Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
    • Advisor
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 數學系
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/18101
Full metadata record
???org.dspace.app.webui.jsptag.ItemTag.dcfield???ValueLanguage
dc.contributor.advisor李瑩英
dc.contributor.authorYu-Chin Sunen
dc.contributor.author孫有慶zh_TW
dc.date.accessioned2021-06-08T00:51:11Z-
dc.date.copyright2015-07-20
dc.date.issued2015
dc.date.submitted2015-07-01
dc.identifier.citation[1]
Fernando C. Marques and Andre Neves,
Min-max theory and the Willmore
conjecture
, Ann. of Math(2) 179 (2014), no. 2, 683782.
[2]
T. J. Willmore,
Note on embedded surfaces,
An. Sti. Univ.Al. I. Cuza' Iasi
Sect. I a Mat. (N.S.) 11B (1965) 493{496.
[3]
J. Pitts,
Existence and regularity of minimal surfaces on Riemannian manifolds,
Mathematical Notes 27, Princeton University Press, Princeton, (1981)
[4]
R. Kusner,
Comparison surfaces for the Willmore problem
, Pacifc J. Math. 138
(1989), no. 2, 317345.
[5]
H. B. Lawson,
Complete minimal surfaces in
S
3
, Ann. of Math. (2) 92 1970
335374.
[6]
L. Hsu, R. Kusner and J. Sullivan,
Minimizing the squared mean curvature
integral for surfaces in space forms
, Experiment. Math. 1 (1992), no. 3, 191207.
[7]
K. A. Brakke,
The Surface Evolver
, Experiment. Math. 1 (1992), no. 2, 141165.
[8]
F. Urbano,
Minimal surfaces with low index in the three-dimensional sphere
,
Proc. Amer. Math. Soc. 108 (1990), no. 4, 989992.
[9]
S. S. Chern, M. DoCarmo, and S. Kobayashi,
Minimal submanifolds of a sphere
with second fundamental form of constant length
, Proc. Conf. for M. Stone,
Univ. Chicago, 1968
[10]
J. Simons,
Minimal Varieties in Riemannian manifolds
, Ann. of Math, 1968
[11]
A. Ros,
The Willmore conjecture in the real projective space,
Math. Res. Lett,
1999.
[12]
P. Li and S-T. Yau,
A new conformal invariant and its applications to the
Willmore conjecture and the first eigenvalue of compact surfaces,
Invent. Math.
69 (1982), 269{291.
[13]
W. Meeks and S-T. Yau,
The existence of embedded minimal surfaces and the
problem of uniqueness
, Math. Z (1982)
[14]
M. Obata,
Certain conditions for a Riemannian manifold to be isometric with
a sphere
, J. Math. Soc. Japan (1962)
[15]
S. Montiel and A. Ros,
Minimal immersions of surfaces by the first eigenfunc-
tions and conformal area,
Invent. Math. 83 (1985), 153{166.
[16]
Almgren
the homotopy groups of the integral cycle groups
Topology 1 (1962)
257299.
[17]
Luis J. Alias, Aldir Brasil Jr. and Oscar Perdomo
On the stability index of
hypersurfaces with constant mean curvature in spheres
Proc. Amer. Math. Soc.
135 (2007), no. 11, 36853693.
[18]
Lawrence C. Evans,
Partial differential equation
textbook, American Mathe-
matical Society
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/18101-
dc.description.abstract本論文主要內容為探討Fernando C.Marques和Andre Neves所著的論文:Min-max theory and Willmore conjecture(威爾莫猜想),此論文成功地證明了一九六五年由Tomas Willmore所提出著名的猜想。他們使用了幾何測度論的方法並且應用八零年代由Almgern 和John Pitts所提出Min-max theory給出了證明,此證明整合了許多八零年代的重要結果,例如保角幾何學的種種應用。威爾莫猜想證明其中的關鍵步驟為Urbano的定理,本論文第三章將著重於此,也附上作者欲推廣此定理的一些計算,此外也會將一些Willmore猜想相關的問題討論附上。zh_TW
dc.description.provenanceMade available in DSpace on 2021-06-08T00:51:11Z (GMT). No. of bitstreams: 1
ntu-104-R02221002-1.pdf: 2116630 bytes, checksum: 01a86b17c3336430c8c160865e5e3333 (MD5)
Previous issue date: 2015
en
dc.description.tableofcontentsIntroduction-1
Background Materials-4
Urbano's Theorem-11
Willmore Conjecture-17
Beyond Willmore Conjecture-21
dc.language.isoen
dc.title威爾莫猜想及其相關問題之探討zh_TW
dc.titleA Survey On Willmore Conjecture And Related Problemsen
dc.typeThesis
dc.date.schoolyear103-2
dc.description.degree碩士
dc.contributor.oralexamcommittee張樹城,崔茂培
dc.subject.keyword威爾莫猜想,厄爾巴諾定理,zh_TW
dc.subject.keywordwillmore conjecture,en
dc.relation.page27
dc.rights.note未授權
dc.date.accepted2015-07-01
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept數學研究所zh_TW
Appears in Collections:數學系

Files in This Item:
File SizeFormat 
ntu-104-1.pdf
  Restricted Access
2.07 MBAdobe PDF
Show simple item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved