請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/16323完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 沈立言(Lee-Yan Sheen) | |
| dc.contributor.author | Yu-Cheng Su | en |
| dc.contributor.author | 蘇育正 | zh_TW |
| dc.date.accessioned | 2021-06-07T18:09:47Z | - |
| dc.date.copyright | 2012-07-19 | |
| dc.date.issued | 2012 | |
| dc.date.submitted | 2012-07-10 | |
| dc.identifier.citation | 陳啟祥。2011。我國生技產業發展政策、市場與牛樟菇產品開發策略佈局。牛樟菇產品加值研發與應用研討會。
李順來。2011。培植於不同樹種與不同生長年份的牛樟芝子實體功能性比較與牛樟芝配伍研究。牛樟菇產品加值研發與應用研討會。 林敬斌。2005。肝癌在臺灣。第五屆臺灣肝癌研討會。 野村喜重郎。2007。肝病。世茂出版社。3-32頁。 Ao, Z. H.; Xu, Z. H.; Lu, Z. M.; Xu, H. Y.; Zhang, X. M.; Dou, W. F. Niuchangchih (Antrodia camphorata) and its potential in treating liver diseases. J. Ethnopharmacol. 2009, 121, 194-212. Bouwens, L. Proliferation and phenotypic expression of non-parenchymal liver cells. Scand. J. Gastroenterol. Suppl. 1988, 151, 46-51. Chang, T. T.; Chou, W. W. Antrodia cinnamomea reconsidered and A. salmonea sp. nov. on Cunninghamia konishii in Taiwan. Bot. Bull. Acad. Sinica. 2004, 45, 347-352. Chang, T. T.; Chou, W. W. Antrodia cinnamomea sp. nov. on Cinnamomum kanehirai in Taiwan. Mycol. Res. 1995, 99, 756-758. Chen, C. J.; Su, C. H.; Lan, M. H. Study on solid cultivation and bioactivity of Antrodia camphorata. Fung. Sci. 2001, 16, 65-72. Chen, J. C.; Lin, W. H.; Chen, C. N.; Sheu, S. J.; Huang, S. J.; Chen, Y. L. Development of Antrodia camphorata mycelium with submerged culture. Fung. Sci. 2001, 16, 7-22. Colombo, M.; Donato, M. F. Prevention of hepatocellular carcinoma. Semin. Liver Dis. 2005, 25, 155-161. Deng, J. Y.; Chen, S. J.; Jow, G. M.; Hsueh, C. W.; Jeng, C. J. Dehydroeburicoic acid induces calcium- and calpain-dependent necrosis in human U87MG glioblastomas. Chem. Res. Toxicol. 2009, 22, 1817-1826. Edinger, A. L.; Thompson, C. B. Death by design: apoptosis, necrosis and autophagy. Curr. Opin. Cell Biol. 2004, 16, 663-669. El-Serag, H. B.; Lenhard Rudolph, K. Hepatocellular carcinoma: epidemiology and molecular carcinogenesis. Gastroenterology 2007, 132, 2557-2576. Enzan, H.; Himeno, H.; Hiroi, M.; Kiyoku, H.; Saibara, T.; Onishi, S. Development of hepatic sinusoidal structure with special reference to the Ito cells. Microsc. Res. Tech. 1997, 39, 336-349. Fesik, S. W. Promoting apoptosis as a strategy for cancer drug discovery. Nat. Rev. Cancer 2005, 5, 876-885. Friedman, S. L. Molecular regulation of hepatic fibrosis, an integrated cellular response to issue injury. J. Biol. Chem. 2000, 275, 2247-2250. Geethangili, M.; Tzeng, Y. M. Review of pharmacological effects of Antrodia camphorata and its bioactive compounds. Evid.-based Compl. Alt. 2011, 2011, 1-17. Gottlieb, E.; Vander Heiden, M. G.; Thompson, C. B. Bcl-xL prevents the initial decrease in mitochondrial membrane potential and subsequent reactive oxygen species production during tumor necrosis factor alpha-induced apoptosis. Mol. Cell Biol. 2000, 20, 5680-5689. Gupta, S.; Agrawal, A.; Agrawal, S.; Su, H.; Gollapudi, S. A paradox of immunodeficiency and inflammation in human aging: lessons learned from apoptosis. Immun. Aging 2006, 3, 5. Huang, Y. H.; Chen, C. H.; Chang, T. T.; Chen, S. C.; Wang, S. Y.; Lee, P. C.; Lee, H. S.; Lin, P. W.; Huang, G. T.; Sheu, J. C.; Tsai, H. M.; Chau, G. Y.; Chiang, J. H.; Lui, W. Y.; Lee, S. D.; Wu, J. C. The role of transcatheter arterial embolization in patients with resectable hepatocellular carcinoma: a nation-wide, multicenter study. Liver Int. 2004, 24, 419-424. Hussain, S. P.; Schwank, J.; Staib, F.; Wang, X. W.; Harris, C. C. TP53 mutations and hepatocellular carcinoma: insights into the etiology and pathogenesis of liver cancer. Oncogene 2007, 26, 2166-2176. Jesenberger, V.; Jentsch, S. Deadly encounter: ubiquitin meets apoptosis. Nat. Rev. Mol. Cell Bio. 2002, 3, 112-121. Kaminskyy, V.; Abdi, A.; Zhivotovsky, B. A quantitative assay for the monitoring of autophagosome accumulation in different phases of the cell cycle. Autophagy 2011, 7, 83-90. Kaufman, R. J. The cellular response to accumulation of unfolded proteins in the endoplasmic reticulum. Faseb J. 2002, 16, A891. Kerr, J. F.; Wyllie, A. H.; Currie, A. R. Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br. J. Cancer 1972, 26, 239-257. Knecht, E.; Aguado, C.; Cárcel, J.; Esteban, I.; Esteve, J. M.; Ghislat, G.; Moruno, J. F.; Vidal, J. M.; Sáez, R. Intracellular protein degradation in mammalian cells: recent developments. Cell. Mol. Life Sci. 2009, 66, 2427-2443. Kroemer, G.; Reed, J. C. Mitochondrial control of cell death. Nat. Med. 2000, 6, 513-519. Krysko, D. V.; Vanden Berghe, T.; D'Herde, K.; Vandenabeele, P. Apoptosis and necrosis: detection, discrimination and phagocytosis. Methods 2008, 44, 205-221. Kuo, P. L.; Hsu, Y. L.; Cho, C. Y.; Ng, L. T.; Kuo, Y. H.; Lin, C. C. Apoptotic effects of Antrodia cinnamomea fruiting bodies extract are mediated through calcium and calpain-dependent pathways in Hep 3B cells. Food Chem. Toxicol. 2006, 44, 1316-1326. Kuo, Y. H.; Lin, B. F. Compounds from Antrodia camphorata. Official gazette of the United States patent and trademark office patents 2011. Laszczyk, M. N. Pentacyclic triterpenes of the lupane, oleanane and ursane group as tools in cancer therapy. Planta Med. 2009, 75, 1549-1560. León, F.; Quintana, J.; Rivera, A.; Estévez, F.; Bermejo, J. Lanostanoid triterpenes from Laetiporus sulphureus and apoptosis induction on HL-60 human myeloid leukemia cells. J. Nat. Prod. 2004, 67, 2008-2011. Masud, A.; Mohapatra, A.; Lakhani, S. A.; Ferrandino, A.; Hakem, R.; Flavell, R. A. Endoplasmic reticulum stress-induced death of mouse embryonic fibroblasts requires the intrinsic pathway of apoptosis. J. Biol. Chem. 2007, 282, 14132-14139. Maxfield, F. R.; Wüstner, D. Intracellular cholesterol transport. J. Clin. Invest. 