請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/1336
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 林銘郎 | |
dc.contributor.author | Pei-Chen Hsieh | en |
dc.contributor.author | 謝沛宸 | zh_TW |
dc.date.accessioned | 2021-05-12T09:36:38Z | - |
dc.date.available | 2018-12-31 | |
dc.date.available | 2021-05-12T09:36:38Z | - |
dc.date.copyright | 2018-08-21 | |
dc.date.issued | 2018 | |
dc.date.submitted | 2018-08-17 | |
dc.identifier.citation | 王文能、潘國樑(1982)。高雄壽山崩塌地之地質與地形。礦業技術,20(3),195-204。
王文能(2016)。崩塌的地質特性與防災。台南市:中華防災學會出版委員會。 王泰典、莊海岳、蘇威元、邱雅筑、羅百喬(2017)。無人載具攝影產製數值地表模型在隧道洞口段及倒懸邊坡崩塌調查的應用。地質,36(3),55-60。 林三賢、楊賢德、廖振程(2007)。層狀岩石邊坡破壞案例分析暨災後補強探討。第三屆全球華人岩土工程學術論壇(頁177-178),新竹。 青山工程顧問股份有限公司(2018)。新北市萬里區七甲尾路段落石安全評估工作報告書。 洪如江、詹勳山、楊彰文、何鏗鏘、魏烈舫、陳振才、鄭在仁、馬灼津、陳煌銘(1978)。複合土工程性質初步研究。國立臺灣大學工程學刊,23,1-12。 翁正學(2017)。向上裂隙水對順向坡穩定性及破壞行為之影響。國立臺灣大學土木工程學研究所碩士論文。 翁孟嘉、童士恒、俞肇球、彭詩容、蔡源福、李宏輝(2007)。以顆粒觀點評估淺基礎承載力之研究。第十二屆大地工程研討會論文。 翁培軒(2016)。平移斷層錯動引致凝聚性覆土地表變形與淺基礎變位特性探討。國立臺灣大學土木工程學研究所碩士論文。 黃紹宬(2015)。地下水透過節理向上滲流對邊坡穩定的影響。國立臺灣大學土木工程學研究所碩士論文。 黃鑑水、劉桓吉(1988)。五萬分之一臺灣地質圖說明書,圖幅第5號「雙溪」。經濟部中央地質調查所。 黃鑑水、何信昌(1989)。五萬分之一臺灣地質圖說明書,圖幅第10號「頭城」。經濟部中央地質調查所。 葉致翔(2017)。應用光達地形進行沉積岩層繪製及順向坡自動化圈繪之研究。國立臺灣大學土木工程學研究所博士論文。 臺灣省文獻委員會(1996)。臺灣地名辭書。卷十七:基隆市。南投:臺灣省文獻委員會。 齊士崢、呂政豪、任家弘、何立德、陳永森、周漢文、林淳惠、薛忞侑(2013)。高雄壽山的古巨型地滑研究。國家公園學報,23(2),53-66。 鄭文隆、胡純仁、王希光(1997)。北二高新店一號隧道鄰近邊坡開挖問題探討。北二高困難隧道案例研討會。中華民國隧道協會。 AYDAN, Ö. (1989). The stabilization of rock engineering structures by rockbolts. Doctoral Thesis, Nagoya University. BENSON, W. N. (1940). “Landslides and Allied Features in the Dunedin District in Relation to Geological Structure, Topography, and Engineering”. Transactions and Proceedings of the Royal Society of New Zealand, 70, 249-263. BIENIAWSKI, Z. T. (1989). Engineering Rock Mass Classifications: A Complete Manual for Engineers and Geologists in Mining, Civil, and Petroleum Engineering. New York: John Wiley & Sons. British Geological Survey (2018). “How does BGS classify landslides?”. Retrieved from: https://www.bgs.ac.uk/research/engineeringGeology/images/landslip_types_large.jpg COTTON, C. A. (1942). Geomorphology: An Introduction to the Study of Landforms (3rd ed.). Christchurch, New Zealand: Whitcombe & Tombs. CRUDEN, D. M. and VARNES, D. J. (1996). “Landslide types and processes”. In: TURNER, A. K., SCHUSTER, R. L. (Eds.), Transportation Research Board Special Report 247, Landslides: Investigation and Mitigation (pp. 36-75). Washington D.C.: National Academy Press. HUANG, B.-L., ZHANG, Z.-H., YIN, Y.-P. and FEI, M. (2016). “A case study of pillar-shaped rock mass failure in the Three Gorges Reservoir Area, China”. Quarterly Journal of Engineering Geology and Hydrogeology, 49, 195-202 HUNGR, O. and EVANS, S. G. (2004). “The occurrence and classification of massive rock slope failure”. Felsbau, 22(2), 16-23. International Society for Rock Mechanics (I.S.R.M.) (1981). Rock Characterization, Testing and Monitoring—ISRM Suggested Methods. London: Pergamon. Itasca Consulting Group, Inc. (2003). PFC3D Ver. 3.0 User’s Manual. Minneapolis, MN: Itasca Consulting Group Inc. LO, C.-M., LEE, C.-F., CHOU, H.-T. and LIN, M.-L. (2014). “Landslide at Su-Hua Highway 115.9k triggered by Typhoon Megi in Taiwan”. Landslides, 11(2), 293-304. PAHL, P. J. (1981). “Estimating the mean length of discontinuity traces”. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 18(3), 221-228. POISEL, R. and EPPENSTEINER, W. (1988). “A contribution to the systematics of rock mass movements”. Landslides: Proceedings of the 5th International Symposium on Landslides, vol. 2, Lausanne, 1353-1357. POISEL, R. and PREH, A. (2004). “Rock slope initial failure mechanisms and their mechanical models”. Felsbau, 22(2), 40-45. POISEL, R., ANGERER, H., PÖLLINGER, M., KALCHER, T. and KITTL, H. (2009). “Mechanics and velocity of the Lärchberg–Galgenwald landslide (Austria)”. Engineering Geology, 109(1), 57-66. PRIEST, S. D. (1993). Discontinuity Analysis for Rock Engineering. London: Chapman & Hall. SMALL, R. J. (1970). The Study of landforms: A Textbook of Geomorphology. London: Cambridge University Press. TANG, C.-L., HU, J.-C., LIN, M.-L., ANGELIER, J., LU, C.-Y., CHAN, Y.-C. and CHU, H.-T. (2009). “The Tsaoling landslide triggered by the Chi-Chi earthquake, Taiwan: Insights from a discrete element simulation”. Engineering Geology, 106(1-2), 1-19. TERZAGHI, K. (1943). Theoretical soil mechanics. New York: John Wiley & Sons. THOMPSON, N., BENNETT, M. R. and PETFORD, N. (2009). “Analyses on granular mass movement mechanics and deformation with distinct element numerical modeling: implications for large-scale rock and debris avalanches”. Acta Geotechnica, 4(4), 233-247. TUCKEY, Z., PAUL, J. and PRICE, J. (2016). “Discontinuity survey and brittle fracture characterisation in open pit slopes using photogrammetry”. In: DIGHT, P. M. (Ed.), Proceedings of the First Asia Pacific Slope Stability in Mining Conference, Australian Centre for Geomechanics, Perth, 587-600. VARNES, D. J. (1978). “Slope movement types and processes”. In: SCHUSTER, R. L. & KRIZEK, R. J. (Eds.), Transportation Research Board Special Report 176, Landslides: Analysis and Control (pp. 11-33). Washington D. C.: National Academy of Science. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/handle/123456789/1336 | - |
dc.description.abstract | 綜觀國內過去曾發生於岩石邊坡之災害案例,可發現逆向坡亦常有各種形式的邊坡破壞,造成之潛在危害並不亞於順向坡,值得深入探究其致災機制。例如1993年北二高新店隧道北口邊坡破壞、2008年貓空纜車T16塔基邊坡滑動、2013年康芮颱風造成萬里七甲尾地區崩塌等,皆發生於逆向坡區位。而高雄柴山之巨型古地滑案例、以及2007年國立海洋大學內一處邊坡破壞案例亦顯示,逆向坡有可能發生承載破壞。
本研究第一部分為「高陡逆向坡岩體特性調查」,係探討如何克服在逆向坡調查困難之課題。由於沉積岩區的逆向坡往往受差異侵蝕而形成陡峭的崖面,人員無法輕易接近調查節理面等岩體不連續面。又逆向坡常形成倒懸地形,在傳統測量技術與地形圖表現方法上,亦無法正確顯示倒懸之地形特徵。因此本研究運用近年發展迅速之無人飛行載具(UAV)攝影測量技術,嘗試以點雲資料轉換立面地形圖來判斷分析倒懸地形之範圍、體積,以及節理組之走向、間距。 本研究第二部分為「軟硬岩層形成承載力破壞」,分別於東北角八斗子、萊萊海岸地區,發現在逆向坡區位中,當節理發達之硬岩層覆蓋於較厚軟岩上時,硬岩層因差異侵蝕而倒懸於下方軟岩之上,其受節理切割的硬岩塊體可以於下方軟岩中發展出承載力破壞,並呈現弧形滑動的特徵。本研究運用傾斜平台製作縮尺物理試驗模型,初步觀察此種破壞之定性運動機制。同時利用PFC3D離散元素法設計一系列數值模擬,釐清發生此種承載破壞的因素。 研究成果顯示,逆向坡承載破壞受到兩種因素主控。硬岩塊體之幾何形狀主要決定承載破壞的最終形式為滑動破壞或傾覆破壞,而硬岩與軟岩之強度比例主要影響破壞是否發生,至於促崩因子則有軟岩差異侵蝕、軟岩材料風化兩項。 | zh_TW |
dc.description.abstract | Rockfall failure and toppling failure are usually considered as the typical types of obsequent slopes failure. However, some field investigation cases on coastal area in northern Taiwan show that bearing failure could also be found in obsequent slopes. These cases are composed of a competent layer lying on an incompetent layer, or called the cap rock structure.
The first part in this research is developing a method to describe overhang topography and estimate the size of overhang part. The contours are computed based on dip direction of cliff from point cloud produced by UAV photogrammetry. Therefore, the position and volume of overhang part can be calculated. Also, joint sets are identified by point cloud. The second part is to perform a small scale sandbox experiment to simulate bearing failure mechanism of the obsequent slope. The sandbox experiment demonstrates that bearing failure on obsequent slopes could be classified into two types, sliding (type I) and toppling (type II). The PFC3D model is used to analyze the factor, including the dimension of cap rock block and strength of rock layers, of bearing failure on obsequent slopes. The results show that the dimension of cap rock block and the dip angle of bedding are key factors of the failure type, sliding (type I) or toppling (type II). In addition, the ratio of normal stress of cap rock block to strength of incompetent layer is the key factor to decide whether the failure will happen or not. | en |
dc.description.provenance | Made available in DSpace on 2021-05-12T09:36:38Z (GMT). No. of bitstreams: 1 ntu-107-R05521106-1.pdf: 12463385 bytes, checksum: d759a0994a2d24e517c898f4a4d25783 (MD5) Previous issue date: 2018 | en |
dc.description.tableofcontents | 致謝 i
摘要 ii ABSTRACT iii 目錄 iv 表目錄 vi 圖目錄 vii 第一章 緒論 1 1.1 研究動機與目的 1 1.2 研究流程及架構 3 第二章 文獻回顧 4 2.1 逆向坡破壞的形式與分類 4 2.2 岩石邊坡承載破壞研究 6 2.3 逆向坡承載破壞案例 9 2.4 攝影測量在岩坡調查之應用 13 2.5 PFC3D軟體介紹 14 2.6 PFC應用於工程地質破壞案例之模擬 18 第三章 高陡逆向坡調查方法及成果 20 3.1 案例位置及地質地形 20 3.2 以點雲資料做測線法判釋節理 24 3.3 以立面地形圖判斷倒懸地形 29 第四章 逆向坡軟硬岩層形成之承載力破壞 36 4.1 萊萊案例 36 4.2 八斗子案例 42 4.3 現地調查成果及現象分析 45 4.4 小結 47 第五章 物理模型砂箱試驗 48 5.1 試驗儀器及模型配置 48 5.2 物理試驗材料及方法 49 5.3 定性試驗結果 51 5.4 破壞型態初步探討 56 第六章 數值模擬逆向坡承載破壞 57 6.1 模擬物理試驗之數值模型建置 58 6.2 物理試驗模擬之微觀參數決定 59 6.3 硬岩塊體幾何形狀之影響 70 6.4 軟岩強度之影響 90 6.5 小結 96 第七章 現地案例應用 97 7.1 萊萊案例攝影測量及節理組分析 97 7.2 萊萊案例數值模擬 100 7.3 萊萊案例數值模擬成果討論 106 7.4 小結 114 第八章 結論與建議 115 8.1 結論 115 8.2 建議 116 參考文獻 117 附錄A 碩士學位考試口試委員提問及回覆表 121 A.1 黃文昭委員 121 A.2 王泰典委員 122 A.3 董家鈞委員 123 附錄B 原始程式碼 124 B.1 倒懸判斷VBA程式碼 124 B.2 數值模型PFC3D程式碼 127 | |
dc.language.iso | zh-TW | |
dc.title | 高陡逆向坡岩體特性調查及軟硬岩層形成承載力破壞機制探討 | zh_TW |
dc.title | Characterization of Rock Mass on High-steep Obsequent Slopes and Bearing Failure Due to Different Strength of Rock Layers | en |
dc.type | Thesis | |
dc.date.schoolyear | 106-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 董家鈞,王泰典,黃文昭 | |
dc.subject.keyword | 逆向坡,承載破壞,節理組,倒懸, | zh_TW |
dc.subject.keyword | obsequent slope,bearing failure,joint sets,overhang, | en |
dc.relation.page | 94 | |
dc.identifier.doi | 10.6342/NTU201803886 | |
dc.rights.note | 同意授權(全球公開) | |
dc.date.accepted | 2018-08-18 | |
dc.contributor.author-college | 工學院 | zh_TW |
dc.contributor.author-dept | 土木工程學研究所 | zh_TW |
顯示於系所單位: | 土木工程學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-107-1.pdf | 12.17 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。