm HfO2/ Si 之XPS分析.....................................................16 3.4 二氧化鉿成長於矽基板(10nm HfO2/ Si)....................................18 3.5 Pt/10nm HfO2/ Si 之電性分析.....................................................18 3.6 Pt/10nm HfO2/ Si 之XPS分析....................................................24 3.7 Pt/10nm HfO2/ Si 之TEM分析...................................................29 3.8 氧氣電漿之射頻功率對二氧化鉿之影響...................................30 第四章 二氧化鉿成長於砷化銦基板製作與分析............................33 4.1 二氧化鉿成長於砷化銦(10nm HfO2/ InAs)...............................33 4.2 Pt/10nm HfO2/InAs 之電性分析..................................................35 4.3 Pt/10nm HfO2/ InAs 之TEM、XPS分析......................................42 第五章 結論........................................................................................44 參考文獻.....................................................................................................45 | |
dc.language.iso | zh-TW | |
dc.title | 利用分子束磊晶搭配氧氣電漿成長二氧化鉿於矽/砷化銦基板 | zh_TW |
dc.title | HfO2 on Si/ InAs Grown by Oxygen Plasma-assisted Molecular Beam Epitaxy | en |
dc.type | Thesis | |
dc.date.schoolyear | 103-1 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 胡振國(Zhen-Guo Hu),毛明華(Ming-Hua Mao) | |
dc.subject.keyword | 三五族半導體,二氧化鉿,分子束磊晶, | zh_TW |
dc.subject.keyword | iii-v,hfo2,mbe, | en |
dc.relation.page | 52 | |
dc.rights.note | 未授權 | |
dc.date.accepted | 2014-12-02 | |
dc.contributor.author-college | 電機資訊學院 | zh_TW |
dc.contributor.author-dept | 電子工程學研究所 | zh_TW |
顯示於系所單位: | 電子工程學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-103-1.pdf 目前未授權公開取用 | 1.79 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。