Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 數學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/18101
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor李瑩英
dc.contributor.authorYu-Chin Sunen
dc.contributor.author孫有慶zh_TW
dc.date.accessioned2021-06-08T00:51:11Z-
dc.date.copyright2015-07-20
dc.date.issued2015
dc.date.submitted2015-07-01
dc.identifier.citation[1]
Fernando C. Marques and Andre Neves,
Min-max theory and the Willmore
conjecture
, Ann. of Math(2) 179 (2014), no. 2, 683782.
[2]
T. J. Willmore,
Note on embedded surfaces,
An. Sti. Univ.Al. I. Cuza' Iasi
Sect. I a Mat. (N.S.) 11B (1965) 493{496.
[3]
J. Pitts,
Existence and regularity of minimal surfaces on Riemannian manifolds,
Mathematical Notes 27, Princeton University Press, Princeton, (1981)
[4]
R. Kusner,
Comparison surfaces for the Willmore problem
, Pacifc J. Math. 138
(1989), no. 2, 317345.
[5]
H. B. Lawson,
Complete minimal surfaces in
S
3
, Ann. of Math. (2) 92 1970
335374.
[6]
L. Hsu, R. Kusner and J. Sullivan,
Minimizing the squared mean curvature
integral for surfaces in space forms
, Experiment. Math. 1 (1992), no. 3, 191207.
[7]
K. A. Brakke,
The Surface Evolver
, Experiment. Math. 1 (1992), no. 2, 141165.
[8]
F. Urbano,
Minimal surfaces with low index in the three-dimensional sphere
,
Proc. Amer. Math. Soc. 108 (1990), no. 4, 989992.
[9]
S. S. Chern, M. DoCarmo, and S. Kobayashi,
Minimal submanifolds of a sphere
with second fundamental form of constant length
, Proc. Conf. for M. Stone,
Univ. Chicago, 1968
[10]
J. Simons,
Minimal Varieties in Riemannian manifolds
, Ann. of Math, 1968
[11]
A. Ros,
The Willmore conjecture in the real projective space,
Math. Res. Lett,
1999.
[12]
P. Li and S-T. Yau,
A new conformal invariant and its applications to the
Willmore conjecture and the first eigenvalue of compact surfaces,
Invent. Math.
69 (1982), 269{291.
[13]
W. Meeks and S-T. Yau,
The existence of embedded minimal surfaces and the
problem of uniqueness
, Math. Z (1982)
[14]
M. Obata,
Certain conditions for a Riemannian manifold to be isometric with
a sphere
, J. Math. Soc. Japan (1962)
[15]
S. Montiel and A. Ros,
Minimal immersions of surfaces by the first eigenfunc-
tions and conformal area,
Invent. Math. 83 (1985), 153{166.
[16]
Almgren
the homotopy groups of the integral cycle groups
Topology 1 (1962)
257299.
[17]
Luis J. Alias, Aldir Brasil Jr. and Oscar Perdomo
On the stability index of
hypersurfaces with constant mean curvature in spheres
Proc. Amer. Math. Soc.
135 (2007), no. 11, 36853693.
[18]
Lawrence C. Evans,
Partial differential equation
textbook, American Mathe-
matical Society
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/18101-
dc.description.abstract本論文主要內容為探討Fernando C.Marques和Andre Neves所著的論文:Min-max theory and Willmore conjecture(威爾莫猜想),此論文成功地證明了一九六五年由Tomas Willmore所提出著名的猜想。他們使用了幾何測度論的方法並且應用八零年代由Almgern 和John Pitts所提出Min-max theory給出了證明,此證明整合了許多八零年代的重要結果,例如保角幾何學的種種應用。威爾莫猜想證明其中的關鍵步驟為Urbano的定理,本論文第三章將著重於此,也附上作者欲推廣此定理的一些計算,此外也會將一些Willmore猜想相關的問題討論附上。zh_TW
dc.description.provenanceMade available in DSpace on 2021-06-08T00:51:11Z (GMT). No. of bitstreams: 1
ntu-104-R02221002-1.pdf: 2116630 bytes, checksum: 01a86b17c3336430c8c160865e5e3333 (MD5)
Previous issue date: 2015
en
dc.description.tableofcontentsIntroduction-1
Background Materials-4
Urbano's Theorem-11
Willmore Conjecture-17
Beyond Willmore Conjecture-21
dc.language.isoen
dc.title威爾莫猜想及其相關問題之探討zh_TW
dc.titleA Survey On Willmore Conjecture And Related Problemsen
dc.typeThesis
dc.date.schoolyear103-2
dc.description.degree碩士
dc.contributor.oralexamcommittee張樹城,崔茂培
dc.subject.keyword威爾莫猜想,厄爾巴諾定理,zh_TW
dc.subject.keywordwillmore conjecture,en
dc.relation.page27
dc.rights.note未授權
dc.date.accepted2015-07-01
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept數學研究所zh_TW
顯示於系所單位:數學系

文件中的檔案:
檔案 大小格式 
ntu-104-1.pdf
  未授權公開取用
2.07 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved