請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/1312完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 余家富 | |
| dc.contributor.author | Nai-Heng Sheu | en |
| dc.contributor.author | 許乃珩 | zh_TW |
| dc.date.accessioned | 2021-05-12T09:36:08Z | - |
| dc.date.available | 2018-02-26 | |
| dc.date.available | 2021-05-12T09:36:08Z | - |
| dc.date.copyright | 2018-02-26 | |
| dc.date.issued | 2018 | |
| dc.date.submitted | 2018-01-25 | |
| dc.identifier.citation | [1] N. Berry, A. Dubickas, N. Elkies, B. Poonen and C. Smyth, The conjugate dimension of algebraic numbers. Q. J. Math. 55 (2004), no. 3, 237–252.
[2] A. Borel, Linear algebraic groups. Second edition. Graduate Texts in Mathematics, 126. Springer-Verlag, New York, 1991. [3] A. Borel and J. Tits, Groupes réductifs. Inst. Hautes Études Sci. Publ. Math. 27 (1965), 55–150. [4] S. Bosch, W. Lütkebohmert, and M. Raynaud, Néron models. Ergebnisse der Mathematik und ihrer Grenzgebiete (3), 21. Springer-Verlag, Berlin, 1990. x+325 pp. [5] Harold Brown, Rolf Bulow, Joachim Neubuser, Hans Wondratschek and Hans Zassenhaus, Crystallographic groups of four-dimensional space. Wiley Monographs in Crystallography. Wiley-Interscience, New York-Chichester-Brisbane, 1978. xiv+443 pp. [6] Ching-Li Chai, Brian Conrad and Frans Oort, Complex multiplication and lifting problems. Mathematical Surveys and Monographs 195. AMS, 387 pp. [7] Claude Chevalley, Invariants of finite groups generated by reflections. Amer. J. Math. 77 (1955), 778–782. [8] Wei-Liang Chow, Abelian varieties over function fields. Trans. Amer. Math. Sci. 78, (1955). 253–275. [9] B. Conrad, Chow’s K/k-image and K/k-trace, and the Lang-Néron theorem. Enseign. Math. 52 (2006), 37–108. [10] C. W. Curtis and I. Reiner, Methods of representation theory. Vol. I. With applications to finite groups and orders. Pure and Applied Mathematics. A WileyInterscience Publication. John Wiley & Sons, Inc., New York, 1981, 819 pp. [11] Dummit, D. S. Foote, R. M.,Abstract Algebra, 2004. Third edition. John Wiley & Sons, Inc., Hoboken, NJ, 2004. xii+932 pp. [12] Shizuo Endo and Ming-Chang Kang, Function fields of algebraic tori revisited. Asian J. Math. 21 (2017), no. 2, 197–224. [13] Michael D. Fried and Moshe Jarden, Field arithmetic. Ergebnisse der Mathematik und ihrer Grenzgebiete (3), 11. Springer-Verlag, Berlin, 1986, 458 pp. [14] Walter Feit, Orders of finite linear groups. Proceedings of the First Jamaican Conference on Group Theory and its Applications (Kingston, 1996), 9–11, Univ. West Indies, Kingston. [15] E. Freitag and R. Kiehl, Etale cohomology and the Weil conjecture. Ergebnisse der Mathematik und ihrer Grenzgebiete (3), 13. Springer-Verlag, Berlin, 1988. xviii+317 pp. [16] A. Grothendieck, Revêtements étales et groupe fondamental (SGA 1), Lecture Notes in Math., vol. 224, Springer-Verlag, Springer-Verlag, 1971 [17] A. Heller and I. Reiner, Representations of cyclic groups in rings of integers, I, Ann. of Math. (2) 76 1962 73–92. [18] A. Heller and I. Reiner, Representations of cyclic groups in rings of integers, II, Ann. of Math. (2) 77 1963 318–328. [19] A. Heller, On group representations over a valuation ring, Proc. Nat. Acad. Sci. U.S.A. 47 1961 1194–1197. [20] Thomas W. Hungerford, Algebra. Graduate Texts in Mathematics, 73. SpringerVerlag, New York-Berlin, 1980. 502 pp. [21] A. Jones, Groups with a finite number of indecomposable integral representations, Michigan Math. J. 10 1963 257–261. [22] Ming-Chang Kang, Noether’s problem for metacyclic p-groups. Adv. Math. 203 (2006), no. 2, 554–567. [23] Ming-Chang Kang, Retract rationality and Noether’s problem. Int. Math. Res. Not.IMRN 2009, no. 15, 2760–2788. [24] Ming-Chang Kang, Noether’s problem for p-groups with a cyclic subgroup of index p2. Adv. Math. 226 (2011), no. 1, 218–234. [25] Ming-Chang Kang and Jian Zhou, The rationality problem for finite subgroups of GL4(Q). J. Algebra 368 (2012), 53–69. [26] I. Kersten, Noether’s problem and normalization. Jahresber. Deutsch. Math.-Verein. 100 (1998), no. 1, 3–22. [27] Hidetaka Kitayama, Noether’s problem for four and five dimensional linear actions. J. Algebra 324 (2010), no. 4, 591–597. [28] Hidetaka Kitayama and Aiichi Yamasaki, The rationality problem for fourdimensional linear actions. J. Math. Kyoto Univ. 49 (2009), no. 2, 359–380. [29] S. Lang, Abelian Varieties. Interscience, New York, 1959. [30] Myrna Pike Lee, Integral representations of the dihedral groups of order 2p, Trans. Amer. Math. Soc. 110 1964 213–231. [31] J. S. Milne, Etale cohomology. Princeton Mathematical Series, 33. Princeton University Press, 1980. xiii+323 pp. [32] T. Ono, Arithmetic of algebraic tori. Ann. Math. 74 (1961), 101–139. [33] Irving Reiner, Integral representations of cyclic groups of prime order, Proc. Amer. Math. Soc. 8 (1957), 142–146. [34] Irving Reiner, Failure of the Krull-Schmidt theorem for integral representations, Michigan Math. J. 9 1962 225–231. [35] M. Rosenlicht, Some rationality questions on algebraic groups. Ann. Mat. Pura Appl. (4) 43 (1957), 25–50. [36] Jean-Pierre Serre, Linear representations of finite groups. Translated from the second French edition by Leonard L. Scott. Graduate Texts in Mathematics, Vol. 42. Springer-Verlag, New York-Heidelberg, 1977. x+170 pp. ISBN: 0-387-90190-6 [37] T.A. Springer, Linear algebraic groups. Second edition. Progress in Mathematics, 9. Birkhauser Boston, 1998. xiv+334 pp. [38] The Stack Project Authors, Stacks Project, http://stacks.math.columbia.edu, (2017). [39] R. Swan, Stacks Project,Induced representations and projective modules, Annals of Mathematics Second Series, Vol.71, No. 3 (May, 1960), pp. 552-578 [40] Kenichi Tahara, On the finite subgroups of GL(3, Z). Nagoya Math. J. 41 (1971) 169–209. [41] J. Tits, Lectures on Algebraic Groups. Department of Mathematics, Yale University, 1970. [42] V. E. Voskresenski, On two-dimensional algebraic tori. Izv. Akad. Nauk SSSR Ser. Mat. 29 1965 239–244. [43] P. Webb, A course on finite group representation theory, 2016. http://wwwusers.math.umn.edu/webb/RepBook/RepBookLatex.pdf [44] Aiichi Yamasaki, Some cases of four dimensional linear Noether’s problem. J. Math. Soc. Japan 62 (2010), no. 4, 1273–1288. [45] C.-F. Yu, On the existence of maximal orders. Int. J. Number Theory 7 (2011), no. 8, 2091–2114. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/handle/123456789/1312 | - |
| dc.description.abstract | 在這篇論文中,我們趁著這次機會整理了一些關於有限群表現理論基本而重要的結果,例如:判定給定的群他的不可分解(indecomposable)表現及不可分解的整數表現(integral representations),是否只有有限多種。因為分裂的代數圓圈(split algebraic tori)會與有限群的整數表現產生對應,所以在此論文的最後一章,我們也介紹了代數圓圈的可分離分裂體(separable splitting fields)定理。
在第二章中,我們探討模表現(modular representations),尤其是體(field)的特徵值(characteristic)整除群的元素總個數時。我們介紹了格林對應(Green's correspondence),在格林對應之後,我們有了相對投射性(relative projectivity)的概念,進而能夠判斷給定的群的不可分解的表現是否有無限多種,同時在模系統(modular system)下我們介紹了格羅滕迪克群(Grothendieck group)及cde三角形。 第三章簡單的介紹了整數表現理論以及判斷不可分解的整數表現的有限性的方式。在第四章,我們整理了一些特定有限群的不可分解整數表現,例如元素個數為質數p的循環群,以及元素個數為2p的二面體群。在最後一章,我們整理了很多代數圓圈會在他的有限可分離體擴張(finite separable field extension)分裂的不同證明,並且推廣了Chow的定理,最後則是給了對於一個代數圓圈,他的分裂體的上限。 | zh_TW |
| dc.description.abstract | In the present thesis, we take the opportunity to discuss several basic and important results in representation theory. More precisely we mainly investigate the criterion of finite groups G that are of finite representation type for both kG-modules or for ZG-lattices, as well as separable splitting fields of algebraic tori.
In Chapter 2, we consider the theory of representations of finite groups over a field k. We focus mainly on the case where the characteristic of k divides the order of the group G. This chapter include Green’s correspondence and its the connection to the criterion of kG that is of finite representation. We also discuss the structure and relation of Grothendieck groups RkG and RKG in a modular system setting, namely the cde triangle. In Chapter 3, we give an overview of integral representations based on classical results of Heller and Reiner, which would be useful for further studies. In Chapter 4, we give a description of classification of indecomposable integral representations of cyclic groups of prime order p and dihedral groups of order 2p, based on works of Reiner and of Lee. In the last chapter, we give a connection between algebraic tori and integral representations of finite groups. We give several different proofs of the theorem that any algebraic tori over a field splits over a finite field extension. Besides, we also generalize Chow’s theorem to semi-abelian varieties, and give a sharp bound for the splitting fields of algebraic tori. | en |
| dc.description.provenance | Made available in DSpace on 2021-05-12T09:36:08Z (GMT). No. of bitstreams: 1 ntu-107-R04221009-1.pdf: 804334 bytes, checksum: f44298cceab55e434c6235896f757adb (MD5) Previous issue date: 2018 | en |
| dc.description.tableofcontents | 致謝 i
摘要 ii Abstract iii Lists of Tables vi 1 Introduction 1 2 The group ring kG 3 2.1 Green’s correspondence . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 2.2 Infinitely many indecomposable representations . . . . . . . . . . . . . . 11 2.3 Another example of infinitely many indecomposable modules . . . . . . . 15 2.4 General results of kG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 2.5 The example G = S3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 3 Integral representations 24 3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 3.2 An example and reduction mod p . . . . . . . . . . . . . . . . . . . . . . 27 3.3 Finiteness of the group ring ZG . . . . . . . . . . . . . . . . . . . . . . . 29 3.4 Infinitely many indecomposable lattices . . . . . . . . . . . . . . . . . . . 36 4 Integral representations of specific finite groups 42 4.1 Cyclic groups of prime order . . . . . . . . . . . . . . . . . . . . . . . . . 42 4.2 Dihedral groups of order 2p . . . . . . . . . . . . . . . . . . . . . . . . . 46 4.3 An example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 5 Chow’s theorem for semi-abelian varieties and bounds for splitting fields for algebraic tori 58 5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 5.2 Characters and diagonalizable groups . . . . . . . . . . . . . . . . . . . 62 5.3 Derivations, connections and inseparable descent . . . . . . . . . . . . . . 65 5.4 Three more proofs of Theorem 94 . . . . . . . . . . . . . . . . . . . . . . 77 5.5 Chow’s theorem for semi-abelian varieties . . . . . . . . . . . . . . . . . . 78 5.6 Bounds for splitting fields of tori . . . . . . . . . . . . . . . . . . . . . . 83 Bibliography 88 | |
| dc.language.iso | en | |
| dc.subject | 分裂體 | zh_TW |
| dc.subject | 模表現 | zh_TW |
| dc.subject | 整數表現 | zh_TW |
| dc.subject | 有限表現類型 | zh_TW |
| dc.subject | 代數圓圈 | zh_TW |
| dc.subject | finite representation type | en |
| dc.subject | splitting fields | en |
| dc.subject | algebraic tori | en |
| dc.subject | modular representations | en |
| dc.subject | integral representations | en |
| dc.title | 表現理論初探 | zh_TW |
| dc.title | A Glimpse of Representation Theory | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 106-1 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 康明昌,謝銘倫,林惠雯 | |
| dc.subject.keyword | 模表現,整數表現,有限表現類型,代數圓圈,分裂體, | zh_TW |
| dc.subject.keyword | modular representations,integral representations,finite representation type,algebraic tori,splitting fields, | en |
| dc.relation.page | 92 | |
| dc.identifier.doi | 10.6342/NTU201800167 | |
| dc.rights.note | 同意授權(全球公開) | |
| dc.date.accepted | 2018-01-25 | |
| dc.contributor.author-college | 理學院 | zh_TW |
| dc.contributor.author-dept | 數學研究所 | zh_TW |
| 顯示於系所單位: | 數學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-107-1.pdf | 785.48 kB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
