請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/17813
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 葉安義 | |
dc.contributor.author | Chien-Hao Huang | en |
dc.contributor.author | 黃建豪 | zh_TW |
dc.date.accessioned | 2021-06-08T00:43:58Z | - |
dc.date.copyright | 2015-08-16 | |
dc.date.issued | 2015 | |
dc.date.submitted | 2015-08-10 | |
dc.identifier.citation | 李正雲。2002。澱粉對肌肉蛋白質成膠性之影響。國立台灣大學食品科學研究所博士論文。
劉鐵燕、陳明生。2014。稻屬植物的基因組進化。生物多樣性22 (1): 51-65。 楊啟春、賴惠民、呂政義。1984。米澱粉分離法之改進。食品科學 11: 158-162。 Asaoka, M.; Okuno, K.; Sugimoto, Y.; Yano, M.; Omura, T.; Fuwa, H. Characterization of endosperm starch from high-amylose mutants of rice (Oryzae sativa L.). Starch – Stärke. 1986, 38, 114-117. Atwell, W. A.; Hood, L. F.; Lineback, D. R.; Varriano-Marston, E.; Zobel, H. F. The terminology and methodology associated with basic starch phenomena. Cereal foods world. 1988, 33, 306-311. Bahnassey, Y. A.; Breene W. M. Rapid Visco-Analyzer (RVA) pasting profiles of wheat, corn, waxy corn, tapioca and amaranth starches (A. hypochondriacus and A. cruentus) in the presence of konjac flour, gellan, guar, xanthan and locust bean gums. Starch – Stärke 1994, 46, 134-141 Buléon, A.; Colonna, P.; Planchot, V.; Ball, S. Starch granule: structure and biosynthesis. Int. J. Biol. Macromol. 1998, 23, 85-112. Cai, J.; Man, J.; Huang, J.; Liu, Q.; Wei, W.; Wei, C. Relationship between structure and functional properties of normal rice starches with different amylose contents. Carbohydr. Polym. 2015, 125, 35-44. Cooke, D.; Gidley, M. J. Loss of crystalline and molecular order during starch gelatinization: origin of the enthalpic transition. Carbohydr. Res. 1992, 227, 103-112. Cave, R. A.; Seabrook, S. A.; Gildley, M. J.; Gilbert, R. G. Characterization of starch by size-exclusion chromatography: the limitation imposed by shear scission. Biomacromolecules. 2009, 10, 2245-2253. Deffenbaugh, L. B.; Walker, C. E. Comparison of starch pasting properties in the Brabender Viscograph and the Rapid Visco-Analyzer. Cereal Chem. 1989, 66, 493-499. Gallant, D. J.; Bouchet, B.; Baldwin, P. M. Microscopy of starch: evidence of a new level of granule organization. Carbohydr. Polym. 1997, 32(3), 177-191. Han, X. Z.; Hamaker, B. R. Amylopectin fine structure and rice starch paste breakdown. J. Cereal Sci. 2001, 34, 279-284. Hizukuri, S. Towards an understanding of the fine structures of starch molecules. Denpun Kagaku.1993, 40, 133-147. Hizukuri, S.; Takeda, Y.; Yasuda, M.; Suzuki, A. Multi-branched nature of amylose and the action of debranching enzymes. Carbohydr. Res. 1981, 94, 205-312. Hizukuri, S.; Kaneko, T.; Takeda, Y. Measurement of the chain length of amylopectin and its relevance to the origin of crystalline polymorphism of starch granules. Biochim. Biophys. Acta. 1983, 760, 188-191. Hizukuri, S. Polymodal distribution of the chain lengths of amylopectin and its significance. Carbohydr. Res. 1986, 147, 342-347. Hizukuri, S. Starch: Analytical aspect. In: Carbohydrate in Food. Eliasson, A. C. (Ed.), Marcel Dekker, Inc., 1996; pp. 347-429. Imberty, A.; Buléon, A.; Tran, V.; Pérez, S. Recent advances in knowledge of starch structure. Starch - Stärke 1991, 43, 375-384. Inouchi, N.; Glover, D. V.; Fuwa, H. Chain length distribution of amylopectins of several single mutants and the normal counterpart, and surgary-1 phytoglycogen in maize (Zea mays L.). Starch - Stärke 1987, 39, 259-266. Ishiguro K, Noda T, Kitahara K, Yamakawa O. Retrogradation of sweetpotato starch. Starch – Stärke 2000, 52, 13-17. Jacobs, H.; Delcour, J. A. Hydrothermal modifications of granular starch, with retention of the granular structure. J. Agric. Food Chem. 1998, 46, 2895-2905. Li, J. Y.; Yeh, A. I. Relationships between thermal, rheological characteristics and swelling power for various starches. J. Food Eng. 2001, 50, 141-148. Lii, C. Y.; Tsai, M. L.; Tseng, K. H. Effect of amylose content on the rheological property of rice starch. Cereal Chem. 1996, 73, 415-420. Lin, A. H. M.; Chang, Y. H.; Chou, W. B.; Lu, T. J. Interference prevention in size-exclusion chromatographic analysis of debranched starch glucans by aqueous system. J. Agric. Food Chem. 2011, 59, 5890-5898. Manners, D. J.; Mantheson, N. K. The fine structure of amylopectin. Carbohydr. Res. 1981, 90, 99-110. Mitchell, C. R. Rice Starches: Production and Properties. In: Starch: Chemistry and Technology, Third Edition, BeMiller, J. N.; Whistler, R. L. (Eds.), Elsevier Inc., 2009; pp. 569-578. Morrison, W. R.; Tester, R. F.; Snape, C.; Law, R.; Gidley, M. J. Swelling and gelatinization of cereal starches. IV. Some effects of lipid-complexed amylose and free amylose in waxy and normal barley starches. Cereal Chem. 1993, 70, 385-391. Nikuni, Z. 1978. Studies on starch granules. Starch - Stärke 1978, 30, 105-111. Oostergetel, G. T.; Vanbruggen, E. F. J. On the origin of a low angle spacing in starch. Starch - Stärke 1989, 41, 331-335. Peat, S.; Whelan, W. J.; Thomas, G. J. The Enzymic Synthesis und Degradation of Starch. Part XXI. Evidence of Multiple Branching in Waxy-maize Starch. A Correction. J. Chem. Soc. 1956, 53, 3025-3030. Peleg, M. The basics of solid foods rheology. In: Food Texture. Moskowitz, H. R. (Ed.), Marcel Dekker Inc., 1987; pp. 28. Perdon, A.A.; Juliano, B. O. Gel and molecular properties of waxy rice starch. Starch – Stärke 1975, 27, 69-71. Pérez, S.; Bertoft, E. The molecular structures of starch components and their contribution to the architecture of starch granules: A comprehensive review. Starch - Stärke 2010, 62, 389-420. Robin, J. P.; Mercier, C.; Charbonniere, R.; Guilbot, A. Lintnerized starches. Gel Filtration and ezymetic studies of insoluble residues from prolonged acid treatment of potato starch. Cereal Chem. 1974, 51, 389-406. Sandhya Rani, M. R.; Bhattacharya, K. R. 1989. Rheology of riceflour pastes: Effect of variety, concentration, and temperature and time of cooking. J. Texture. Stud. 1989, 20, 127-137. Sasaki, T.; Yasui, T.; Matsuki, J. Effect of amylose content on gelatinization, retrogradation, and pasting properties of starches from waxy and nonwaxy wheat and their F1 seeds. Cereal Chem. 2000, 77(1), 58-63. Saunders, J.; Izydorczyk, M.; Levin, D. Limitations and Challenges for Wheat-Based Bioethanol Production. In: Economic Effects of Biofuel Production. Bernardes M. A. S. (Ed.), InTech, Inc.,2011; pp. 429-452. Svegmark, K.; Hermansson, A. M. Shear induced changes in the viscoelastic behavior of heate-treated potato starch. Carbohydr Polym. 1990, 13, 29-45. Takeda, Y.; Hizukuri, S.; Juliano, B. O. Purification and structure of amylose from rice starch. Carbohydr. Res. 1986, 148, 299-308. Takeda, Y.; Hizukuri, S.; Takeda, C.; Suzuki, A. Structures of bracnched molecules of amyloses of various origins and molar fractions of branced and unbranched molecules. Carbohydr. Res. 1987, 165, 139-145. Takeda, Y.; Hizukuri, S.; Juliano, B. O. Structures of rice amylopectins with low and high affinities for iodine. Carbohydr. Res. 1987, 168, 79-88. Tester, R. F.; Karkalas, J.; Qi, X. Starch—composition, fine structure and architecture. J. Cereal Sci. 2004, 39, 151-165. Tester, R. F.; Morrison, W. R. Swelling and gelatinization of cereal starches. I. Effects of amylopectin, amylose, and lipids. Cereal Chem. 1990, 67, 551-557. Tester, R. F.; Morrison, W. R. Swelling and gelatinization of cereal starches. II. Waxy rice starches. Cereal Chem. 1990, 67, 558-563. Tsai, M.L.; Li, C. F.; Lii, C. Y. Effects of granular structures on the pasting behavior of starches. Cereal Chem. 1997, 74, 750-757. Vandeputte, G. E.; Delcour, J. A. From sucrose to starch granule to starch physical behaviour: a focus on rice starch. Carbohydr. Polym. 2004, 58, 245-266. Wang, Y. J.; White, P.; Pollak, L.; Jane, J. Characterization of starch structures of 17 maize endosperm mutant genotypes with Oh43 inbred line background. Cereal chem. 1993. 70(2), 171-179. Ward, R. M.; Gao, Q.; Bruyn, H. D.; Gilbert R. G.; Fitzgerald, M. A. Improved methods for the structural anlysis of amylose-rich fraction from rice flour. Biomacromolecules. 2006, 7, 866-876. Yeh, A. I.; Li, J. Y. A Continuous measurement of swelling of rice starch during heating. J. Cereal Sci. 1996, 23, 277-283. Zobel, H. F. Starch crystal transformations and their industrial importance. Starch – Stärke 1988, 40, 1-7. Zhou, Z.; Robard, K.; Helliwell, S.; Blanchard, C. Composition and functional properties of rice. Int. J. Food Sci. Technol. 2002, 37, 849-868. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/17813 | - |
dc.description.abstract | 本研究針對台灣常見七個品種的米澱粉,包含台稉 9 號、台南 11 號、台農 71 號、台中秈 10 號、台中秈 17 號、台中在來 1 號、台稉糯 3 號,探討其理化性質之間,以及理化性質與微細結構的相關性。七種米澱粉之外觀呈現多角形的多面體,粒徑約為 3.0 ~ 3.5 um。在X 光繞射下皆呈現 A-type,結晶度介於 27.86% ~ 43.61%。直鏈澱粉含量由高至低依序為台中在來 1 號 (32.02%) > 台中秈 17 號 (31.14%)> 台稉 9 號 (17.91%) > 台中秈 10 號 (17.12%) > 台農 71 號 (16.06%) > 台南 11號 (15.70%) > 台稉糯 3 號 (0.96%)。枝鏈澱粉數量分子量 (Mn) 介於 6.21 x 107 Da ~ 24.42 x 107 Da,台稉 9 號最高,台中秈 10 最低;分枝度介於 3.08 ~ 4.05,台中秈 10 號最高,台中在來 1 號最低。糊化性質方面,崩解值與枝鏈澱粉的中、短鏈比例為一次式的關係 (R2 = 0.97);終端黏度與直鏈澱粉和重量平均分子量的乘積為一次式的關係 (R2 = 0.91)。米澱粉之熱性質與品種相關,根據 Tc - To值可將品種區分為稉米 (12.10 ~ 13.51)、秈米 (9.77 ~ 10.21)、糯米 (14.64) 三種,與直鏈澱粉較無關,澱粉結晶度與 Tc - To值為一次式的關係 (R2 = 0.90)。米澱粉在75oC 與 85oC 下之膨潤力與 branching degree / (AM x TPv) 為一次式的關係 (R2=0.98 與 0.98),與 Tan δ G’max 間亦有一次式的關係 (R2 = 0.98 與 0.99)。 | zh_TW |
dc.description.provenance | Made available in DSpace on 2021-06-08T00:43:58Z (GMT). No. of bitstreams: 1 ntu-104-R02641021-1.pdf: 6651141 bytes, checksum: a4723fa74b87182e1c7735f5ceb6c011 (MD5) Previous issue date: 2015 | en |
dc.description.tableofcontents | 謝誌 I
摘要 II Abstract III 圖次 VII 表次 VIII 前言 1 文獻回顧 2 1. 稻米與簡介 2 1.1 稻米分類 2 1.2 稻米結構與組成 3 1.3 稻米加工產品與米澱粉利用性 3 2. 澱粉顆粒與結構組成 7 2.1 澱粉顆粒 7 2.2 直鏈澱粉 10 2.3 枝鏈澱粉 10 3. 澱粉之理化性質 17 3.1 澱粉之糊化 17 3.2 澱粉之流變性質 19 3.3 澱粉之膨潤力與水溶性指標 21 3.4 澱粉之結晶性 21 實驗架構 25 材料與方法 26 1. 材料來源 26 2. 米澱粉之分離 26 3. 一般成分分析 26 3.1 水分含量 26 3.2 粗蛋白含量 27 3.3 粗脂肪含量 27 3.4 灰分含量 28 4. 破損澱粉含量 28 5. 澱粉顆粒型態 28 6. 粒徑 29 7. 直鏈澱粉含量 (碘吸光值法) 29 8. 糊化性質 29 9. 熱性質 30 10. 流變性質 30 11. 膨潤力與水溶性指標 30 12. 結晶性 31 13. 澱粉分子結構分析 31 13.1 分子量分布 31 13.2 澱粉去分枝處理 31 13.3 枝鏈澱粉之分離 32 13.4 枝鏈澱粉平均鏈長(average chain-length, CL) 32 13.5 枝鏈澱粉平均內 / 外鏈長 (average interior / exterior chain length,ICL / ECL) 與平均鏈數 (average chain number, NC) 33 14. 統計 34 結果與討論 34 1. 米澱粉之基本組成與破損澱粉含量 34 2. 粒徑分布 38 3. 顆粒型態 40 4. 直鏈澱粉含量 44 5. 結晶型態 46 6. 米澱粉之分子結構 50 6.1 分子量 50 6.2 去分枝澱粉於HPSEC系統下分布與分枝度 50 6.3 平均鏈長、平均外鏈 / 內鏈長、平均鏈數 50 7. 糊化性質 58 8. 熱性質 64 9. 膨潤力與水溶性指標 68 9.1 膨潤力 68 9.2 水溶性指標 68 9.3 膨潤力與水溶性指標之關係 69 9.4 膨潤力與直鏈澱粉含量 (AM)、尖峰黏度下之溫度 (TPv)、分枝度 (branching degree) 之關係 69 10. 流變性質 76 10.1 流變性質分析 76 10.2 Tan δ G’max與膨潤力之關係 76 結論 80 參考文獻 81 附錄 86 | |
dc.language.iso | zh-TW | |
dc.title | 七種米澱粉微細結構與理化性質之解析 | zh_TW |
dc.title | Fine structures and physicochemical properties of rice starches from seven cultivars | en |
dc.type | Thesis | |
dc.date.schoolyear | 103-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 盧訓,張永和,馮臨惠,楊嘉凌 | |
dc.subject.keyword | 米澱粉,理化性質,結晶度,微細結構,分枝度, | zh_TW |
dc.subject.keyword | rice starch,physicochemical property,degree of crystallinity,fine structure,branching degree, | en |
dc.relation.page | 106 | |
dc.rights.note | 未授權 | |
dc.date.accepted | 2015-08-10 | |
dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
dc.contributor.author-dept | 食品科技研究所 | zh_TW |
顯示於系所單位: | 食品科技研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-104-1.pdf 目前未授權公開取用 | 6.5 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。