2002, 110, 891-898. McNeill, J.; Barrie, F. R.; Burdet, H. M.; Demoulin, V.; Hawksworth, D. L.; Marhold, K.; Nicolson, D. H.; Prado, J.; Silva, P. C.; Skog, J. E.; Wiersema, J. H.; Turland, N. J. International code of botanical nomenclature (vienna code). 2006. Meier, P.; Finch, A.; Evan, G. Apoptosis in development. Nature 2000, 407, 796-801. Mizushima, N.; Levine, B.; Cuervo, A. M.; Klionsky, D. J. Autophagy fights disease through cellular self-digestion. Nature 2008, 451, 1069-1075. Mosmann, T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J. Immunol. Methods 1983, 65, 55-63. Newton, H. B. Neurologic complications of systemic cancer. Am. Fam. Physician 1999, 59, 878-886. Okada, H.; Mak, T. W. Pathways of apoptotic and non-apoptotic death in tumor cells. Nat. Rev. Cancer 2004, 4, 592-603. Pan, J. H.; Chen, Y. S.; Sheen, L. Y.; Chiang, B. H. Large-scale submerged fermentation of Antrodia cinnamomea for anti-hepatoma activity. J. Sci. Food Agr. 2008, 88, 2223-2230. Patel, T. Cholangiocarcinoma. Nat. Clin. Pract. Gastroenterol. Hepatol. 2006, 3, 33-42. Pencer, J.; Nieh, M. P.; Harroun, T. A.; Krueger, S.; Adams, C.; Katsaras, J. Bilayer thickness and thermal response of dimyristoylphosphatidylcholine unilamellar vesicles containing cholesterol, ergosterol and lanosterol: a small-angle neutron scattering study. B.B.A.-Biomembranes 2005, 1720, 84-91. Read, A. P.; Strachan, T. Human molecular genetics, 2nd ed. Wiley-Liss 1999, Chapter 18. Roy-Chowdhury, N.; Roy-Chowdhury, J. Sleisenger and Fordtran's gastrointestinal and liver disease, 9th ed. Elsevier Science Health Science div 2010, 1207-1225. Shapiro IIa; Shabrov, A. V.; Karev, V. E.; Leenman, E. E.; Kvetnoi, I. M.; Tsinzerling, V. A.; Sologub, T. V. Clinical and molecular correlation between chronic hepatitis and hepatocellular carcinoma induced by hepatitis B virus. Arkh. Patol. 2005, 67, 6-10. Shen, Y. C.; Chen, C. F.; Wang, Y. H.; Chang, T. T.; Chou, C. J. Evaluation of the immuno-modulating activity of some active principles isolated from the fruiting bodies of Antrodia camphorata Chinese Pharm. J. 2003, 55, 313-318. Shimizu, I. Sho-saiko-to: Japanese herbal medicine for protection against hepatic fibrosis and carcinoma. J. Gastroenterol. Hepatol. 2000, 15, D84-D90. Souei, M. M.; Graiess, T. K.; Yacoubi, M. T. Biliary cystadenocarcinoma: a case report disease. J. Radiol. 2005, 86, 1035-1037. Strunk, H.; Stuckmann, G.; Textor, J.; Willinek, W. Limitations and pitfalls of Couinaud's segmentation of the liver in transaxial Imaging. Eur. Radiol. 