請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/16003完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 林文貞(Wen-Jen Lin) | |
| dc.contributor.author | Wan-Yi Hsu | en |
| dc.contributor.author | 徐婉貽 | zh_TW |
| dc.date.accessioned | 2021-06-07T17:57:44Z | - |
| dc.date.copyright | 2012-09-19 | |
| dc.date.issued | 2012 | |
| dc.date.submitted | 2012-08-13 | |
| dc.identifier.citation | Al-Qadi, S., Grenha, A., Carrion-Recio, D., Seijo, B., Remunan-Lopez, C., 2012. Microencapsulated chitosan nanoparticles for pulmonary protein delivery: in vivo evaluation of insulin-loaded formulations. Journal of controlled release, 157, 383-390.
Allan, G.G., Peyron, M., 1995. Molecular weight manipulation of chitosan. I: Kinetics of depolymerization by nitrous acid. Carbohydrate research, 277, 257-272. Ashwell, G., Morell, A.G., 1974. The role of surface carbohydrates in the hepatic recognition and transport of circulating glycoproteins. Advances in enzymology and related areas of molecular biology 41, 99-128. Aranaz, I., Ruth, H., Angeles, H., 2010. Chitosan Amphiphilic Derivatives. Chemistry and Applications, Current organic chemistry, 14, 308-330. Carlos, J., Almeciga-Diaz, Rocio, C., Luis, A. B., 2011. Gene delivery systems:tailoring vectors to reach specific tissues, Non-viral gene therapy, 51-76. Casettari, L., Vllasaliu, D., Castagnino, E., Stolinik, S., Howdle, S., Illum, L., 2012. PEGylated chitosan derivatives:synthesis, characterizations and pharmaceutical applications, Progress in polymer science, 37, 659-685. Chandra, M. V., Vivek, J. M., Anjana, J., Lohitash, K., Madhuri, D., Ravi, V. B., 2012.Photocrosslinkable chitosan based hydrogels for meural tissue engineering, Soft matter, 8, 1964-1976. Chayosumrit, M., Tuch, B., Sidhu, K., 2010. Alginate microcapsule for propagation and directed differentiation of hESCs to definitive endoderm. Biomaterials, 31, 505-514. Chen, H., Li, M., Wan, T., Zheng, Q., Cheng, M., Huang, S., Wang, Y., 2012. Design and synthesis of dual-ligand modified chitosan as a liver targeting vector. Journal of materials science, 23, 431-441. Crini, G., Badot, P. M., 2008. Application of chitosan, a natural aminopolysaccharide, for dye removal from aqueous solutions by adsorption processes using batch studies: A review of recent literature, Progress in Polymer Science, 33, 399–447. Csaba, N., Koping-Hoggard, M., Alonso, M.J., 2009. Ionically crosslinked chitosan/tripolyphosphate nanoparticles for oligonucleotide and plasmid DNA delivery. International journal of pharmaceutics, 382, 205-214. de la Fuente, M., Csaba, N., Garcia-Fuentes, M., Alonso, M.J., 2008. Nanoparticles as protein and gene carriers to mucosal surfaces. Nanomedicine, 3, 845-857. Dong, Y. M., Xu, C. Y., Wang, J. W., Wang, M., Wu, Y. S., Ruan, Y. H., 2001. Determination of degree of substitution for N-acylated chitosan using IR spectra, Science in China (Series B), 44(2), 216-224. Douglas, K.L., Tabrizian, M., 2005. Effect of experimental parameters on the formation of alginate-chitosan nanoparticles and evaluation of their potential application as DNA carrier. Journal of biomaterials science, 16, 43-56. Duan, J., Liu, M., Zhang, Y., Zhan, J., Pan, Y., Yang, X., 2012. Folate-decorated chitosan/doxorubicin poly(butyl)cyanoacrylate nanoparticles for tumor-targeted drug delivery, Journal of nanoparticle research, 14(4), 1-9. Edelstein, M. L., Mohammad, R. A., Jo, W., 2007. Gene therapy clinical trials worldwide to 2007 – an update, The journal of gene medicine, 9, 833-842. Figueiredo, M., Esenaliev, R., 2012. PLGA Nanoparticles for Ultrasound-Mediated Gene Delivery to Solid Tumors. Journal of drug delivery, 767839. Friedmann, T., 1992. A brief history of gene therapy. Nature genetics, 2, 93-98. Gao, S., Chen, J., Xu, X., Ding, Z., Yang, Y.H., Hua, Z., Zhang, J., 2003. Galactosylated low molecular weight chitosan as DNA carrier for hepatocyte-targeting. International journal of pharmaceutics, 255, 57-68. Garcia-Fuentes, M., Alonso, M.J., 2012. Chitosan-based drug nanocarriers: Where do we stand? Journal of controlled release, 161, 496-504. Goycoolea, F.M., Lollo, G., Remunan-Lopez, C., Quaglia, F., Alonso, M.J., 2009. Chitosan-alginate blended nanoparticles as carriers for the transmucosal delivery of macromolecules. Biomacromolecules, 10, 1736-1743. Grenha, A., 2012. Chitosan nanoparticles: a survey of preparation methods. Journal of drug targeting, 20, 291-300. Hashimoto, M., Morimoto, M., Saimoto, H., Shigemasa, Y., Sato, T., 2006. Lactosylated chitosan for DNA delivery into hepatocytes: the effect of lactosylation on the physicochemical properties and intracellular trafficking of pDNA/chitosan complexes. Bioconjugate chemistry, 17, 309-316. Harris, J. M., 1992. Poly(ethylene glycol) chemistry: biotechnical and biomedical applications, Plenum Press, New York, 1-13. He, W., Guo, Z., Wen, Y., Wang, Q., Xie, B., Zhu, S., 2012. Alginate-graft-PEI as a gene delivery vector with high efficiency and low cytotoxicity. Journal of biomaterials science, 23, 315-331. Hirai, A., Odani, H., Nakajima, A., 1991. Determination of degree of deacetylation of chitosan by 1H NMR spectroscopy, Polymer bulletin, 26, 87-94. Jeong, Y.I., Kim, D.G., Jang, M.K., Nah, J.W., 2008. Preparation and spectroscopic characterization of methoxy poly(ethylene glycol)-grafted water-soluble chitosan. Carbohydrate research, 343, 282-289. Jiang, H., Wu, H., Xu, Y.L., Wang, J.Z., Zeng, Y., 2011. Preparation of galactosylated chitosan/tripolyphosphate nanoparticles and application as a gene carrier for targeting SMMC7721 cells. Journal of bioscience and bioengineering, 111, 719-724. Jiang, H.L., Kwon, J.T., Kim, E.M., Kim, Y.K., Arote, R., Jere, D., Jeong, H.J., Jang, M.K., Nah, J.W., Xu, C.X., Park, I.K., Cho, M.H., Cho, C.S., 2008. Galactosylated poly(ethylene glycol)-chitosan-graft-polyethylenimine as a gene carrier for hepatocyte-targeting. Journal of controlled release, 131, 150-157. Jiang, X., Chen, L., Zhong, W., 2003. A new linear potentiometric titration method for the determination of deacetylation degree of chitosan, Carbohydrate Polymers, 54, 457–463. Jreyssaty, C., Shi, Q., Wang, H., Qiu, X., Winnik, F.M., Zhang, X., Dai, K., Benderdour, M., Fernandes, J.C., 2012. Efficient Nonviral Gene Therapy Using Folate-Targeted Chitosan-DNA Nanoparticles In Vitro. ISRN pharmaceutics, 369-270. Robyt, J. F., 1998. Essentials of Carbohydrate Chemistry. Kasaai, M., Arul, J., Charlet, G., 2001. Intrinsic viscosity–molecular weight relationship for chitosan, Journal of Polymer Science Part B:Polymer Physics, 38(19), 2591-2598. Kim, J.A., Lee, W.G., Jung, N.C., 2010. Enhanced electro-mediated gene delivery using carrier genes. Bioelectrochemistry, 78, 186-190. Kim, S.Y., Shin, I.G., Lee, Y.M., 1999. Amphiphilic diblock copolymeric nanospheres composed of methoxy poly(ethylene glycol) and glycolide: properties, cytotoxicity and drug release behaviour. Biomaterials, 20, 1033-1042. Kim, T.H., Park, I.K., Nah, J.W., Choi, Y.J., Cho, C.S., 2004. Galactosylated chitosan/DNA nanoparticles prepared using water-soluble chitosan as a gene carrier. Biomaterials, 25, 3783-3792. Kurita, K., 2001. Controlled functionalization of the polysaccharide chitin, Progress in Polymer Science, 26(9), 1921-1971. Ledley, F.D., 1995. Nonviral gene therapy: the promise of genes as pharmaceutical products. Human gene therapy, 6, 1129-1144. Li, C., Tian, H., Rong, N., Liu, K., Liu, F., Zhu, Y., Qiao, R., Jiang, Y., 2011. Chitosan grafted with macrocyclic polyamines on C-2 and C-6 positions as nonviral gene vectors: preparation, characterization, and in vitro transfection studies. Biomacromolecules, 12, 298-305. Lin, W. J., Chen, T. D., Liu, C. W., 2009. Synthesis and characterization of lactobionic acid grafted pegylated chitosan and nanoparticle complex application, Polymer, 50, 4166–4174. Lin, W. J., Chen, T. D., Liu, C. W., Chen, J. L., Chang, F. H., 2011. Synthesis of lactobionic acid-grafted-pegylated-chitosan with enhabced HepG2 cells transfection, Carbohydrate polymers, 83, 898-904. Liu, J., Zhang, J., Xia, W., 2008. Hypocholesterolaemic effects of different chitosan samples in vitro and in vivo, Food chemistry, 107, 419-425. Lohr, H., Treichel, U., Poralla, T., Manns, M., Meyer zum Buschenfelde, K.H., Fleischer, B., 1990. The human hepatic asialoglycoprotein receptor is a target antigen for liver-infiltrating T cells in autoimmune chronic active hepatitis and primary biliary cirrhosis. Hepatology, 12, 1314-1320. Mao, S., Shuai, X., Unger, F., Simon, M., Bi, D., Kissel, T., 2004. The depolymerization of chitosan: effects on physicochemical and biological properties. International journal of pharmaceutics, 281, 45-54. Mao, S., Shuai, X., Unger, F., Wittmar, M., Xie, X., Kissel, T., 2005. Synthesis, characterization and cytotoxicity of poly(ethylene glycol)-graft-trimethyl chitosan block copolymers. Biomaterials, 26, 6343-6356. Mao, S., Sun, W., Kissel, T., 2010. Chitosan-based formulations for delivery of DNA and siRNA. Advanced drug delivery reviews, 62, 12-27. Milton, H. J., Evelyn C. S., M.G. Case, Martha, G. C., Steven, P. M., James, M., Van A., Donald, E. B., 1984. Synthesis and Characterization of Poly(ethylene Glycol) Derivatives, Journal of Polymer Science:Polymer Chemistry Edition, 22, 341-352. Murata, Y., Jinno, D., Liu, D., Isobe, T., Kofuji, K., Kawashima, S., 2007. The drug release profile from calcium-induced alginate gel beads coated with an alginate hydrolysate. Molecules, 12, 2559-2566. Ohya, Y., Takei, T., Kobayashi, H., Ouchi, T., 1993. Release behaviour of 5-fluorouracil from chitosan-gel microspheres immobilizing 5-fluorouracil derivative coated with polysaccharides and their cell specific recognition. Journal of microencapsulation, 10, 1-9. Park, I.K., Kim, T.H., Park, Y.H., Shin, B.A., Choi, E.S., Chowdhury, E.H., Akaike, T., Cho, C.S., 2001. Galactosylated chitosan-graft-poly(ethylene glycol) as hepatocyte-targeting DNA carrier. Journal of controlled release, 76, 349-362. Tan, S.C., Khor, E., Tan, T.K., Wong, S.M., 1998. The degree of deacetylation of chitosan: advocating the first derivative UV-spectrophotometry method of determination. Talanta, 45, 713-719. Tian, H., Zhaohui, T., Xiuli, Z., Xuesi, C., Xiabin, J., 2012. Biodegradable synthetic polymers: Preparation, functionalization and biomedical application, Progress in Polymer Science, 37.237-280. Vincent, F., Bertho, J. N., Daniel, P., 1995. A New Synthesis of O-Glycosides from Totally O-Unprotected Glycosyl Donors, Tetrahedron Letters, 36, 2749-2752. Wang, B., Jiti, Z., Shaohui, C., Baolimg, Y., Yinan, Z., Budiao, Z., Yan, D., Shubiao, Z., 2012. Cationic liposomes as carriers for gene delivery: Physico-chemical characterization and mechanism of cell transfection, African Journal of Biotechnology, 11(11), 2763-2773. Weigel, P.H., Yik, J.H., 2002. Glycans as endocytosis signals: the cases of the asialoglycoprotein and hyaluronan/chondroitin sulfate receptors. Biochimica et biophysica acta, 1572, 341-363. Williams, D.A., 2007. RAC reviews serious adverse event associated with AAV therapy trial. The journal of the American Society of Gene Therapy, 15, 2053-2054. Wolff, J.A., Lederberg, J., 1994. An early history of gene transfer and therapy. Human gene therapy, 5, 469-480. Yang, T.C., Chou, C.C., Li, C.F., 2005. Antibacterial activity of N-alkylated disaccharide chitosan derivatives. International journal of food microbiology, 97, 237-245. Zhang, T., Yu, Y.Y., Li, D., Peng, R., Li, Y., Jiang, Q., Dai, P., Gao, R., 2009. Synthesis and properties of a novel methoxy poly(ethylene glycol)-modified galactosylated chitosan derivative. Journal of materials science, 673-680. Zhang, J., Xiaohui, L., Liping, L., Xiaodong, L., Yi, J., Zhe, J., Yuxuan, Z., 2011. Non-viral gene therapy, Intracellular Delivery: Fundamentals and Applications, Fundamental Biomedical Technologies. 5(3), 599-699. Zhang, X., Zhang, H., Wu, Z., Wang, Z., Niu, H., Li, C., 2008. Nasal absorption enhancement of insulin using PEG-grafted chitosan nanoparticles. European journal of pharmaceutics and biopharmaceutics, 68, 526-534. Zheng, J.N., Xie, H.G., Yu, W.T., Liu, X.D., Xie, W.Y., Zhu, J., Ma, X.J., 2010. Chitosan-g-MPEG-modified alginate/chitosan hydrogel microcapsules: a quantitative study of the effect of polymer architecture on the resistance to protein adsorption. The ACS journal of surfaces and colloids, 26, 17156-17164. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/16003 | - |
| dc.description.abstract | 本實驗中以幾丁聚醣為遞送載體的骨架來進行化修飾,目的是將以甲氧基聚乙二醇(methoxy poly(ethylene glycol), mPEG)或聚乙二醇二羧酸 (poly(ethylene glycol) diacid, PEG diacid)以共價鍵(covalent bond)的方式接枝在幾丁聚醣的第二位碳上,並將一具有肝標把作用的醣基以醚鏈鍵結(ether linkage)的方式接枝於幾丁聚醣的第六位碳上,而本實驗採用的醣基為半乳糖(galactose),其含有可與去唾液酸胎醣蛋白(asialoglycoprotein, ASGP-R)進行辨認。經由化學修飾後的幾丁聚醣變成具有親水基團的標靶式遞送載體後,接著以帶有負電荷的質體DNA與幾丁聚醣以聚電解質複合反應(polyelectrolyte complexation)形成奈米複合體,並對此奈米複合體進行物性探討,接著利用奈米複合體進行細胞存活率測試及細胞轉染試驗,以比較不同修飾基對於基因轉染效率的影響。
研究中所用來進行一系列化學修飾之幾丁聚醣是先經由去乙醯化反應得到去乙醯化幾丁聚醣(DA-CS)後,再以去聚合作用的方式控制去乙醯化幾丁聚醣的數目平均分子量介於5000~6000之間,稱之為去聚合作用之去乙醯化幾丁聚醣(DADP-CS),並以膠體滲透系統作分子量評估。經由化學修飾之幾丁聚醣分別為接枝型半乳糖基-去聚合作用之去乙醯化幾丁聚醣(DADP-CS-C6-Gal)、接枝型甲氧基聚乙二醇-去聚合作用之去乙醯化幾丁聚醣(DADP-CS-C2-mPEG)、接枝型聚乙二醇二羧酸-去聚合作用之去乙醯化幾丁聚醣(DADP-CS-C2-PEG diacid)、接枝型(半乳糖基/甲氧基聚乙二醇)-去聚合作用之去乙醯化幾丁聚醣(DADP-CS-C6-Gal-C2-mPEG)以及接枝型(半乳糖基/聚乙二醇二羧酸)-去聚合作用之去乙醯化幾丁聚醣(DADP-CS-C6-Gal-C2-PEG diacid)等五種高分子,將以紅外線光譜儀、核磁共振儀確認分子結構,以核磁共振儀用積分方式推估甲氧基聚乙二醇和聚乙二醇二羧酸於幾丁聚醣之二位碳的接枝比例,及以蒽酮-硫酸方法定量半乳糖的接枝率。將去聚合作用之去乙醯化幾丁聚醣與化學修飾之幾丁聚醣以聚電解質複合反應包覆帶有負電荷之質體DNA形成奈米複合體,以圓二色光譜儀確認物性結構,並以奈米粒徑分析儀測定粒徑大小與表面電荷,另以穿透式電子顯微鏡檢視型態。細胞試驗則是分析奈米複合體材料毒性以及細胞轉染效率,同時利用共軛焦顯微鏡分析影像的螢光強度。 根據每個化學修飾的幾丁聚醣之半乳糖、甲氧基聚乙二醇和聚乙二醇二羧酸定量結果,DADP-CS-C6-Gal的半乳糖取代度(DS%)約13.2~44.8%,DADP-CS -C2-mPEG的甲氧基聚乙二醇取代度(DS%)約2.3~5.3%,DADP-CS-C2-PEG diacid則有4~29%的聚乙二醇二羧酸取代度(DS%),其接枝比例結果皆隨反應莫耳比的增加而上升。DADP-CS-C6-Gal-C2-mPEG的Gal和mPEG取代度(DS%)分別為27.3%、3.67%,而DADP-CS-C6-Gal-C2-PEG diacid 的Gal和PEG diacid取代度(DS%)則為 37.9% 和43.5%。經由三種重量比例(2:1、10:1、20:1)形成的奈米複合體,其粒徑與表面電荷結果顯示隨著高分子的重量比例增加,粒徑大小也隨之增大,整體平均粒徑大小約上升35%,而粒徑分散度(polydispersity index, PdI)也皆從0.2上升至0.4左右,表面電荷,皆維持正電荷,重量比例(2:1)約為17~45 mV、重量比例(10:1)約為25~65 mV及重量比例(20:1)約為29~72 mV。圓二色光譜儀結果顯示被包覆在內的質體DNA並無明顯的改變其CD的訊號,亦證明接枝型幾丁聚醣-質體DNA形成奈米複合體後,並不會對DNA造成結構上的影響。 接枝型幾丁聚醣的細胞毒性試驗結果,隨著給予的幾丁聚醣溶液濃度增加,其細胞存活率仍有60~70%。細胞轉染效率的部分,重量比例(20:1) 的DADP-CS其轉染效率最高,其次為DADP-CS-C6-Gal,DADP-CS-C6-Gal-C2-mPEG與DADP-CS-C6-Gal-C2-PEG diacid可能因為聚乙二醇立體障礙關係,阻擋了半乳糖進行標把作用,而因降低其轉染效率。根據共軛焦影像分析,DADP-CS同樣也是表達最高綠螢光蛋白強度。 | zh_TW |
| dc.description.abstract | In our studies, we used chitosan as the backbone to condout a series of chemical modification. The grafted chitosan composing hydrophilic group of methoxy poly(ethylene glycol) (mPEG) or poly(ethylene glycol) diacid (PEG diacid) via covalent bonding at C2-NH2 of chitosan. The target sugar molecule of galactose, which can recognize aisaloplycoprotein (ASGP-R) was futher introduced into the chitosan structure. An polyelectrolyte complexation method was used to prepare nanocomplex containing plasmid DNA as a gene carrier. Invesgating the nanocomplex physicochemical properties, then undergoing cell viability test and cell transfection efficiency experiment, to compare the diffetent modification chitosan transfection efficiency.
The original material of chitosan was deacetylated and depolymerized first, then analysed the molecular weight by the gel permeation chromatography (GPC). Synthesis a series of modification chitosan were DADP-CS-C6-Gal、DADP-CS-C2-mPEG 、DADP-CS-C2-PEG diacid、DADP-CS-C6-Gal-C2-mPEG、DADP-CS-C6-Gal-C2-PEG diacid and identified by FT-IR, H1-NMR, GPC. Using H1-NMR to calculated mPEG and PEG diacid the degree of substitution (DS%) of chitosan and measured the glactose amount which linkage at C6-OH of chitosan by the anthrone-sulfuric acid colorimetric assay. The comformation copolymer-plasmid DNA nanocomplex were comfirmed the physical structure by circular dichroism (CD), detected the size and zeta potential and examined the properties of nanocomplex by TEM. The cell experiments were to analysis the materials cytotoxity, transfection efficiency and the EGFP fluorescence intensity by confocal. The result of galactose DS(%) on DADP-CS-C6-Gal were 13.2%~44.8%. The pegylation of DADP-CS-C2-mPEG、DADP-CS-C2-PEG diacid were 2.3%~5.3% and 4%~29%, separately. These results indicated that more feed molar ratio to the DADP-CS, the higher of degree of subsititution to the DADP-CS. DADP-CS-C6-Gal-C2-mPEG galactose DS(%) and PEG DS(%) were 27.3%, 3.67% and DADP-CS-C6-Gal-C2-PEG diacid were 37.9%, 43.5%. The nanocomplex was formed by copolymer and plasmid DNA in three weight ratio (2:1, 10:1, 20:1). The complex size was average rise to 33%, the polydispersity (PdI) were also from 0.2 rise to 0.4. The zeta potential results showed that the three weight ratio maintain positive charge, weight ratio 2:1 were 17~45 mV, weight ratio 10:1 were 25~65 mV and weight ratio 20:1 were 29~72 mV. The signal of circular dichroism form three weight ratio obstructnanocomplex indicated that there was no significant change for the plasmid DNA which packaged in the nanocomplex. In other words, the nanocomplex wouldn’t effect the plasmid DNA structure. The cell viability assay was examine the series of modification chitosan cytotoxicity. According to the result, the cells still had 60%~70% viability in the highest copolymer concentration, which means those copolymer were harmless to the cells. In the transfeciton experiment, DADP-CS showed the best transfeciton efficiency and the second was DADP-CS-C6-Gal. It was proved that the galactose has the targeting ability to ASGP-R. However, DADP-CS-C6-Gal-C2-mPEG and DADP-CS-C6-Gal-C2-PEG diacid were not in our expected results, we assumed the PEG was obstruct the galactose target on the ASGP-R causing the low transfection efficiency. The results of confocal, also indicated that DADP-CS had the highest the EGFP fluorescence intensity. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-07T17:57:44Z (GMT). No. of bitstreams: 1 ntu-101-R98423007-1.pdf: 7703954 bytes, checksum: 45baab9581f93a9091134234dfe12ac9 (MD5) Previous issue date: 2012 | en |
| dc.description.tableofcontents | 中文摘要 I
英文摘要 III 目錄 VII 圖目錄 XI 表目錄 XIV 第一章 緖論 1 一、基因療法 1 二、幾丁聚醣 5 三、去唾液酸胎醣蛋白接受器 11 四、奈米複合體的製備 15 第二章 試劑與材料介紹 17 一、幾丁聚醣 17 二、半乳糖 18 三、聚乙二醇 19 (一) 甲氧基聚乙二醇 (Methoxy poly(ethylene glycol);Polyethylene glycol monomethyl ether;Mono-methyl polyethylene glycol) 19 (二) 聚乙二醇二羧酸 (Poly(ethylene glycol) bis(carboxymethyl) ether) 20 四、質體DNA ( PLASMID DNA PEGFP-N1) 21 第三章 實驗動機與目的 23 第四章 實驗試劑與材料 25 一、試劑 25 (一) 幾丁聚醣修飾實驗 25 (二) Plasmid DNA 純化實驗 27 (三) 細胞培養實驗 28 二、材料 29 三、儀器 29 四、藥品溶液及緩衝液之配製 31 第五章 實驗方法 33 實驗設計整理圖 34 一、接枝型幾丁聚醣的合成 35 (一) DA-CS的製備 35 (二) DADP-CS的製備 36 (三) DADP-CS-C6-Gal的合成 38 (四) mPEG-CHO的合成 40 (五) DADP-CS-C2-mPEG 的合成 41 (六) DADP-CS-C2-PEG diacid 的合成 43 (七) DADP-CS-C6-Gal-C2-mPEG的合成 45 (八) DADP-CS-C6-Gal-C2-PEG diacid的合成 47 二、結構與物性測定 49 (一) 紅外線分光光譜儀 49 (二) 核磁共振光譜儀 49 (三) 分子量評估-膠體滲透分析 49 (四)半乳糖的定量分析 50 三、環狀質體DNA之製備 52 (一) 純化質體DNA 52 (二) DNA 濃度及純度之測定 54 (三) 洋菜凝膠電泳分析法 54 四、接枝型幾丁聚醣-質體 DNA奈米複合體之製備 56 (一) 粒徑和表面電位分析 56 (二) 圓二色偏光儀 57 (三) 安定性試驗 57 (四) 穿透式電子顯微鏡(TEM)影像分析 59 五、HEPG2細胞實驗 60 (一) 細胞培養 60 (二) 細胞存活率試驗 60 (三) 細胞轉染實驗 62 (四) 共軛焦螢光影像分析 63 第六章 結果與討論 65 一、接枝型幾丁聚醣的合成 65 (一) 低分子量幾丁聚醣 65 (二) DA-CS的製備 67 (三) DADP-CS的製備 70 (四) DADP-CS-C6-Gal的合成 73 (五) DADP-CS-C6-Gal半乳糖的定量分析 76 (六) mPEG-CHO的合成 80 (七) DADP-CS-C2-mPEG 的合成 82 (八) DADP-CS-C2-PEG diacid 的合成 88 (九) DADP-CS-C6-Gal-C2-mPEG 94 (十) DADP-CS-C6-Gal-C2-PEG diacid 101 (十一) 分子量評估-膠體滲透分析(GPC) 106 二、環狀質體DNA之製備 107 三、接枝型幾丁聚醣-質體DNA奈米複合體 109 (一) 粒徑和表面電位分析 109 (二) 圓二色光譜儀(CD) 114 (三) 安定性試驗 116 (四) 穿透式電子顯微鏡(TEM)影像分析 124 四、HEPG2細胞實驗 126 (一) 細胞存活率試驗 126 (二) 細胞轉染實驗 129 (三) 共軛焦螢光影像分析 133 第七章 結論 135 第八章 參考文獻 137 | |
| dc.language.iso | zh-TW | |
| dc.subject | 甲氧基聚乙二醇 | zh_TW |
| dc.subject | 半乳糖 | zh_TW |
| dc.subject | 去氧核醣核酸 | zh_TW |
| dc.subject | 幾丁聚醣 | zh_TW |
| dc.subject | 奈米複合體 | zh_TW |
| dc.subject | 聚乙二醇二羧酸 | zh_TW |
| dc.subject | 細胞轉染 | zh_TW |
| dc.subject | Methoxy poly(ethylene glycol) | en |
| dc.subject | Transfection | en |
| dc.subject | Nanocomplex | en |
| dc.subject | DNA | en |
| dc.subject | Galactose | en |
| dc.subject | Chitosan | en |
| dc.subject | Poly(ethylene glycol) diacid | en |
| dc.title | 複合式接枝型幾丁聚醣對於人類肝癌細胞轉染效率之研究 | zh_TW |
| dc.title | Studies of Multi-Grafted Chitosan on HepG2 cell transfection | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 100-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 江樵喜(Giao-Xi Jiang),胡德民(Teh-Min Hu),邱士娟(Shih-Jiuan Chiu) | |
| dc.subject.keyword | 幾丁聚醣,甲氧基聚乙二醇,聚乙二醇二羧酸,半乳糖,去氧核醣核酸,奈米複合體,細胞轉染, | zh_TW |
| dc.subject.keyword | Chitosan,Methoxy poly(ethylene glycol),Poly(ethylene glycol) diacid,Galactose,DNA,Nanocomplex,Transfection, | en |
| dc.relation.page | 143 | |
| dc.rights.note | 未授權 | |
| dc.date.accepted | 2012-08-13 | |
| dc.contributor.author-college | 醫學院 | zh_TW |
| dc.contributor.author-dept | 藥學研究所 | zh_TW |
| 顯示於系所單位: | 藥學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-101-1.pdf 未授權公開取用 | 7.52 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
