Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 電子工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/16097
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor黃鐘揚
dc.contributor.authorKai-Fu Tangen
dc.contributor.author湯凱富zh_TW
dc.date.accessioned2021-06-07T18:00:56Z-
dc.date.copyright2012-08-27
dc.date.issued2012
dc.date.submitted2012-08-06
dc.identifier.citation[1] M. S. Abadir, J. Ferguson, and T. E. Kirkland. Logic design veri cation
via test generation. IEEE Trans. on CAD of Integrated Circuits and
Systems, 7(1):138{148, 1988.
[2] C. Albrecht. IWLS 2005 benchmarks. In
http://iwls.org/iwls2005/benchmarks.html.
[3] A. Ayari and D. A. Basin. Bounded model construction for monadic
second-order logics. In Proc. CAV, pages 99{112, 2000.
[4] M. Benedetti. Quanti er trees for QBFs. In Proc. SAT, pages 378{385,
2005.
[5] Berkeley Logic Synthesis and Veri cation Group. ABC: A system for
sequential synthesis and veri cation.
[6] A. Biere. Resolve and expand. In Proc. SAT, pages 59{70, 2004.
[7] D. Brand. Veri cation of large synthesized designs. In Proc. ICCAD,
pages 534{537, 1993.
[8] D. Brand, A. D. Drumm, S. Kundu, and P. Narain. Incremental synthesis.
In Proc. ICCAD, pages 14{18, 1994.
[9] R. E. Bryant, S. K. Lahiri, and S. A. Seshia. Convergence testing in
term-level bounded model checking. In Proc. CHARME, pages 348{362,
2003.
[10] K.-H. Chang, I. L. Markov, and V. Bertacco. Fixing design errors with
counterexamples and resynthesis. IEEE Trans. on CAD of Integrated
Circuits and Systems, 27(1):184{188, 2008.
[11] D. Chen and D. Singh. Line-level incremental resynthesis techniques for
FPGAs. In Proc. FPGA, pages 133{142, 2011.
[12] P.-Y. Chung and I. N. Hajj. ACCORD: Automatic catching and correction
of logic design errors in combinational circuits. In Proc. ITC, pages
742{751, 1992.
[13] J. Cong and K. Minkovich. Improved SAT-based Boolean matching
using implicants for LUT-based FPGAs. In Proc. FPGA, pages 139{
147, 2007.
[14] W. Craig. Linear reasoning: A new form of the Herbrand-Gentzen
theorem. J. Symb. Log., 22(3):250{268, 1957.
[15] M. Davis, G. Logemann, and D. W. Loveland. A machine program for
theorem-proving. Commun. ACM, 5(7):394{397, 1962.
[16] N. Dershowitz, Z. Hanna, and J. Katz. Bounded model checking with
QBF. In Proc. SAT, pages 408{414, 2005.
[17] N. Dershowitz, Z. Hanna, and A. Nadel. A scalable algorithm for minimal
unsatis able core extraction. In Proc. SAT, pages 36{41, 2006.
[18] N. E en and N. S orensson. An extensible SAT-solver. In Proc. SAT,
pages 502{518, 2003.
[19] U. Egly, M. Seidl, H. Tompits, S. Woltran, and M. Zolda. Comparing
di erent prenexing strategies for quanti ed Boolean formulas. In Proc.
SAT, pages 214{228, 2003.
[20] Z. Feng, Y. Hu, L. He, and R. Majumdar. IPR: In-place recon guration
for FPGA fault tolerance. In Proc. ICCAD, pages 105{108, 2009.
[21] M. Fujita, Y. Tamiya, Y. Kukimoto, and K.-C. Chen. Application of
Boolean uni cation to combinational logic synthesis. In Proc. ICCAD,
pages 510{513, 1991.
[22] E. Giunchiglia, M. Narizzano, and A. Tacchella. Quanti er structure in
search-based procedures for QBFs. IEEE Trans. on CAD of Integrated
Circuits and Systems, 26(3):497{507, 2007.
[23] L. Henkin. Some remarks on in nitely long formulas. In In nitistic
methods, pages 167{183. 1961.
[24] M. Herbstritt, B. Becker, and C. Scholl. Advanced SAT-techniques for
bounded model checking of blackbox designs. In Proc. MTV, pages
37{44, 2006.