2003, 13, 2472-2482. Svegliati-Baroni, G.; Di Sario, A.; Casini, A.; Ferretti, G.; D'Ambrosio, L.; Ridolfi, F.; Bolognini, L.; Salzano, R.; Orlandi, F.; Benedetti, A. The Na+/H+ exchanger modulates the fibrogenic effect of oxidative stress in rat hepatic stellate cells. J. Hepatol. 1999, 30, 868-875. Taylor, R. C.; Cullen, S. P.; Martin, S. J. Apoptosis: controlled demolition at the cellular level. Nat. Rev. Mol. Cell Bio. 2008, 9, 231-241. Thuerauf, D. J.; Marcinko, M.; Gude, N.; Rubio, M.; Sussman, M. A.; Glembotski, C. C. Activation of the unfolded protein response in infarcted mouse heart and hypoxic cultured cardiac myocytes. Circ. Res. 2006, 99, 275-282. Tominaga, S. Major avoidable risk factors of cancer. Cancer Lett. 1999, 143, S19-S23. Tortora, G.; Grabowski, S. Principles of anatomy and physiology. John Wiley & Sons Inc. 1996, 777-782. Toyoshima, C.; Nakasako, M.; Nomura, H.; Ogawa, H. Crystal structure of the calcium pump of sarcoplasmic reticulum at 2.6 A resolution. Nature 2000, 405, 647-655. Tsai, Z. T.; Liaw, S. L. The use and the effect of Ganoderma. San Yun Press 1985, 116-117. van der Vlies, D.; Makkinje, M.; Jansens, A.; Braakman, I.; Verkleij, A. J.; Wirtz, K. W.; Post, J. A. Oxidation of ER resident proteins upon oxidative stress: effects of altering cellular redox/antioxidant status and implications for protein maturation. Antioxid. Redox Sign. 2003, 5, 381-387. Verfaillie, T.; Salazar, M.; Velasco, G.; Agostinis, P. Linking ER stress to autophagy: potential implications for cancer therapy. Int. J. Cell Biol. 2010, 2010, 930509. Wang, W. M.; Wu, R. Y.; Ko, W. H. Variation and segregation following nuclear transplantation in Antrodia cinnamomea. Bot. Bull. Acad. Sinica. 2005, 46, 217-222. Wu, S. H.; Ryvarden, L.; Chang, T. T. Antrodia camphorata ('niu-chang-chih'), new combination of a medicinal fungus in Taiwan. Bot. Bull. Acad. Sinica. 1997, 38, 273-275. Wu, S. H.; Yu, Z. H.; Dai, Y. C.; Chen, C. T.; Su, C. H.; Chen, L. C.; Hsu, W. C.; Hwang, G. Y. Taiwanofungus, a polypore new genus. Fung. Sci. 2004, 19, 109-116. Yang, Z.; Klionsky, D. J. Eaten alive: a history of macroautophagy. Nat. Cell Biol. 2010, 12, 814-822. Yeh, C. T.; Rao, Y. K.; Yao, C. J.; Yeh, C. F.; Li, C. H.; Chuang, S. E.; Luong, J. H. T.; Lai, G. M.; Tzeng, Y. M. Cytotoxic triterpenes from Antrodia camphorata and their mode of action in HT-29 human colon cancer cells. Cancer Lett. 2009, 285, 73-79. Zhang, K.; Kaufman, R. J. Protein folding in the endoplasmic reticulum and the unfolded protein response. Handb. Exp. Pharmacol. 2006, 69-91. Zhang, M.; Su, Q. Ganoderma comphoratum, a new taxon in genus Ganoderma from Taiwan, China. Acta Bot. Yunnanica 1990, 12, 395-396. Zhou, F.; Yang, Y.; Xing, D. Bcl-2 and Bcl-xL play important roles in the crosstalk between autophagy and apoptosis. FEBS J. 2011, 278, 403-413. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/16323 | - |
| dc.description.abstract | 根據中華民國100年行政院衛生署十大癌症死因統計,肝癌於不分男女之排名中佔癌症主要死因第二位,更高居全世界排名的第四位,所以在臺灣如何維護肝臟健康是值得重視的議題。近年研究發現,臺灣特有之牛樟芝具有護肝、抗發炎、抗B型肝炎病毒、抗癌等生理活性,其主要活性成分為多醣體、苯類、三萜類、固醇類等,又因三萜類通常具有良好的抗癌效果而備受矚目。因此,本研究欲探討椴木栽培之牛樟芝子實體中含量第二多的三萜類──齒孔酸對人類肝癌Hep 3B細胞株之抗癌活性及其分子機制。結果指出,齒孔酸能有效抑制Hep 3B細胞存活率,其處理24小時之半抑制濃度為18.4 μM,相當於8.7 μg/mL。除此之外,齒孔酸會促使Hep 3B細胞中的LC3-Ⅰ轉變為LC3-Ⅱ,並產生大量的自噬體和自噬溶酶體,但不會明顯地增加細胞的亞二倍體比例或導致細胞破損,故齒孔酸誘導Hep 3B細胞死亡之主要模式為自體吞噬,而不是細胞凋亡或細胞壞死。深入探討其分子機制後發現,齒孔酸首先可促進Hep 3B細胞中的ROS生成和降低ATP水平而導致內質網壓力產生,接著促使細胞質中的鈣離子濃度和BiP表現量上升、DAPK的磷酸化下降及Beclin-1、JNK和Bcl-2的磷酸化上升,最終導致自體吞噬。綜合以上結果顯示,齒孔酸的抗肝癌功效相當良好,且機制較為獨特,加上其在椴木栽培之牛樟芝子實體中含量甚高,因此具有量產並輔助抗癌治療的潛力。 | zh_TW |
| dc.description.abstract | Liver cancer is the second leading cause of cancer deaths in Taiwan as per the 2011 statistics, and ranks the fourth in cancer related mortality in the world. Hence to maintain a healthy liver is a big issue in Taiwan. Recent researches have shown that Antrodia cinnamomea, a Taiwan-specific medicinal mushroom, can manipulate biological activities, including hepatoprotection, anti-inflammation, anti-HBV activity, anticancer activity, etc. The active constituents include polysaccharides, benzenoids, triterpenoids, steroids, etc., and among them triterpenoids are the most prominent because of their potent anticancer effects. In this study, the anti-liver cancer activity and molecular mechanisms of eburicoic acid, the second most abundant triterpenoid from the fruiting bodies of basswood cultivated Antrodia cinnamomea was investigated using the human hepatoma Hep 3B cells. The results show that eburicoic acid effectively reduced Hep 3B cell viability within 24 hours, and the IC50 was 18.4 μM, which was equivalent to 8.7 μg/mL. Besides, eburicoic acid induced conversion of LC3-Ⅰto LC3-Ⅱ and a large number of autophagosomes/autophagolysosomes formation, but increasing of hypodiploid proportion or cell lysis obviously in Hep 3B cells. So the principal mode of Hep 3B cell death induced by eburicoic acid was autophagy, rather than apoptosis or necrosis. In depth investigation for the molecular mechanisms, revealed that eburicoic acid firstly promoted ROS generation and ATP depletion, leading to ER stress, followed by elevated cytosolic calcium ion concentration and BiP expression, downregulated phosphorylation of DAPK, upregulated phosphorylation of Beclin-1, JNK, and Bcl-2, and finally induced autophagy in Hep 3B cells. These results indicate that eburicoic acid has significant anti-liver cancer effects and more distinctive mechanisms. Coupled with these findings and the high content of eburicoic acid in the fruiting bodies of basswood cultivated Antrodia cinnamomea, eburicoic acid has the potential for mass production and to assist cancer therapy. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-07T18:09:47Z (GMT). No. of bitstreams: 1 ntu-101-R99641003-1.pdf: 5012093 bytes, checksum: 2aa88955f1250c3c92f81437bd483a78 (MD5) Previous issue date: 2012 | en |
| dc.description.tableofcontents | 致謝...I
摘要...II Abstract...III 縮寫對照表...V 目錄...VIII 表次...XII 圖次...XIII 第一章 文獻回顧...1 第一節 肝癌...1 一、肝臟生理功能...1 二、肝癌流行病學...4 三、肝癌臨床病理...6 第二節 細胞死亡模式...8 一、細胞凋亡形態特徵...8 二、自體吞噬形態特徵...10 三、細胞壞死形態特徵...12 四、細胞凋亡誘導路徑...12 五、自體吞噬誘導路徑...14 第三節 內質網壓力...17 一、內質網生理功能...17 二、內質網壓力反應...18 三、內質網壓力連結自體吞噬之路徑...19 第四節 牛樟芝...21 一、牛樟芝形態與命名...21 二、牛樟芝人工栽培方法...23 三、牛樟芝生理功效...24 四、牛樟芝活性成分...29 第二章 動機與目的...37 第三章 研究架構...38 第四章 材料...39 第一節、樣品與細胞株...39 一、樣品...39 二、細胞株...39 第二節、藥品與儀器...40 一、藥品...40 二、儀器...42 第五章 方法...45 第一節、抗增殖活性評估...45 一、細胞之培養與保存...45 二、細胞存活率分析...46 第二節、細胞死亡模式分析...47 一、細胞形態觀察...47 二、細胞大小及顆粒性分析...47 三、亞二倍體比例分析...48 四、細胞破損程度分析...49 五、LC3分布觀察...50 六、自噬體形成量分析...51 第三節、內質網壓力調節之自體吞噬機制探討...52 一、活性氧物質生成分析...52 二、三磷酸腺苷水平分析...53 三、鈣離子移位分析...53 四、蛋白質表現分析...55 第四節、資料統計...57 第六章 結果與討論...58 第一節、抗增殖活性評估...58 一、Eburicoic acid對Hep 3B細胞存活率之影響...58 二、本節討論...59 第二節、細胞死亡模式分析...60 一、Eburicoic acid對Hep 3B細胞形態之影響...60 二、Eburicoic acid對Hep 3B細胞亞二倍體比例之影響...61 三、Eburicoic acid對Hep 3B細胞破損程度之影響...61 四、Eburicoic acid對Hep 3B細胞自噬體形成之影響...62 五、本節討論...62 第三節、內質網壓力調節之自體吞噬機制探討...64 一、Eburicoic acid對Hep 3B細胞活性氧物質及三磷酸腺苷之影響...64 二、Eburicoic acid對Hep 3B細胞鈣離子訊號之影響...65 三、Eburicoic acid對Hep 3B細胞不完全摺疊蛋白反應之影響...65 四、本節討論...66 第四節、綜合討論...68 一、Eburicoic acid與dehydroeburicoic acid之抗癌機制比較...68 二、Eburicoic acid與牛樟芝子實體萃取物之抗癌機制比較...69 第五節、未來研究...70 一、Eburicoic acid之後續抗癌研究...70 二、牛樟芝子實體中麥角甾烷型三萜類之後續研究...70 第七章 結論...72 第八章 實驗圖表...74 第九章 參考文獻...86 第十章 附錄...94 | |
| dc.language.iso | zh-TW | |
| dc.subject | 內質網壓力 | zh_TW |
| dc.subject | 肝癌 | zh_TW |
| dc.subject | 牛樟芝 | zh_TW |
| dc.subject | 齒孔酸 | zh_TW |
| dc.subject | 自體吞噬 | zh_TW |
| dc.subject | liver cancer | en |
| dc.subject | ER stress | en |
| dc.subject | autophagy | en |
| dc.subject | Antrodia cinnamomea | en |
| dc.subject | eburicoic acid | en |
| dc.title | 椴木栽培牛樟芝子實體之活性成分齒孔酸(三萜類)誘導人類肝癌細胞內質網壓力調節之自體吞噬 | zh_TW |
| dc.title | Eburicoic acid, an active triterpenoid from the fruiting bodies of basswood cultivated Antrodia cinnamomea, induces ER stress-mediated autophagy in human hepatoma cells | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 100-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 羅翊禎(Yi-Chen Lo),鄭劍廷(Chiang-Ting Chien),許輔(Fuu Sheu) | |
| dc.subject.keyword | 肝癌,牛樟芝,齒孔酸,自體吞噬,內質網壓力, | zh_TW |
| dc.subject.keyword | liver cancer,Antrodia cinnamomea,eburicoic acid,autophagy,ER stress, | en |
| dc.relation.page | 106 | |
| dc.rights.note | 未授權 | |
| dc.date.accepted | 2012-07-10 | |
| dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
| dc.contributor.author-dept | 食品科技研究所 | zh_TW |
| 顯示於系所單位: | 食品科技研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-101-1.pdf 未授權公開取用 | 4.89 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
