Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
  • 幫助
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 生醫電子與資訊學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/15804
標題: 基於Level-set方法的全自動乳房超音波影像腫瘤偵測與切割
Fully Automatic Tumor Detection and Segmentation Based on Level-set Method Using Breast Sonography
作者: Yu-Chiao Sun
孫羽喬
指導教授: 張瑞峰(Ruey-Feng Chang)
關鍵字: 電腦輔助診斷系統,全自動腫瘤偵測與切割,
computer-aided system,automatic tumor detection and segmentation,
出版年 : 2012
學位: 碩士
摘要: In recent years, the computer-aided diagnostic (CAD) is developed gradually providing second opinion for radiologists' diagnosis. The CAD system should produce well segmentation result of tumor to precisely evaluate the tumor size, and the tumor can be further classified into benign and malignant by the extracted feature of shape. Concerning the previous techniques of the semi-automatic segmentation (e.g., level-set), the seed usually needs to be manually initialized at the appropriate position for the better segmentation result. Besides, most of the segmentation systems consider the detection procedure as the preceding step, and the segmentation approach is subsequently employed on the located region of interest. In this study, a fully automatic system integrating the tumor detection and segmentation steps is proposed, and a set of representative seeds are computerized for the whole image segmentation based on the level-set method. Meanwhile, the novel multi-seed mechanism assists the level set segmentation in acquiring the satisfactory result. The proposed system consists of three phases. First, a mean-shift clustering method and the affinity approach are applied to generate and extract the most representative seeds. Next, the level-set method based on the selected seeds is employed to obtain several suspected regions. Finally, the features of all the suspected regions are calculated and further analyzed by support vector machine (SVM) classifier to extract the target tumor from the normal ones. 120 cases (68 for benign cases and 52 for malignant cases) are used for evaluating the proposed system. The sensitivity is 95% (114/120) with the benign cases equal to 0.91 and the malignant cases to 1.00. In summary, the experimental results demonstrate the high efficiency and robustness of the proposed method.
URI: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/15804
全文授權: 未授權
顯示於系所單位:生醫電子與資訊學研究所

文件中的檔案:
檔案 大小格式 
ntu-101-1.pdf
  目前未授權公開取用
8.98 MBAdobe PDF
顯示文件完整紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved