請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/18337
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 羅翊禎 | |
dc.contributor.author | Xiao Tong Teong | en |
dc.contributor.author | 張曉彤 | zh_TW |
dc.date.accessioned | 2021-06-08T01:00:22Z | - |
dc.date.copyright | 2015-02-04 | |
dc.date.issued | 2014 | |
dc.date.submitted | 2014-12-31 | |
dc.identifier.citation | 劉秀琴 2012 能量限制對DNA修復缺陷細胞基因穩定性之影響 國立台灣大學食品科技研究所碩士論文。台北。
羅云君 2013 能量限制增加錯誤配對修復缺陷細胞於老化期間基因的穩定性 國立台灣大學食品科技研究所碩士論文。台北。 (1) Alseth, I.; Eide, L.; Pirovano, M.; Rognes, T.; Seeberg, E.; Bjoras, M. The saccharomyces cerevisiae homologues of endonuclease iii from escherichia coli, ntg1 and ntg2, are both required for efficient repair of spontaneous and induced oxidative DNA damage in yeast. Mol Cell Biol 1999, 19, 3779-3787. (2) Bitterman, K. J.; Medvedik, O.; Sinclair, D. A. Longevity regulation in saccharomyces cerevisiae: Linking metabolism, genome stability, and heterochromatin. Microbiology and molecular biology reviews : MMBR 2003, 67, 376-399, table of contents. (3) Boiteux, S.; Jinks-Robertson, S. DNA repair mechanisms and the bypass of DNA damage in saccharomyces cerevisiae. Genetics 2013, 193, 1025-1064. (4) Boland, C. R.; Goel, A. Microsatellite instability in colorectal cancer. Gastroenterology 2010, 138, 2073-2087 e2073. (5) Brown, K. D.; Rathi, A.; Kamath, R.; Beardsley, D. I.; Zhan, Q.; Mannino, J. L.; Baskaran, R. The mismatch repair system is required for s-phase checkpoint activation. Nat Genet 2003, 33, 80-84. (6) Bruss, M. D.; Khambatta, C. F.; Ruby, M. A.; Aggarwal, I.; Hellerstein, M. K. Calorie restriction increases fatty acid synthesis and whole body fat oxidation rates. Am J Physiol Endocrinol Metab 2010, 298, E108-116. (7) Cabelof, D. C.; Yanamadala, S.; Raffoul, J. J.; Guo, Z.; Soofi, A.; Heydari, A. R. Caloric restriction promotes genomic stability by induction of base excision repair and reversal of its age-related decline. DNA repair 2003, 2, 295-307. (8) Chen, C.; Kolodner, R. D. Gross chromosomal rearrangements in saccharomyces cerevisiae replication and recombination defective mutants. Nat Genet 1999, 23, 81-85. (9) Choi, K. M.; Kwon, Y. Y.; Lee, C. K. Characterization of global gene expression during assurance of lifespan extension by caloric restriction in budding yeast. Experimental gerontology 2013, 48, 1455-1468. (10) Chung, M. H.; Kasai, H.; Nishimura, S.; Yu, B. P. Protection of DNA damage by dietary restriction. Free radical biology & medicine 1992, 12, 523-525. (11) Colman, R. J.; Anderson, R. M.; Johnson, S. C.; Kastman, E. K.; Kosmatka, K. J.; Beasley, T. M.; Allison, D. B.; Cruzen, C.; Simmons, H. A.; Kemnitz, J. W.; Weindruch, R. Caloric restriction delays disease onset and mortality in rhesus monkeys. Science 2009, 325, 201-204. (12) Colman, R. J.; Beasley, T. M.; Kemnitz, J. W.; Johnson, S. C.; Weindruch, R.; Anderson, R. M. Caloric restriction reduces age-related and all-cause mortality in rhesus monkeys. Nature communications 2014, 5, 3557. (13) Epstein, C. J.; Martin, G. M.; Motulsky, A. G. Werner's syndrome; caricature of aging. A genetic model for the study of degenerative diseases. Transactions of the Association of American Physicians 1965, 78, 73-81. (14) Fabrizio, P.; Longo, V. D. The chronological life span of saccharomyces cerevisiae. Aging cell 2003, 2, 73-81. (15) Fabrizio, P.; Longo, V. D. The chronological life span of saccharomyces cerevisiae. Methods in molecular biology 2007, 371, 89-95. (16) Fernandez-Capetillo, O.; Lee, A.; Nussenzweig, M.; Nussenzweig, A. H2ax: The histone guardian of the genome. DNA repair 2004, 3, 959-967. (17) Fishel, R.; Lescoe, M. K.; Rao, M. R.; Copeland, N. G.; Jenkins, N. A.; Garber, J.; Kane, M.; Kolodner, R. The human mutator gene homolog msh2 and its association with hereditary nonpolyposis colon cancer. Cell 1993, 75, 1027-1038. (18) Foster, E. R.; Downs, J. A. Histone h2a phosphorylation in DNA double-strand break repair. The FEBS journal 2005, 272, 3231-3240. (19) Friedman, D. B.; Johnson, T. E. A mutation in the age-1 gene in caenorhabditis elegans lengthens life and reduces hermaphrodite fertility. Genetics 1988a, 118, 75-86. (20) Friedman, D. B.; Johnson, T. E. Three mutants that extend both mean and maximum life span of the nematode, caenorhabditis elegans, define the age-1 gene. J Gerontol 1988b, 43, B102-109. (21) Fukuchi, K.; Martin, G. M.; Monnat, R. J., Jr. Mutator phenotype of werner syndrome is characterized by extensive deletions. Proc Natl Acad Sci U S A 1989, 86, 5893-5897. (22) Gerik, K. J.; Li, X.; Pautz, A.; Burgers, P. M. Characterization of the two small subunits of saccharomyces cerevisiae DNA polymerase delta. J Biol Chem 1998, 273, 19747-19755. (23) Gorbunova, V.; Seluanov, A.; Mao, Z.; Hine, C. Changes in DNA repair during aging. Nucleic Acids Res 2007, 35, 7466-7474. (24) Greer, E. L.; Brunet, A. Different dietary restriction regimens extend lifespan by both independent and overlapping genetic pathways in c. Elegans. Aging cell 2009, 8, 113-127. (25) Hasty, P.; Campisi, J.; Hoeijmakers, J.; van Steeg, H.; Vijg, J. Aging and genome maintenance: Lessons from the mouse? Science 2003, 299, 1355-1359. (26) Herskowitz, I. Life cycle of the budding yeast saccharomyces cerevisiae. Microbiological reviews 1988, 52, 536-553. (27) Heydari, A. R.; Unnikrishnan, A.; Lucente, L. V.; Richardson, A. Caloric restriction and genomic stability. Nucleic Acids Res 2007, 35, 7485-7496. (28) Howitz, K. T.; Bitterman, K. J.; Cohen, H. Y.; Lamming, D. W.; Lavu, S.; Wood, J. G.; Zipkin, R. E.; Chung, P.; Kisielewski, A.; Zhang, L. L.; Scherer, B.; Sinclair, D. A. Small molecule activators of sirtuins extend saccharomyces cerevisiae lifespan. Nature 2003, 425, 191-196. (29) Huang, M. E.; Rio, A. G.; Galibert, M. D.; Galibert, F. Pol32, a subunit of saccharomyces cerevisiae DNA polymerase delta, suppresses genomic deletions and is involved in the mutagenic bypass pathway. Genetics 2002, 160, 1409-1422. (30) Ito, H.; Oshiro, T.; Fujita, Y.; Kubota, S.; Naito, C.; Ohtsuka, H.; Murakami, H.; Aiba, H. Pma1, a p-type proton atpase, is a determinant of chronological life span in fission yeast. J Biol Chem 2010, 285, 34616-34620. (31) Jackson, S. P. Sensing and repairing DNA double-strand breaks. Carcinogenesis 2002, 23, 687-696. (32) Jiang, J. C.; Jaruga, E.; Repnevskaya, M. V.; Jazwinski, S. M. An intervention resembling caloric restriction prolongs life span and retards aging in yeast. FASEB J 2000, 14, 2135-2137. (33) Kaeberlein, M. Lessons on longevity from budding yeast. Nature 2010, 464, 513-519. (34) Kaeberlein, M.; Powers, R. W., 3rd; Steffen, K. K.; Westman, E. A.; Hu, D.; Dang, N.; Kerr, E. O.; Kirkland, K. T.; Fields, S.; Kennedy, B. K. Regulation of yeast replicative life span by tor and sch9 in response to nutrients. Science 2005, 310, 1193-1196. (35) Kang, C. M.; Kristal, B. S.; Yu, B. P. Age-related mitochondrial DNA deletions: Effect of dietary restriction. Free radical biology & medicine 1998, 24, 148-154. (36) Kelley, M. R.; Kow, Y. W.; Wilson, D. M., 3rd Disparity between DNA base excision repair in yeast and mammals: Translational implications. Cancer Res 2003, 63, 549-554. (37) Khanna, K. K.; Jackson, S. P. DNA double-strand breaks: Signaling, repair and the cancer connection. Nat Genet 2001, 27, 247-254. (38) Kirkwood, T. B. Understanding the odd science of aging. Cell 2005, 120, 437-447. (39) Kunkel, T. A.; Erie, D. A. DNA mismatch repair. Annual review of biochemistry 2005, 74, 681-710. (40) Leach, F. S.; Nicolaides, N. C.; Papadopoulos, N.; Liu, B.; Jen, J.; Parsons, R.; Peltomaki, P.; Sistonen, P.; Aaltonen, L. A.; Nystrom-Lahti, M.; et al. Mutations of a muts homolog in hereditary nonpolyposis colorectal cancer. Cell 1993, 75, 1215-1225. (41) Lee, A. T.; DeSimone, C.; Cerami, A.; Bucala, R. Comparative analysis of DNA mutations in laci transgenic mice with age. FASEB J 1994, 8, 545-550. (42) Li, G. M. Mechanisms and functions of DNA mismatch repair. Cell research 2008, 18, 85-98. (43) Longo, V. D.; Fabrizio, P. Regulation of longevity and stress resistance: A molecular strategy conserved from yeast to humans? Cell Mol Life Sci 2002, 59, 903-908. (44) Longo, V. D.; Shadel, G. S.; Kaeberlein, M.; Kennedy, B. Replicative and chronological aging in saccharomyces cerevisiae. Cell metabolism 2012, 16, 18-31. (45) Lynch, H. T.; de la Chapelle, A. Hereditary colorectal cancer. N Engl J Med 2003, 348, 919-932. (46) Madia, F.; Gattazzo, C.; Fabrizio, P.; Longo, V. D. A simple model system for age-dependent DNA damage and cancer. Mech Ageing Dev 2007, 128, 45-49. (47) Marsischky, G. T.; Filosi, N.; Kane, M. F.; Kolodner, R. Redundancy of saccharomyces cerevisiae msh3 and msh6 in msh2-dependent mismatch repair. Genes & development 1996, 10, 407-420. (48) McManus, K. J.; Hendzel, M. J. Atm-dependent DNA damage-independent mitotic phosphorylation of h2ax in normally growing mammalian cells. Molecular biology of the cell 2005, 16, 5013-5025. (49) Memisoglu, A.; Samson, L. Base excision repair in yeast and mammals. Mutat Res 2000, 451, 39-51. (50) Modrich, P. Mechanisms and biological effects of mismatch repair. Annual review of genetics 1991, 25, 229-253. (51) Naito, C.; Ito, H.; Oshiro, T.; Ohtsuka, H.; Murakami, H.; Aiba, H. A new pma1 mutation identified in a chronologically long-lived fission yeast mutant. FEBS open bio 2014, 4, 829-833. (52) Ni, T. T.; Marsischky, G. T.; Kolodner, R. D. Msh2 and msh6 are required for removal of adenine misincorporated opposite 8-oxo-guanine in s. Cerevisiae. Molecular cell 1999, 4, 439-444. (53) Poulsen, H. E. Oxidative DNA modifications. Exp Toxicol Pathol 2005, 57 Suppl 1, 161-169. (54) Prindle, M. J.; Loeb, L. A. DNA polymerase delta in DNA replication and genome maintenance. Environ Mol Mutagen 2012, 53, 666-682. (55) Sohal, R. S.; Weindruch, R. Oxidative stress, caloric restriction, and aging. Science 1996, 273, 59-63. (56) Spampinato, C. P.; Gomez, R. L.; Galles, C.; Lario, L. D. From bacteria to plants: A compendium of mismatch repair assays. Mutation Research/Reviews in Mutation Research 2009, 682, 110-128. (57) Strand, M.; Prolla, T. A.; Liskay, R. M.; Petes, T. D. Destabilization of tracts of simple repetitive DNA in yeast by mutations affecting DNA mismatch repair. Nature 1993, 365, 274-276. (58) Su, Z.; Li, Z.; Chen, T.; Li, Q. Z.; Fang, H.; Ding, D.; Ge, W.; Ning, B.; Hong, H.; Perkins, R. G.; Tong, W.; Shi, L. Comparing next-generation sequencing and microarray technologies in a toxicological study of the effects of aristolochic acid on rat kidneys. Chem Res Toxicol 2011, 24, 1486-1493. (59) Thiriet, C.; Hayes, J. J. Chromatin in need of a fix: Phosphorylation of h2ax connects chromatin to DNA repair. Molecular cell 2005, 18, 617-622. (60) Vaupel, J. W.; Carey, J. R.; Christensen, K.; Johnson, T. E.; Yashin, A. I.; Holm, N. V.; Iachine, I. A.; Kannisto, V.; Khazaeli, A. A.; Liedo, P.; Longo, V. D.; Zeng, Y.; Manton, K. G.; Curtsinger, J. W. Biodemographic trajectories of longevity. Science 1998, 280, 855-860. (61) Vijg, J.; Suh, Y. Genome instability and aging. Annual review of physiology 2013, 75, 645-668. (62) Von Borstel, R. C. Measuring spontaneous mutation rates in yeast. Methods in cell biology 1978, 20, 1-24. (63) Wang, Z.; Gerstein, M.; Snyder, M. Rna-seq: A revolutionary tool for transcriptomics. Nature reviews Genetics 2009, 10, 57-63. (64) Weindruch, R.; Naylor, P. H.; Goldstein, A. L.; Walford, R. L. Influences of aging and dietary restriction on serum thymosin alpha 1 levels in mice. J Gerontol 1988, 43, B40-42. (65) Weindruch, R.; Walford, R. L.; Fligiel, S.; Guthrie, D. The retardation of aging in mice by dietary restriction: Longevity, cancer, immunity and lifetime energy intake. J Nutr 1986, 116, 641-654. (66) Wilson, D. M., 3rd; Bohr, V. A. The mechanics of base excision repair, and its relationship to aging and disease. DNA repair 2007, 6, 544-559. (67) Wyrzykowski, J.; Volkert, M. R. The escherichia coli methyl-directed mismatch repair system repairs base pairs containing oxidative lesions. J Bacteriol 2003, 185, 1701-1704. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/18337 | - |
dc.description.abstract | 熱量限制(Calorie restriction)被認為可延長不同物種間的平均壽命、延緩老化、減少癌症等疾病的發生。若人類的DNA修復系統有缺陷,會增加罹患疾病的可能性,例如:遺傳性非息肉型大腸直腸癌(HNPCC)即是因為錯誤配對修復系統(Mismatch repair, MMR)產生缺陷而致。本研究先前以酵母菌為模式探討熱量限制對老化期間的MMR缺陷細胞的基因穩定性之影響。結果發現熱量限制能延長MMR缺陷細胞壽命和降低突變率。由於細胞中修復點突變的DNA修復有鹼基切除修復系統(Base excision repair, BER)和MMR,且文獻指出熱量限制能正調控BER來促進基因穩定性,因此推測熱量限制可能透過調控BER來降低MMR缺陷細胞的突變率。結果發現熱量限制能有效對老化期間MMR/BER缺陷細胞延緩壽命、增強細胞抵禦受損能力和維持基因穩定性,老化期間MMR缺陷細胞中BER基因表現量也不受熱量限制影響。因而透過RNA-seq分析熱量限制可能對MMR缺陷細胞的基因群影響,發現MMR缺陷細胞經熱量限制後的乙醛酸代謝和脂肪酸代謝相關的生理功能顯著被調控。隨後研究發現若老化期間無熱量限制介入時,利用hydroxyurea減緩細胞週期可使MMR缺陷細胞維持基因穩定性但無法延緩壽命,顯示細胞週期的調控的確可以影響基因的穩定性。另一方面,研究也發現在熱量限制的細胞中,參與DNA雙股螺旋斷裂修復路徑(Double strand break repair, DSBR)的H2A蛋白磷酸化增加。綜合本篇研究結果,推測熱量限制可維持老化期間MMR缺陷細胞中基因的穩定性和延緩壽命的現象,是否經由調控細胞週期的變化和DSBR的修復能力仍需進一步的深入研究。 | zh_TW |
dc.description.abstract | Calorie restriction (CR) is able to reduce cancer progression and extend life span in various organisms. Age-related decline of DNA repair system such as mismatch repair (MMR) can reverse by CR. Defects in MMR have been linked to colorectal and sporadic cancers. Our previous results have demonstrated that CR can extend life span and maintain genome stability in MMR-defected cells during aging, but the mechanisms are poorly understood. Therefore, we suggest base excision repair (BER) which has been proven can be up-regulated by CR, is responsible to maintain genome stability in MMR-defected cells. However, we found that CR still able to extend life span and reduce mutations in MMR/BER -defected cells. And, CR has no effect on BER gene expression in MMR-defected cells during aging. To investigate the mechanisms responsible for CR to maintain genome stability in MMR-defected cells, the whole genome profile by performing RNA-seq has been analyzed. The most significant influenced genes which regulated by CR in MMR-defected cells are fatty acid metabolism, glyoxylate and dicarboxylate metabolism pathways. Besides, we demonstrate by using hydroxyurea to slow down cell cycle progression can maintain genome stability without CR in MMR-defected cells during aging, 50mM HU can reduce mutation by patching assay, however, HU also reduce life span in cells. Furthermore, we found that phosphorylation levels of H2A in CR cells are higher than non-CR cells. H2A phosphorylation is a marker of double strand break repair (DSBR). Further studies are needed to investigate whether CR would beneficial to MMR-defected cells through affecting cell cycle and DSBR pathway. | en |
dc.description.provenance | Made available in DSpace on 2021-06-08T01:00:22Z (GMT). No. of bitstreams: 1 ntu-103-R01641042-1.pdf: 4463012 bytes, checksum: 7fed0b78a8e1535f91b7560b21ed81b5 (MD5) Previous issue date: 2014 | en |
dc.description.tableofcontents | 口試委員審定書 1
謝誌 II 摘要 III Abstract IV 目錄 V 圖目錄 VIII 表目錄 IX 縮寫對照表 X 第一章 前言 1 第二章 文獻整理 2 第一節 老化與基因不穩定性 2 一、 老化現象 2 二、 基因不穩定 4 三、 酵母菌的老化模式 4 第二節 熱量限制 6 第三節 DNA修復系統 9 一、 錯誤配對修復 (Mismatch repair, MMR) 9 二、 鹼基切除修復 (Base excision repair, BER) 13 三、 雙股螺旋斷裂修復(Double strand break repair, DSBR) 15 第三章 實驗設計 16 第四章 材料與方法 18 第一節 材料 18 一、 酵母菌株 18 二、 培養基種類 19 第二節 實驗方法 22 一、 酵母菌培養方式 22 二、 酵母菌存活數 (Cell viability test) 22 三、 點試驗 (Spotting assay) 22 四、 突變率定性 (Patching assay) 和定量試驗 22 五、 RNA萃取與RNA-seq全基因體資料分析 23 六、 即時聚合酶鏈式反應 (qPCR) 24 七、 HU treatment assay 25 八、 西方墨點法 (Western Blot) 25 九、 統計分析 26 第五章 結果與討論 28 第一節 熱量限制可延長MMR和BER缺陷細胞的壽命 28 第二節 不同DNA受損形式下BER缺陷對細胞於老化及熱量限制期間之影響 31 第三節 熱量限制增加MMR和BER缺陷細胞於老化期間基因穩定性 36 第四節 熱量限制對wild type和msh2∆msh3∆細胞的BER基因表現影響 42 第五節 熱量限制的介入對wild type 和msh2∆msh3∆細胞全基因體變化之影響 44 第六節 細胞週期的減緩會降低msh2∆msh3∆細胞的基因突變率 64 第七節 熱量限制對老化期間wild type和msh2∆msh3∆ 細胞的H2A蛋白磷酸化表現量 68 第六章 討論 70 第七章 結論 73 第八章 參考文獻 74 第九章 附錄 79 附錄1 79 附錄2 81 附錄3 84 | |
dc.language.iso | zh-TW | |
dc.title | 熱量限制對錯誤配對修復缺陷細胞於老化期間全基因體之變化 | zh_TW |
dc.title | Study of calorie restriction using RNA-sequencing profiling in mismatch repair defected cells during chronological aging in Saccharomyces cerevisiae | en |
dc.type | Thesis | |
dc.date.schoolyear | 103-1 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 謝淑貞,高承福 | |
dc.subject.keyword | 熱量限制,錯誤配對修復缺陷,細胞週期,老化,基因穩定, | zh_TW |
dc.subject.keyword | calorie restriction,mismatch repair,cell cycle,aging,genome stability, | en |
dc.relation.page | 85 | |
dc.rights.note | 未授權 | |
dc.date.accepted | 2014-12-31 | |
dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
dc.contributor.author-dept | 食品科技研究所 | zh_TW |
顯示於系所單位: | 食品科技研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-103-1.pdf 目前未授權公開取用 | 4.36 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。