[25] E. L. Horta, J. W. Lockwood, D. E. Taylor, and D. B. Parlour. Dynamic
hardware plugins in an FPGA with partial run-time recon guration. In
Proc. DAC, pages 343{348, 2002.
[26] Y. Hu, Z. Feng, L. He, and R. Majumdar. Robust FPGA resynthesis
based on fault-tolerant Boolean matching. In Proc. ICCAD, pages 706{
713, 2008.
[27] S.-Y. Huang, K.-C. Chen, and K.-T. Cheng. Error correction based on
veri cation techniques. In Proc. DAC, pages 258{261, 1996.
[28] S.-Y. Huang, K.-C. Chen, and K.-T. Cheng. AutoFix: A hybrid tool
for automatic logic recti cation. IEEE Trans. on CAD of Integrated
Circuits and Systems, 18(9):1376{1384, 1999.
[29] C. Kao. Bene ts of partial recon guration. Xcell Journal, pages 65{67,
2005.
[30] J. Katz, Z. Hanna, and N. Dershowitz. Space-e cient bounded model
checking. In Proc. DATE, pages 686{687, 2005.
[31] S. Krishnaswamy, H. Ren, N. Modi, and R. Puri. DeltaSyn: An e cient
logic di erence optimizer for ECO synthesis. In Proc. ICCAD, pages
789{796, 2009.
[32] A. Kuehlmann, D. I. Cheng, A. Srinivasan, and D. P. LaPotin. Error
diagnosis for transistor-level veri cation. In Proc. DAC, pages 218{224,
1994.
[33] Y. Kukimoto and M. Fujita. Recti cation method for lookup-table type
FPGA's. In Proc. ICCAD, pages 54{61, 1992.
[34] C.-F. Lai, J.-H. R. Jiang, and K.-H.Wang. Boolean matching of function
vectors with strengthened learning. In Proc. ICCAD, pages 596{601,
2010.
[35] C.-F. Lai, J.-H. R. Jiang, and K.-H. Wang. BooM: a decision procedure
for Boolean matching with abstraction and dynamic learning. In Proc.
DAC, pages 499{504, 2010.
[36] C.-C. Lin, K.-C. Chen, and M. Marek-Sadowska. Logic synthesis for
engineering change. IEEE Trans. on CAD of Integrated Circuits and
Systems, 18(3):282{292, 1999.
[37] C.-H. Lin, Y.-C. Huang, S.-C. Chang, and W.-B. Jone. Design and
design automation of recti cation logic for engineering change. In Proc.
ASP-DAC, pages 1006{1009, 2005.
[38] A. C. Ling, S. D. Brown, S. Safarpour, and J. Zhu. Toward automated
ECOs in FPGAs. IEEE Trans. on CAD of Integrated Circuits and Sys-
tems, 30(1):18{30, 2011.
[39] A. C. Ling, S. D. Brown, J. Zhu, and S. Safarpour. Towards automated
ECOs in FPGAs. In Proc. FPGA, pages 3{12, 2009.
[40] A. C. Ling, D. P. Singh, and S. D. Brown. FPGA logic synthesis using
quanti ed Boolean satis ability. In Proc. SAT, pages 444{450, 2005.
[41] A. C. Ling, D. P. Singh, and S. D. Brown. FPGA technology mapping:
a study of optimality. In Proc. DAC, pages 427{432, 2005.
[42] F. Lonsing and A. Biere. Integrating dependency schemes in searchbased
QBF Solvers. In Proc. SAT, pages 158{171, 2010.
[43] J. C. Madre, O. Coudert, and J. P. Billon. Automating the diagnosis
and the recti cation of design errors with PRIAM. In Proc. ICCAD,
pages 30{33, 1989.
[44] K. L. McMillan. Interpolation and SAT-based model checking. In Proc.
CAV, pages 1{13, 2003.
[45] D. Mesquita, F. G. Moraes, J. Palma, L. M oller, and N. L. V. Calazans.
Remote and partial recon guration of FPGAs: Tools and trends. In
Proc. IPDPS, page 177, 2003.
[46] G. Peterson, S. Azhar, and J. Reif. Lower bounds for multiplayer noncooperative
games of incomplete information. Journal of Computers and
Mathematics with Applications, 41:957{992, 2001.
[47] P. Pudl ak. Lower bounds for resolution and cutting plane proofs and
monotone computations. J. Symbolic Logic, 62(3):981{998, 1997.
[48] S. Safarpour, A. G. Veneris, G. Baeckler, and R. Yuan. E cient SATbased
Boolean matching for FPGA technology mapping. In Proc. DAC,
pages 466{471, 2006.
[49] C. Scholl and B. Becker. Checking equivalence for partial implementations.
In Proc. DAC, pages 238{243, 2001.
[50] N. P. Sedcole, B. Blodget, T. Becker, J. Anderson, and P. Lysaght.
Modular partial recon guration in Virtex FPGAs. In Proc. FPL, pages
211{216, 2005.
[51] T. Shinsha, T. Kubo, Y. Sakataya, J. Koshishita, and K. Ishihara. Incremental
logic synthesis through gate logic structure identi cation. In
Proc. DAC, pages 391{397, 1986.
[52] A. Smith, A. G. Veneris, and A. Viglas. Design diagnosis using Boolean
satis ability. In Proc. ASP-DAC, pages 218{223, 2004.
[53] S. Szeider. Minimal unsatis able formulas with bounded clause-variable
di erence are xed-parameter tractable. In Proc. COCOON, pages 548{
558, 2003.
[54] K.-F. Tang, C.-A. Wu, P.-K. Huang, and C.-Y. Huang. Interpolationbased
incremental ECO synthesis for multi-error logic recti cation. In
Proc. DAC, pages 146{151, 2011.
[55] G. S. Tseitin. On the complexity of derivation in propositional calculus.
In Automation of Reasoning 2: Classical Papers on Computational Logic
1967-1970, pages 466{483. Springer, 1983.
[56] A. G. Veneris and I. N. Hajj. Design error diagnosis and correction via
test vector simulation. IEEE Trans. on CAD of Integrated Circuits and
Systems, 18(12):1803{1816, 1999.
[57] C. Wrathall. Complete sets and the polynomial-time hierarchy. Theor.
Comp. Science, 3(1):23{33, 1976.
[58] B.-H. Wu, C.-J. Yang, C.-Y. Huang, and J.-H. R. Jiang. A robust
functional ECO engine by SAT proof minimization and interpolation
techniques. In Proc. ICCAD, pages 729{734, 2010.
[59] Y.-S. Yang, S. Sinha, A. G. Veneris, and R. K. Brayton. Automating
logic recti cation by approximate SPFDs. In Proc. ASP-DAC, pages
402{407, 2007.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/16097-
dc.description.abstractIn modern VLSI designs, late design changes are nearly inevitable to fix the design bugs or to cope with the specification changes. Due to the cost and time-to-market pressure, it is unlikely that designers would like to modify the register-transfer level (RTL) design and re-run the whole design flow from the beginning. Instead, they identify a patch circuit to rectify the gate-level design for the differences. This process is called logic rectification.
This dissertation focuses on two closely related rectification problems: rectification for application-specific integrated circuits (ASICs) and field-programmable gate arrays (FPGAs).
Rectification for ASICs
For a design with multiple functional errors, multiple patches are usually needed to correct the design. Previous works on logic rectification are limited to single-output patch. In other words, only one erroneous behaviors can be fixed in one iteration. As a result, it may lead to unnecessarily large patches or even failure in rectification. We generalize the existing rectification techniques to a great extent and propose direct and incremental logic rectifications. For direct logic rectification, we derive multiple-output patch by interpolation with cofactor reduction. The multiple-output patch considers multiple design errors simultaneously. For incremental logic rectification, single- and multiple-output partial patches are identified in an iterative manner. Our experiments incorporate both direct and incremental methods, and the algorithms perform well on large designs.
Rectification for FPGAs
We present rectification methods for look-up table (LUT) type FPGAs to correct an erroneous circuit implementation by in-place logic reconfiguration; that is, we only reconfigure the functions of the LUTs and do not change the routing of the erroneous circuit. Therefore, the rectification can be very efficient since the relatively much more expensive re-routing can be avoided. Our proposed algorithm is based on the Boolean satisfiability (SAT) solver and use dynamic learning techniques to accelerate the computation. To enhance the reconfiguration power, both direct and incremental methods are investigated. Experimental results demonstrate that the learning techniques are effective in pruning infeasible solutions for both academic and industrial benchmarks.
en
dc.description.provenanceMade available in DSpace on 2021-06-07T18:00:56Z (GMT). No. of bitstreams: 1
ntu-101-D94943039-1.pdf: 6139235 bytes, checksum: cf9b2768f2b3e4c61b6fcb9b392557fc (MD5)
Previous issue date: 2012
en
dc.description.tableofcontents1 Introduction 5
1.1 Objective and Contributions . . . . . . . . . . . . . . . . . . . 10
1.2 Organization of the Dissertation . . . . . . . . . . . . . . . . . 12
2 Background 13
2.1 Boolean Satisability . . . . . . . . . . . . . . . . . . . . . . . 13
2.1.1 Basic Denitions . . . . . . . . . . . . . . . . . . . . . 14
2.1.2 SAT-Solving Algorithms . . . . . . . . . . . . . . . . . 16
2.1.3 Unsatisable Core . . . . . . . . . . . . . . . . . . . . 17
2.1.4 Interpolation . . . . . . . . . . . . . . . . . . . . . . . 18
2.1.5 Tseitin Transformation . . . . . . . . . . . . . . . . . . 21
2.2 Quantied Boolean Formula (QBF) . . . . . . . . . . . . . . . 24
2.2.1 Basic Denitions . . . . . . . . . . . . . . . . . . . . . 25
2.2.2 Applications of Quantied Boolean Formulae . . . . . . 26
2.3 Dependency Quantied Boolean Formula (DQBF) . . . . . . . 27
I Minimal Logic Dierence Identication for ASIC Rectication 30
3 Direct Logic Rectication 31
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.3 Single-Output Patch . . . . . . . . . . . . . . . . . . . . . . . 37
3.4 The k-Direct-Rectiability Problem . . . . . . . . . . . . . . . 39
3.5 Multiple-Output Patch . . . . . . . . . . . . . . . . . . . . . . 43
3.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
4 Incremental Logic Rectication 51
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
4.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
4.3 Overview of the Incremental Approach . . . . . . . . . . . . . 55
4.4 Single-Output Partial Patch . . . . . . . . . . . . . . . . . . . 58
4.4.1 Rectication for All Outputs . . . . . . . . . . . . . . . 64
4.4.2 Rectication for an Output Subset . . . . . . . . . . . 66
4.5 Multiple-Output Partial Patch . . . . . . . . . . . . . . . . . . 67
4.6 Integrated Logic Rectication Flow . . . . . . . . . . . . . . . 72
4.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
5 Experimental Results 75
6 Conclusions 84
II In-Place Logic Reconguration for FPGA Rectication 86
7 Logic Reconguration for FPGAs 87
7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
7.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
7.3 Logic Reconguration for FPGAs . . . . . . . . . . . . . . . . 93
7.3.1 Finding Candidate LUTs . . . . . . . . . . . . . . . . . 94
7.3.2 SAT-Based Logic Reconguration . . . . . . . . . . . . 97
7.3.3 Reconguration with Dynamic Learning . . . . . . . . 101
7.3.4 Incremental Reconguration . . . . . . . . . . . . . . . 106
7.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
8 Experimental Results 111
9 Conclusions 118
10 Bibliography 120
dc.language.isoen
dc.subject滿足性zh_TW
dc.subject邏輯修正zh_TW
dc.subject內插法zh_TW
dc.subjectlogic rectificationen
dc.subjectinterpolationen
dc.subjectsatisfiabilityen
dc.title基於內插法與滿足性之邏輯修正zh_TW
dc.titleInterpolation and SAT-Based Logic Rectificationen
dc.typeThesis
dc.date.schoolyear100-2
dc.description.degree博士
dc.contributor.oralexamcommittee江蕙如,江介宏,顏嘉志,王俊堯
dc.subject.keyword邏輯修正,內插法,滿足性,zh_TW
dc.subject.keywordlogic rectification,interpolation,satisfiability,en
dc.relation.page129
dc.rights.note未授權
dc.date.accepted2012-08-07
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept電子工程學研究所zh_TW
顯示於系所單位:電子工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-101-1.pdf
  未授權公開取用
6 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved