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ḵ要

在這篇論文中，我們趁著這次機會整理了一些關於有限群表現理論基本而重要的結

果，例如：判定給定的群他的不可分解 (indecomposable) 表現及不可分解的整數表現

(integral representations)，是否只有有限多種。因為分裂的代數圓圈 (split algebraic

tori) 會與有限群的整數表現產生對應，所以在此論文的最後一章，我們也介紹了代

數圓圈的可分離分裂體 (separable splitting fields) 定理。在第二章中，我們探討模表

現 (modular representations)，尤其是體 (field) 的特徵值 (characteristic ) 整除群的元

素總個數時。我們介紹了格林對應 (Green’s correspondence)，在格林對應之後，我們

有了相對投射性 (relative projectivity) 的概念，進而能夠判斷給定的群的不可分解的

表現是否有無限多種，同時在模系統 (modular system) 下我們介紹了格羅滕迪克群

(Grothendieck group) 及 cde 三角形。第三章簡單的介紹了整數表現理論以及判斷不

可分解的整數表現的有限性的方式。在第四章，我們整理了一些特定有限群的不可分

解整數表現，例如元素個數為質數 p 的循環群，以及元素個數為 2p 的二面體群。在

最後一章，我們整理了很多代數圓圈會在他的有限可分離體擴張 (finite separable field

extension) 分裂的不同證明，並且推廣了 Chow 的定理，最後則是給了對於一個代數圓

圈，他的分裂體的上限。

關䝔ᚏ：模表現、整數表現、有限表現䮰ፔ、代數圓圈、分裂體
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Abstract

In the present thesis, we take the opportunity to discuss several basic and important re-

sults in representation theory. More precisely we mainly investigate the criterion of finite

groups G that are of finite representation type for both kG-modules or for ZG-lattices,

as well as separable splitting fields of algebraic tori.

In Chapter 2, we consider the theory of representations of finite groups over a field k. We

focus mainly on the case where the characteristic of k divides the order of the group G.

This chapter include Green’s correspondence and its the connection to the criterion of kG

that is of finite representation. We also discuss the structure and relation of Grothendieck

groups RkG and RKG in a modular system setting, namely the cde triangle.

In Chapter 3, we give an overview of integral representations based on classical results

of Heller and Reiner, which would be useful for further studies. In Chapter 4, we give a

description of classification of indecomposable integral representations of cyclic groups of

prime order p and dihedral groups of order 2p, based on works of Reiner and of Lee.

In the last chapter, we give a connection between algebraic tori and integral representa-

tions of finite groups. We give several different proofs of the theorem that any algebraic

tori over a field splits over a finite field extension. Besides, we also generalize Chow’s the-

orem to semi-abelian varieties, and give a sharp bound for the splitting fields of algebraic

tori.

Keywords: modular representations, integral representations, finite representation

type, algebraic tori, splitting fields
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Chapter 1

Introduction

This paper is the author’s attempt to organize some well-known and important results

in representation theory. It includes topics on representations of finite groups over fields

of characteristic p ̸= 0, integral representations of finite groups, as well as some results

on algebraic tori which are connected to integral representations.

In Chapter 2, we deal with representations of finite groups over a field k of charac-

teristic p ̸= 0. The content of this chapter is mainly followed from [36] and [43]. We

exhibit some notions and general results concerning kG-modules. For example, we dis-

cuss Green’s correspondence, numbers of irreducible representations up to isomorphism,

properties of projective covers, the cde triangle, and a criteria of groups that are of fi-

nite representation type. We include the adorable construction in [43] of infinitely many

indecomposable non-isomorphic representations of the group Cp × Cp. Based on general

results we learned, we make a detailed study on indecomposable representations of the

symmetric group S3. This finite group S3 will also appear as an example in successive

chapters.

In the next two chapters, we introduce integral representations of finite groups. Chap-

ter 3 concerns mainly the finiteness criteria for finite groups. For definitions and basic

theorems, we follow mainly the exposition of Curtis and Reiner [10]. Then we are de-

1
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voted to discussing results toward the main theorems of Heller and Reiner ([17] and

[18]) on a criterion of G which is of finite representation type. Chapter 4 deals with the

classification problem of indecomposable integral representations of special finite groups,

namely G = Cp a cyclic group of prime order p, and G = Dp a dihedral group of order

2p. The examples in this chapter illustrate an interesting connection between integral

representations and algebraic number theory.

The last chapter, Chapter 5, deals with separable splitting fields of algebraic tori.

We explain how integral representations of finite groups are related to classification of

algebraic tori. This is based on a well-known theorem that any algebraic torus splits over

a finite separable field extension. The main part of this chapter provides several different

proofs of this well-known theorem from different points of view. We also establish Chow’s

theorem for semi-abelian varieties and give a sharp bound for the degrees of the splitting

fields. The latter uses a classical theorem of Chevalley on invariants of finite reflection

groups, results on finite subgroups of GLd(Q) and Hilbert’s irreducibility.

2
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Chapter 2

The group ring kG

In this chapter, our group G is a finite group. Let A be a complete discrete valuation

ring with quotient field K. Assume that K is of characteristic 0 and the residue field k

is of characteristic p > 0. Assume that k sufficiently large i.e. k contains a |G|-th root

of unity. Let kG denote the group ring of G over k. All kG-modules M considered are

finitely generated, unless specifically stated otherwise.

The ring structure of the group ring kG and its representations are known when char

k ∤ |G| and k is sufficiently large. In the following, we shall focus on the situation where

char k = p | |G|. We try to understand kG in three ways: studying indecomposable

kG-modules through Green’s correspondence, the (modular) character theory and ring

structure of kG itself.

We will first introduce relative projectiveness, vertices and sources. Using these no-

tions, we can describe Green’s Correspondence, and obtain information on the number

of isomorphism classes of indecomposable kG-modules under suitable conditions of G.

Later, we will give an example of G for which there are infinitely many isomorphism

classes indecomposable kG-modules. After that, we will give a criterion for G that there

are only finitely many indecomposable kG-modules up to isomorphism, i.e. kG is of finite

representation type.

3
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For the second approach, we exhibit some general results like the cde triangle, pro-

jective covers, numbers of irreducible representations over k.

At the end, we use results we have discussed about, and obtain more explicit infor-

mation in the case G = S3 and p = 2 or 3.

2.1 Green’s correspondence

For the moment, let k be a field of any arbitrary field. Suppose U is a kG-module, H

a subgroup of G and V is a kH-module. In the following, let V ↑GH denote the induced

representation of V from H to G. Let U ↓GH denote the restriction of U to kH-module.

If U ′ is a direct summand of U , then we write U ′ | U .

We first state different definitions of H-projectiveness. These three definitions are

actually equivalent by [43] Corollary 11.3.4.

Definition 1. A kG-module U is said to be H-projective if U is a direct summand of

T ↑GH for some kH-module T .

Definition 2. We say a kG-module U H-projective if for a given exact sequence 0
f−→

E1
g−→ E2 → U → 0 of kG-modules, it splits if and only if it splits as kH-modules.

Definition 3. We say a kG-module U H-projective if U |U ↓GH↑GH .

Example 4. Every kG-module U is G-projective.

Example 5. Since every projective kG-module is a direct summand of (kG)n, a kG-

module P is projective if and only if it is 1G-projective.

Proposition 6. Suppose U is a Q-projective kG-module with Q a minimal subgroup

satisfying this condition. Then this minimal subgroup Q is unique up to conjugacy.

Proof. Suppose there exists a minimal subgroup Q′ of G such that U is Q′-projective.

Since U is both Q- and Q′-projective, we have U |U ↓GQ↑GQ↓GQ′↑GQ′ . From Mackay’s formula

4
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(ref. [36] Proposition 22),

U ↓GQ↑GQ↓GQ′↑GQ′= (U ↓GQ↑GQ↓GQ′) ↑GQ′ = (
⊕

s∈Q′\G/Q

((U ↓GQ)s ↓
sQ
sQ∩Q′) ↑Q

′
sQ∩Q′) ↑GQ′

=
⊕

s∈Q′\G/Q

((U ↓GQ)s ↓
sQ
sQ∩Q′) ↑GsQ∩Q′ , where sQ = sQs−1

Since U is indecomposable, U must be a direct summand of ((U ↓GQ)s ↓
sQ
sQ∩Q′) ↑GsQ∩Q′ for

some s. Since Q′ is minimal, we have sQ ∩Q′ = Q′. This means that Q′ is conjugate to

a subgroup of Q. Similarly, Q is conjugate to a subgroup of Q′. Hence Q is conjugate to

Q′

Definition 7. Let U be a kG-module, and Q a subgroup of G as in Proposition 6. We

say Q is a vertex of U .

Proposition 8. Suppose H is a subgroup of G such that |G/H| is invertible in k. Then

every kG-module M is H-projective.

Proof. See [43] Proposition 11.3.5.

Corollary 9. Suppose U is an indecomposable kG-module, chark = p, with a vertex Q.

This Q must be a p-subgroup of G.

Proof. Let H be a Sylow p-subgroup P of G, then by Proposition 8, M is P -projective.

Hence a vertex of M is a p-group.

Proposition 10. Let U be an indecomposable kG-module. Suppose U has a vertex Q, and

one has U |T ↑GQ for some kQ-module T . If we choose such kQ-module T indecomposable,

then T is unique up to conjugacy by an element belongs to NG(Q).

Proof. At first, we choose our T specifically. Observe that since U |U ↓GQ↑GQ and U is

indecomposable, we can choose some indecomposable kQ-module T with T |U ↓GQ such

5
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that U |T ↑GQ. Now suppose there exists an indecomposable kQ-module T ′ such that

U |T ′ ↑GQ. Since U |T ↑GQ, we have

T |U ↓GQ |T ′ ↑GQ↓GQ, and T ′ ↑GQ↓GQ=
⊕

s∈Q\G/Q

(T ′ ↓QsQ∩Q)s ↑
Q
sQ∩Q .

Hence T |(T ′ ↓Qs′Q∩Q)s′ ↑
Q
s′Q∩Q) for some s′. Since Q is a vertex, it is minimal. Therefore,

s′Q = Q. We must have s′ ∈ NG(Q).

Definition 11. Let Q, T, U be as in Proposition 10, we say T is a source of U .

The following proposition is not directly related to the content of this section. How-

ever, this property looks similar to Definition 3, and will be used later.

Proposition 12. For any kH-module V , we have V |V ↑GH↓GH .

Proof. From Mackay’s formula, we have

V ↑GH↓GH=
⊕

s∈H\G/H

(V ↓HsH∩H)s ↑HsH∩H .

When s ∈ [e], we have V = (V ↓HsH∩H)s ↑HsH∩H . Therefore, V |V ↑GH↓GH .

Theorem 13 (Krull-Schmidt-Azumaya). Let R be a complete discrete valuation ring

or a field. If Λ is an R-algebra and finitely generated as R-module, then every finitely

generated Λ-module M can be written as
⊕n

i=1Mi with Mi indecomposable R-modules,

and the set counting with the multiplicity {Mi} is uniquely determined by M .

Proof. See [10] Theorem 6.12.

Theorem 14 (Green’s Correspondence). Let k be a field of characteristic p. Let Q be a

p-subgroup of G and L a subgroup of G containing the normalizer of Q in G.

(1). Suppose U is an indecomposable kG-module with vertex Q, then there exists a

unique indecomposable kL-module f(U) with vertex Q, such that f(U)|U ↓GL . Also if

X|U ↓GL and X ̸∼= f(U), then X is H-projective, for some H = xQ ∩ L and x ∈ G∖ L.

6
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(2). Suppose V is an indecomposable kL-module with vertex Q, then there exists

a unique indecomposable kG-module g(V ) with vertex Q, such that g(V )|V ↑GL .And if

Y |V ↑GL andY ̸∼= g(V ), then Y is H-projective for some H = yQ ∩Q, and y ∈ G∖ L.

(3). Moreover, we have gf(U) ∼= U, and fg(V ) ∼= V .

Proof. Step 0 : At first, suppose H is the subgroup in (2), then |H| is strictly smaller

than |Q|. This is because if |H| is equals to |Q|, we have H = yQ ∩ Q = Q for some

y ∈ G ∖ L. Therefore, we have y ∈ NG(Q) ⊂ L, which can not happen. Also, the

subgroup H in (1) can not be conjugate to Q under L. If so, we have yQ ∩ L = xQ

for some x ∈ L. Consequently, yx−1
Q equals to Q, hence yx−1 ∈ NG(Q). Therefore, y

belongs to xNG(Q) ⊂ L, and we get a contradiction.

Now we prove (2) first.

Step 1 : Suppose V has source T , then we write T ↑LQ= V ⊕ Z. By Proposition 12,

we have

V ↑GL↓GL= V ⊕ V ′, Z ↑GL↓GL= Z ⊕ Z ′.

Now, we look at T more carefully to understand V . We have

T ↑GQ↓GL=
⊕

s∈L\G/Q

Ts ↓
sQ
L∩sQ↑

L
sL∩Q= V ⊕ V ′ ⊕ Z ⊕ Z ′.

Since V has a vertex Q, we have

V ⊕ Z = T ↑LQ= Ts ↓
sQ
L∩sQ↑

L
sL∩Q, s ∈ L.

For indecomposable summands of V ′, Z ′, they must be sL ∩Q-projective, s ̸∈ L. How-

ever, L ∩ sQ is not conjugate to Q under L by the first paragraph. Hence V ↑GL↓GL has

the unique summand V with vertex Q.

Step 2 : (Existence) Now consider V ↑GL , write V ↑GL as direct sum of indecomposable

7
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kG-modules. We can pick an indecomposable one, say U , such that U ↓GL contains V and

such U must have a vertex Q. We have that U is Q-projective. Suppose it has a vertex

Q′ proper subgroup of Q and a source T ′. V |U ↓GL |T ′ ↑GQ′↓GL , similar to step 1, V must

has a vertex strictly smaller than Q, contradiction to the minimality of the vertex Q.

Step 3 : (Uniqueness) Suppose U ′|V ↑GL , and U ′ has a vertex Q′ < Q < L. Since

U ′|U ′ ↓GL↑GL , one of indecomposable summands of U ′ ↓GL must contain a source of U ′,

when we restrict this summand to Q′. We denote this indecomposable summand by

X. This X must has vertex a Q′, otherwise it will contradict with U ′ has a vertex Q′.

Also X|U ′ ↓GL |V ↑GL↓GL , by step 1, we have that X is L ∩ sQ-projective. But since X is

an indecomposable kL-module, we have that Q′ must be L-conjugate to a subgroup of

L ∩ sQ for some s ̸∈ L. Also lQ′ < L ∩ sQ implies Q′ < L ∩ sl−1
Q. Since Q′ < Q, we

have Q′ < Q ∩ s′Q for s′ ̸∈ L, since s ̸∈ L, and we have Q′ < Q. By step 0, we have that

|Q′| ̸= |Q|, hence Q′ is a proper subgroup of Q.

For proof of (1): Now suppose U is an indecomposable kG-module with a vertex Q.

Since U is also L-projective, U |U ↓GL↑GL . Hence U ↓GL contains an indecomposable kL-

module V such that U |V ↑GL . And such a kL-module V must have a vertex Q and source T

since U has. Now suppose V ′ ̸∼= V is another indecomposable summand of U ↓GL | T ↑GQ↓GL .

By Step 1 of proof (2), V ′ must be xQ ∩L-projective for some x ∈ L−Q. By Step 0, we

know that xQ∩L is not L-conjugate to Q, hence V ′ is not an indecomposable kL-module

with a vertex Q.

For proof of (3): This follows from

U |U ↓GL↑GL , V |V ↑GL↓GL ,

and the uniqueness of (1), (2).

Theorem 15 (Schur–Zassenhaus). Suppose G is a finite group, and N is a normal

8
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subgroup of G such that the order of G/N is coprime to the order of N . Then G is a

semidirect product of N and G/N .

Proof. See [11] Theorem 17.4.39.

Definition 16. We let Sk(G) denote the set of all non-isomorphic simple kG-modules.

Proposition 17. Suppose G is a finite group with the (unique) normal Sylow p-subgroup

P cyclic of order pn. Hence G is a semi-direct product of P and a subgroup K with |K|

coprime to p. Then the number of isomorphism classes of indecomposable kG-modules is

pn · |Sk(K)|.

Proof. See [43], Corollary 11.2.2.

Corollary 18. Suppose G has a Sylow p-group P of order p, then there are

(p− 1) · |Sk(NG(P ))|+ |Sk(G)|

indecomposable kG-modules.

Proof. By the Schur-Zassenhaus Theorem, we have NG(P ) = P ⋊ K. And we

have |Sk(NG(P ))| = |Sk(K))|(cf. [43], Corollary 6.2.2). By Proposition 17, there are p ·

|Sk(NG(P ))| non-isomorphic classes of kNG(P )-modules. Since there are |Sk(NG(P ))| in-

decomposable projective kG-modules (up to isomorphism), i.e. 1-projective, p·|Sk(NG(P ))|−

|Sk(NG(P ))| of them must be P -projective. By Green’s correspondence, there are p|Sk(NG(P ))|−

|Sk(NG(P ))| indecomposable and not projective kG-modules with a vertex P , and |Sk(G)|

indecomposable projective kG-modules.

Definition 19. A ring R is said to be of finite representation type, if there are only

finitely many isomorphism classes of indecomposable R-modules.

Proposition 20. Let k be a field of characteristic p and P be a Sylow p-subgroup of G.

Then kG is of finite representation type if and only if kP is of finite representation type.

9
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Proof. (⇒): For an indecomposable kP -module V , we have V |V ↑GP↓GP . Since V is

kP -indecomposable, V | U ↓GP for some indecomposable kG-summand U of V ↑GP . Since

kG is of finite representation type and by Theorem 13 for any indecomposable kG-module

U , we have that U ↓GP has only finitely many indecomposable kP -summands. Our kP

can only be of finite representation type.

(⇐): By Proposition 8, we know that every indecomposable kG-module U must be

P -projective, and U |V ↑GP for some indecomposable kP -module V . Again, by Theorem

13 and finiteness of kP , kG can only be of finite representation type.

If we assume the following Example in Section 2.2 and using the proposition above,

we get a criterion of G that kG is of finite representation type.

Proposition 21. Let P be a cyclic p-group of order q = pn, k be a field of characteristic

p, then kP is of finite representation type.

Proof. Suppose M is an indecomposable kP -module with the representation ρ : P →

GL(M), and P is generated by g. Clearly, ρ(g)q = id. Since characteristic of k = p,

(ρ(g) − id)q = 0. Since M is indecomposable, there are only one Jordan block of ρ(g),

and the size of Jordan block is not bigger than q. Particularly, dimkM ≤ q. Hence there

are only finitely many indecomposable kP -modules up to isomorphism.

Theorem 22. Let k be a field of characteristic p. Then kG is of finite representation

type if and only if any of its Sylow p-subgroup is cyclic.

Proof. By Proposition 20, it is equivalent to prove that kP has finite representation

type if and only if it is cyclic. By Proposition 21, we know that if P is cyclic then kP

is of finite representation type. Now suppose P is not cyclic. Considering the Frattini

subgroup Φ(P ) of P (cf. [11] p. 199), we have that P/Φ(P ) ∼= Cp
d. Since P is not cyclic,

we have d ≥ 2. Therefore, Cp × Cp is a homomorphic image of P . In Section 2.2 we

will show that kCp × Cp is not of finite representation type. Since any indecomposable

10
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kCp×Cp-module can be also viewed as an indecomposable kP -module, kP is not of finite

representation type.

2.2 Infinitely many indecomposable representations

Suppose our G is Cp×Cp = ⟨a⟩ × ⟨b⟩ and k is a field of characteristic p. Consider M2n+1

a kG-module of dimension 2n+1 with basis {un, un−1, · · · , u1, v0, v1, · · · , vn}, and define

the action of G on M2n+1 by

(a− 1) · ui = vi−1, (b− 1) · ui = vi,

(a− 1) · vi = 0, (b− 1) · vi = 0.

Here 1 above is the identity element (1, 1) of G.

u1 u2 un

v0 v1 v2 vn−1 vn

0 0 0 0 0

a− 1
b− 1

a− 1
b− 1

a− 1
b− 1

. . .

a− 1
b− 1

a− 1
b− 1

a− 1
b− 1

a− 1
b− 1

. . .

. . . . . .

To see this is really an action of G on M2n+1, we need to check s(t · x) = (st) · x. So

we need to check that (a − 1)(b − 1)x = (b − 1)(a − 1)x = 0 = (ab − b − a + 1)x and

0x = (ap − 1p)x = (a− 1)px = (b− 1)px = 0x = 0. These can be computed directly.

Since n is arbitrary, once we prove that each M2n+1 is indecomposable, we have

infinitely many indecomposable kG-modules. We prove this in two ways.

The first one is to prove that the endomorphism ring E = EndkG(M2n+1) is a local

ring, then by [10] Proposition 6.10, M2n+1 is indecomposable kG-module. We can use the

11
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similar argument to prove that Z[X]/(p2, X2, pX) is a ring not of finite representation

type. In the second proof, we use the relation of dimensions of kG-submodules to get a

contradiction.

Proposition 23. The kG-module M2n+1 is indecomposable.

Proof. First, we choose an ordered basis B = {v0, v1, . . . , vn, u1, . . . , un} and let

S = a − 1 and R = b − 1. Suppose T ∈ E, T (vj) =
∑n

i=0 ai,jvi +
∑n

i=1 bi,jui and

T (uj) =
∑n

i=0 a
′
i,jvi +

∑n
i=1 b

′
i,jui.

Since

ST (vj) = S(
n∑
i=0

ai,jvi +
n∑
i=1

bi,jui) =
n∑
i=1

bi,jvi−1

TS(vj) = T (0),

we have bi,j = 0 for 0 ≤ j ≤ n, 1 ≤ i ≤ n.

Since

ST (uj) = S(
n∑
i=0

a′i,jvi +
n∑
i=1

b′i,jui) =
n∑
i=1

b′i,jvi−1

TS(uj) = T (vj−1) =
n∑
i=0

ai,j−1vi,

we have

an,j = 0, 0 ≤ j ≤ n− 1,

and

b′i,j = ai−1,j−1, 1 ≤ i, j ≤ n.

12
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Using TR(uj) = RT (uj), we have

TR(uj) = T (vj) =
n∑
i=0

ai,jvi

RT (uj) = R(
n∑
i=0

a′i,jvi +
n∑
i=1

b′i,jui) =
n∑
i=1

b′i,jvi,

hence we have

a0,j = 0, 1 ≤ j ≤ n

and

ai,j = b′i,j = ai−1,j−1, 1 ≤ i, j ≤ n.

Using these equations, we have:

[
T

]
B

=



a0,0 0 · · · 0

0
. . . . . . ...

... . . . . . . 0

0 · · · 0 a0,0

*

0n,n+1

a0,0 0 · · · 0

0
. . . . . . ...

... . . . . . . 0

0 · · · 0 a0,0



, the left upper block is of size n+ 1× n+ 1.

If the diagonal entries of
[
T

]
B

are zero, then T is nilpotent, hence T belongs to

Rad(E). Also cI ̸∈ Rad(E), for c ̸= 0, and hence we have E/Rad(E) ∼= k. Therefore, E

is a local ring and by [10] Proposition 6.10, M2n+1 is an indecomposable kG-module.

Now we give the second proof. We have M2n+1 = U ⊕ V as k-modules, where U =

13
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⟨u0, · · · , un⟩k and V = ⟨v1, · · · , vn⟩k. Suppose that M2n+1 is a decomposable kG-module.

Then M2n+1 = M1 ⊕ M2. We have V = RM2n+1 + SM2n+1 = V1 ⊕ V2, where V1 :=

RM1 +SM1 ⊂M1 and V2 := RM2 +SM2 ⊂M2. We have M1/V1
∼−→ U1 :=M1 ∩U and

M2/V2
∼−→ U2 :=M2 ∩ U. Since M =M1 ⊕M2 and M/V

∼−→ U , we have U = U1 ⊕ U2.

Then we have a decomposition M2n+1 = U1 ⊕ U2 ⊕ V1 ⊕ V2 of vector spaces, and the

dimension of V1 ⊕ V2 is n+ 1.

Suppose we can prove that

dim(Vi) = dim(S(Ui) +R(Ui)) > dim(Ui),

then we have dim(V1 + V2) = n+ 1 ≥ dim(U1 + U2) + 2 = n+ 2, which can not happen.

Then we have done.

Note that for a vector space V and any two arbitrary subspaces W1,W2, we have

dim(W1) + dim(W2)− dim(W1 ∩W2) = dim(W1 +W2).

Let W = U1, W1 = S(W ) and W2 = R(W ). Since the maps S and R are injective

from U → V , we have dim(W ) = dim(W1) = dim(W2). Since dim(W1 +W2) = dim(V1)

and dim(U1) = dim(W ), it is easy to show that the condition dim(V1) > dim(U1) ⇔

dim(W ) > dim(W1 ∩W2). The latter is equivalent to W1 ̸= W2.

Suppose that W is contained in a subspace ⟨ui, ui+1, . . . , uj⟩, where [i, j] is the minimal

internal with this condition; that is possible since M2n+1 is finite-dimensional. Then

W1 := S(W ) ⊂ ⟨vi−1, . . . , vj−1⟩, W2 := T (W ) ⊂ ⟨vi, . . . , vj⟩.

Suppose W1 = W2, we have

W1 = W2 = W1 ∩W2 ⊂ ⟨vi, . . . , vj−1⟩,W ⊂ ⟨ui+1, . . . , uj⟩.

14
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However, the result that W ⊂ ⟨ui+1, . . . , vj⟩ contradicts with the minimality of [i, j].

Therefore, we prove that dim(V1) > dim(U1), and similarly that dim(V2) > dim(U2).

This follows that M2n+1 is an indecomposable kG-module.

Since M2n+1 is indecomposable and n can be chosen arbitrary, the ring kG = kCp×Cp

is not of finite representation type.

2.3 Another example of infinitely many indecompos-

able modules

In this section, the algebra we consider is not a group ring. Let B := Z/(p2) and

R := B[X]/(pX,X2) = Z[X]/(p2, pX, X2). Consider a free B-module F of rank 2n+ 1

with basis B = {v0, v1, . . . , vn, u1, . . . un}. Let M2n+1 be the R-module which is the

quotient of F by the following relations:

pui = vi, Xui = vi−1,

pvi = 0, Xvi = 0.

15
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Suppose T ∈ EndR(M2n+1), similar to the first proof of Proposition 23, we have

[
T

]
B

=



a0,0 0 · · · 0

0
. . . . . . ...

... . . . . . . 0

0 · · · 0 a0,0

*

0n,n+1

a0,0 0 · · · 0

0
. . . . . . ...

... . . . . . . 0

0 · · · 0 a0,0



.

Since vi is annihilated by p, we have a0,0 ∈ Fp. Therefore, we have EndR(M2n+1)/Rad(EndR(M2n+1)) ∼=

Fp. Consequently, M2n+1 is R-indecomposable. This shows that the Artinian ring

R = Z[X]/(p2, pX, X2) is not of finite representation type.

2.4 General results of kG

In this section, we study the cde triangle and projective covers for kG-modules. Our

reference is [36]. Recall that we assume A is a complete discrete valuation ring with

quotient field K. The characteristic of residue field k is p dividing the order of G,

and the characteristic of K is 0. Let Fk(G) be a free abelian group generated by all

isomorphism classes of kG-modules, and F+
k (G) be the subset of Fk(G) generated by all

isomorphism classes of kG-modules with coefficients in Z≥0. Let Qk(G) be the subgroup

of Fk(G), generated by E − E ′ − E ′′ if there is a kG-exact sequence 0 → E ′ → E →

E ′′ → 0. Let Rk(G) denote the Grothendieck group of finitely generated kG-modules,

i.e. Rk(G) := Fk(G)/Qk(G). We denote by [E] the image of an element E ∈ Fk(G) in

Rk(G). Let R+
k (G) be the image of F+

k (G) in Rk(G), i.e. the element of F+
k (G) is [E] for

some kG-module E.

16
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Example 24. Let G be C2 = ⟨a⟩, and k = F2. Consider the regular representation

F2G, the trivial representation U is inside F2G. The trivial representation is the only one

representation of dimension 1. If U is a direct summand of F2G, then we can decompose

F2G as U⊕V , and V = Span{a}, or Span{e} by observing the elements of F2G. However,

either case contains U , which is impossible. We have that 0 → U → F2G → U → 0, so

[F2G] = 2[U ], however F2G ̸∼= U ⊕ U .

We use the similar way to define RK(G) for a field K of characteristic zero. Since

KG is semisimple, any short KG-exact sequence 0 → E ′ → E → E ′′ → 0 splits. This

means that [E] = [E ′] + [E ′′] if and only if E = E ′ ⊕E ′′. Hence the Grothendieck group

RK(G) is isomorphic to the free abelian group generated by characters defined over K.

Denote the image of all finitely generated KG-modules in RK(G) by R+
K(G).

For Pk(G), we use the same way but only consider projective kG-modules. Using the

projectivity, any projective kG-module is a direct sum of indecomposable ones. Thus the

subgroup Pk(G) is just the free abelian group generated by isomorphism classes of inde-

composable projective kG-modules. Let P+
k (G) be the semi-subgroup of Pk(G) generated

by isomorphism classes of indecomposable projective kG-modules with coefficients in Z≥0.

Once we have defined the abelian groups Rk(G), RK(G), Pk(G), we can draw a trian-

gle, which is described as follows.

For any element of P+
k (G), we can consider its image in R+

k (G). Hence we get an ad-

ditive map from P+
k (G) → R+

k (G), and extend it to a homomorphism c : Pk(G) → Rk(G).

Here is a way to obtain a kG-module from a KG-module. Suppose V is a KG-module.

Choose an arbitrary lattice L1 of V , i.e. L1 is finitely generated A-module in V , and L1

spans V with K coefficient. We can get an AG-module L2 =
∑

g∈G gL1. Consider the

17
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quotient module L2/mL2 = L̄2, and then it is a kG-module we get from V , called the

reduction mod m of L2.

Proposition 25. For all kG-modules of reduction from the same KG-module, their im-

ages in Rk(G) are the same.

Proof. See [36], Theorem 32.

Therefore, we have an additive map from R+
K(G) → R+

k (G) and extend it to a homo-

morphism d : RK(G) → Rk(G).

The assumption at the beginning of this chapter that A is a complete discrete valuation

ring with residue field k leads to the following proposition.

Proposition 26. For any projective kG-module E, there is a unique projective AG-

module such that its reduction is isomorphic to E. Moreover, for any projective AG-

module, its reduction is a projective kG-module.

Proof. See [36], Proposition 42.

By this proposition, we can identify Pk(G) and PA(G). Given a projective AG-module,

after tensoring K over A, we get a KG-module. After identifying Pk(G) and PA(G), we

have the last homomorphism e : Pk(G) → RK(G).

At the end, we have a cde triangle with homomorphisms c, d, e. Further, this diagram

commutes by the definition of d.

Pk(G) Rk(G)

RK(G)

c

e
d .

Definition 27. Let M be a kG-module and P be a projective kG-module. We call P a

projective cover (envelope) of M if there exists a surjective homomorphism ϕ : P → M

such that for any proper submodule Q of P , ϕ(Q) ̸=M .

18
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Proposition 28. (1) Every kG-module M has a projective cover unique up to isomor-

phism.

(2) Suppose Pi is the projective cover of Ei, then
⊕

Pi is the projective cover of
⊕

Ei.

(3) Every projective kG-module P is the projective cover of its maximal semisimple

quotient E, i.e. every semisimple quotient of P will factor thrugh E.

Proof. See [36], Proposition 41.

Remark 29. Proposition 28 says that for every M , it has a unique projective cover, but the

converse is not true. More precisely, non isomorphic kG-modules may have the isomorphic

projective covers. For example, given a non semisimple kG-module M , by (3), we know

its projective cover P can also be the projective cover of the maximal semisimple quotient

of P .

Remark 30. Let r be the radical of kG, the maximal semisimple quotient in (3) is P/rP .

By (3) and (2) of Proposition 28, every indecomposable projective module is the

projective cover of a simple module. Conversely, the projective cover of a simple module

is an indecomposable projective module by (3) and the definition of projective covers.

Suppose E, and E ′ are two non-isomorphic simple kG-modules, and we denote their

projective covers by PE, and PE′ , respectively. By Remark 30, PE, and PE′ are not

isomorphic.

From the discussion above, we have a one-one correspondence between indecomposable

projective kG-modules and simple kG-modules. As mentioned before, Pk(G) is a free

abelian group with basis of indecomposable projective kG-modules. Combining these

two results, we have the following proposition.

Proposition 31. The set {[PE]}, for E ∈ Sk(G), forms a basis of Pk(G).

Definition 32. Let p be a prime number. An element g ∈ G is said to be p-regular if its

order is prime to p. Conjugacy classes of p-regular elements are called p-regular conjugacy

classes.

19
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Recall that if K is a field of characteristic 0 and it is sufficiently large, then the

number of irreducible representations of G over K is the number of conjugacy classes of

G (cf. [36], Theorem 7). Now, we also have a description of the number of irreducible

representations of G over k of characteristic p.

Theorem 33. If k is a sufficiently large field and of characteristic p, then the number of

irreducible representations of G over k is the same as the number of p-regular conjugacy

classes of G.

Proof. See [36], Theorem 42.

2.5 The example G = S3

Now we use what we have known to look at the modular representations of symmetric

group S3 more closely.

Case k = F2:

There are two 2-regular conjugacy classes of S3. By Theorem 33, we know that there are at

most two simple-F2S3-modules up to isomorphism. We denote the trivial representation

by U and denote by V the 2 dimensional representation over F2 generated by {e1 −

e2, e2 − e3} in the standard representation, i.e. S3 permutes the basis {e1, e2, e3} of the

standard representation. We know U is the only representation of S3 over F2 of degree

1. Also we can compute directly that there does not exist a subrepresentation M of V

such that M ∼= U . Therefore, V is an irreducible representation of S3.

Since indecomposable projective modules are direct summands of F2S3, we can find

all indecomposable projective kG-modules by finding the idempotents of F2S3.

We know that the Sylow 2-subgroup of S3 is cyclic , hence by Theorem 22, F2S3

is of finite representation type. By Corollary 18, we can know that there are (2 −
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1)|Sk(NG(P ))|+ |Sk(S3)| = (2− 1)|Sk(C2)|+ |Sk(S3)| = 1+2 = 3 isomorphism classes of

indecomposable F2S3 modules. It might be weird that there are two simple F2S3-modules

and two indecomposable projective F2S3-modules, but only three indecomposable F2S3-

modules. Actually, one of the simple modules is projective.

Suppose τ, σ ∈ S3, τ = (123), σ = (12). Let e1 = 1 + σ + τ + σ2τ ∈ F2S3. We have

e21 = e1, hence it is an idempotent of F2S3. Let W be the F2S3-module F2S3e1. We have

v1 := 1e1 = τe1, v2 := σ2e1 = τσe1, v3 := σe1 = τσ2e1 = v1 + v2,

and then we find out W ∼= V as F2S3-modules. Since W is projective and simple, W is

the projective cover of itself.

Let e2 = 1+τ+τ 2. It is easy to compute that e22 = e2 and e2 is a primitive idempotent.

We have that F2S3e2 is a projective indecomposable F2S3-module. Since e2+σe2 is fixed

by S3, the module F2S3e2 has a submodule isomorphic to U , and the quotient by U is

isomorphic to U . Therefore, F2S3e2 is the projective cover of U .

Case k = F3:

There are two 3-regular conjugacy classes. The trivial representation and sign represen-

tation are irreducible representations of S3 over F3, because they are of degree 1 and

non-isomorphic. We still denote the subrepresentation generated by {e1 − e2, e2 − e3} in

the standard representation by V . Since e1 + e2 + e3 = (e1 − e2) − (e2 − e3) ∈ V and it

is fixed by S3, V is not an irreducible representation.

The Sylow 3-subgroup of S3 is cyclic, and it is a normal subgroup of S3. Therefore,

we know that F3S3 is of finite representation type. By Corollary 18, there are

(3− 1)|Sk(NS3(C3))|+ |Sk(C3)| = 2× 2 + 2 = 6
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isomorphism classes of indecomposable F3S3-modules.

Proposition 34. Let N be a nilpotent ideal of any ring A, and ε an idempotent in A/N .

Then there exists an idempotent e of A mapping to ε. Moreover, if ε is primitive, then

so is any lift e.

Proof. See [43], Theorem 7.3.5.

To compute the idempotents of F3S3, we first consider a map f : F3S3 → F3C2, by

σ 7→ 1. Then the kernel of f is RadF3S3 = (σ − 1). By Proposition 34, we compute the

idempotents of F3C2 first. Since

(1̄ + τ̄)2 = (1̄ + 2τ̄ + τ̄ 2) = 2(1̄ + τ̄),

we have ē1 := 1
2
(1̄ + τ̄) = 2(1̄ + τ̄) is a primitive idempotent of F3[C2]. Similarly, we get

another primitive element ē2 := 2(1̄ − τ̄), and they are all. Therefore, the candidates of

the primitive idempotents of F3S3 are known. Fortunately, their liftings are 2+2τ, 2−2τ

and we denote them as e1, e2, respectively.

Definition 35. Let R be a commutative ring and G a finite group acting on R with

ρ : G→ Autring(R). The twisted group ring of G over R relative to ρ is defined by

R ◦G = {
∑
g∈G

agg : ag ∈ R},

agg · ahh = ag(ρ(g)ah)gh.

We will omit ρ and write r1ρ(g1)(r2)g1g2 as r1g1(r2)g1g2 for short.

If we let t = σ − 1, then we have t3 = 0 and τtτ−1 = τστ−1 − 1 = σ2 − 1 =

(σ + 1)(σ − 1) = (t + 2)t. Consider a twisted group ring F3[t]/(t
3) ◦ C2, where C2 = ⟨τ⟩

of order 2 and τ acts on t by τ(t) = (t + 2)t. We have 1τ · t1 = 1τ(t)(τ1) = (t + 2)tτ.
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Consider ϕ : F3[t]/(t
3) ◦ C2 → F3S3 via αx 7→ αx and identifying t, τ in both sides, we

have a ring isomorphism ϕ.

Since τe1 = 2τ(1 + τ) = 2(τ + 1) = e1, we have that F3S3e1 ∼= F3[t]/t
3[1, τ ]e1 =

F3[t]/t
3e1. Moreover, τ · t = (t + 2)t ∈ (t), and hence tiF3[t]/t

3e1 are F3S3-modules.

Similarly, we have the other three F3S3-modules tiF3[t]/t
3e2 and τe2 = τ2(1 − τ) =

2τ − 2 = −e2. Since tiF3[t]/t
3ej, for i = 0, 1, 2, and j = 1, 2, are homomorphic images

of indecomposable modules F3[t]/t
3ej, j = 1, 2, all of these 6 are indecomposable F3S3-

modules. Note that the annihilators of tiF3[t]/t
3ej and ti

′F3[t]/t
3ej′ are different if i′ ̸= i.

From the actions of τ on e1 and e2, we see that these 6 indecomposable F3S3-modules

are mutually non-isomorphic.

We can also see this result using Green’s correspondence. By Proposition 8, all inde-

composable F3S3-module are C3-projective. Two of them are projective and have vertices

{1}. The others are all have vertices C3. By the same argument of the proof of Proposi-

tion 21, all indecomposable F3C3-modules are tiF3[t]/t
3, for i = 0, 1, 2. Any indecompos-

able F3S3-module appears as a direct summand of tiF3[t]/t
3 ↑S3

C3
for some i by Green’s

correspondence. When i = 0,F3[t]/t
3 = 1 ↑C3

1 , and we have 2 isomorphism classes of

indecomposable F3S3-modules from

tiF3[t]/t
3 ↑S3

C3
= ti(F3[t]/t

3 ↑S3
C3
) = ti(1 ↑S3

1 ) = tiF3S3 = ti(F3S3e1 ⊕ F3S3e2).

Similarly for i = 1 or 2, we have the other 4 isomorphism classes of indecomposable

F3S3-modules.
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Chapter 3

Integral representations

In this chapter, we focus on some general results about the group ring A = ZG, where

G is a finite group. We shall consider only finitely generated ZG-modules which are

Z-torsion free. These modules are called A-lattices. Indeed, if we do not require this

condition, then it is easy to construct many A-modules even generated by one element.

For example, any Z/pkG can be viewed as an A-module.

3.1 Introduction

Definition 36. Let R be an integral domain with fraction field K. An R-module M is

said to be of R-rank n, if dimKM ⊗R K is n.

Example 37. Let R be a Dedekind domain and K its fraction field. Then K is an

R-module of R-rank one.

Let R be a Dedekind domain, and let Λ be an R-algebra. Let M be a left Λ-module

which is R-projective and R-finitely generated. Let I be the annihilator of M in Λ. Then

M is a Λ/I-module. We denote Λ/I by Λ̄. Then we can consider Λ̄-structure of M . The

following explains that Λ̄ is actually an R-algebra, R-projective and R-finitely generated.

This motivates us to looking at R-lattice and R-order.
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Since the annihilator of M in Λ is I, M is a faithful Λ̄-representation. Since Λ is an

R-algebra, so is Λ̄. Hence we have Λ̄ → EndR(M). Since M is Λ̄-faithful, we can regard Λ̄

as a subring of EndR(M). Since M is an R-projective, we have M⊕M ′ = R(k) for some R-

module M ′ and integer k. Since EndR(M) is a direct summand of EndR(R(k)) =Mk(R),

we have EndR(M) is R-projective. Since R is a Dedekind domain, it is a Noetherian

ring. Hence any submodule of a finitely generated R-module is also finitely generated.

Moreover, any submodule of a projective R-module is also projective, because it is torsion

free and R is Dedekind. Thus, Λ̄ is also R-projective and R-finitely generated.

In the following, R denotes a Dedekind domain with fraction field K.

Definition 38. An R-module M is said to be an R-lattice if it is R-projective and

R-finitely generated.

Definition 39. An R-algebra is said to be an R-order if it is also an R-lattice.

Definition 40. Let A be a finitely dimensional K-algebra. An R-subalgebra Λ in A is

said to be an R-order in A if Λ is an R-order and KΛ = A. If an R-order Λ in A can not

be strictly contained in an R-order Γ in A, then Λ is said to be a maximal order in A.

Definition 41. Let Λ be an R-order in a K-algebra A. A Λ-module is said to be a

Λ-lattice if it is R-lattice.

Theorem 42 (Jordan-Zassenhaus Theorem). Let R be a Dedekind domain with fraction

field K. Assume K is a global field. Suppose A is a finite-dimensional semisimple K-

algebra, and Λ is an R-order in A. Given an arbitrary finitely generated A-module M ,

there exist only finitely many non-isomorphic Λ-lattices X1, · · · , Xm such that K⊗Xi
∼=

M as A-modules, ∀ i = 1, . . . ,m.

Proof. See [10] Jordan-Zassenhaus Theorem 24.1.
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Theorem 43. Let R be a discrete valuation ring with maximal ideal m. Let Rm be the

completion of R. Suppose Λ is an R-order. We write Λm = Rm⊗R Λ. Suppose M, N are

Λ-modules and finitely generated R-modules, then

M ∼= N as Λ-modules if and only if Mm
∼= Nm as Λm-modules.

Proof. See [10] Proposition 30.17.

Note that this theorem does not tell us whether any Λm-module arises from a Λ-

module.

Let G be a finite group, A = KG the group algebra and Λ = RG the group ring. For

any prime p of R, denote by R(p) the localization of R at p, and by Rp the completion of

R with valuation vp. For any Λ-module M , write M(p) = R(p) ⊗RM and Mp = Rp ⊗RM .

If M is a Λ-lattice and one may regard M as a Λ-submodule of M(p) or of Mp. When M

is R-free, we call M an integral representation of G over R. Some authors call M so if

M is required only R-torsion free.

Proposition 44. For any prime ideal p of R and a Λ(p)-lattice M , there exists a Λ-lattice

X such that R(p) ⊗R X ∼= M .

Proof. See [10] Corollary 23.14.

Definition 45. We say two RG-lattices M and N are in the same genus if M(p)
∼= N(p)

for any prime ideal p of R.

In Propositions 46 and 47, we assume that R is the ring of integers in a number field

K. Set S = {p : prime ideal of R: p | |G|}. Let R(S) =
∩

p∈S R(p).

Proposition 46. An RG-lattice M is RG-indecomposable if and only if R(S) ⊗R M is

R(S)G-indecomposable.

Proof. See [34] Theorem 1.2.
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Proposition 47. Two RG-lattices M and N are in the same genus if and only if R(S)⊗

M ∼= R(S) ⊗N .

Proof. See [10] Proposition 31.15.

Proposition 48. Let G be a finite group of order n. Suppose K is a field of characteristic

not dividing n. Let Λ be an R-order in KG containing RG. Then we have nRG ⊂ nΛ ⊂

RG. Moreover, RG is a maximal R-order of KG if and only if n is a unit of R.

Proof. See [10] Proposition 27.1.

Proposition 49. Suppose Λ is a maximal R-order in a finite-dimensional separable al-

gebra A over K. A left Λ-lattice M is indecomposable if and only if KM is a simple

A-module.

Proof. See [10] Theorem 26.12.

Remark 50. Suppose that R is a discrete valuation ring with residue field of characteristic

not dividing |G|. Then combining Propositions 48, 49, and Theorem 42, there are only

finitely many non-isomorphic indecomposable RG-lattices.

3.2 An example and reduction mod p

We keep the notations in Section 2.5 but let the ground field k be Q. Let σ = (1 2) ∈ S3

and τ = (1 2 3) ∈ S3. Let U (respectively U ′, V ) be the trivial (respectively sign, standard)

representation of S3 over Q. After choosing ordered basis B = {v1 = e1−e2, v2 = e2−e3}

of V we have an isomorphism ϕ from QS3 to Q×Q×M2(Q). We compute the image and

find out that ZS3 ̸∼= Z× Z×M2(Z). We write O = Z× Z×M2(Z), a maximal Z-order
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in QS3. Using this ϕ, we have

(1 2) 7→ (1, −1,

−1 1

0 1

),

(1 2 3) 7→ (1, 1,

0 −1

1 −1

).

Let

E1 = (1, 0,

0 0

0 0

), E2 = (0, 1,

0 0

0 0

), E3 = (0, 0,

1 0

0 0

),

E4 = (0, 0,

0 0

1 0

), E5 = (1, 0,

0 1

0 0

), E6 = (1, 0,

0 0

0 1

),

we have O = ⟨E1, E2, E3, E4, E5, E6⟩Z. If we choose an ordered basis A = {σ, τσ, τ 2σ, τ, τ 2, e =

τ 3} of QS3, we have

[
ϕ

]
A , B

=



1 1 1 1 1 1

−1 −1 −1 1 1 1

−1 0 1 0 −1 1

0 −1 1 1 −1 0

1 −1 0 −1 1 0

1 0 −1 −1 0 1


.

By changing the ordered basis A of ZS3 (i.e. only use elementary column operations

like interchanging two columns and adding any integer multiple of a column to another),
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we have

[
ϕ

]
A , B

= HU, H =



6 3 3 −1 1 1

0 −3 3 −3 1 1

0 0 3 −1 −1 1

0 0 0 1 −1 0

0 0 0 0 1 0

0 0 0 0 0 1


, U =



0 0 0 1 0 0

0 1 0 −1 0 0

0 −1 1 0 0 0

1 −2 1 0 0 0

1 −1 0 −1 1 0

1 0 1 −1 0 1


.

From the matrix H, we see that ZS3 contains 6O (cf. Proposition 48). Localizing

at p = 2, 3, we see that Z2S3 contains 2O2 and Z3S3 contains 3O3. Thus, we can

describe ZpS3 by its image ZpS3/pOp in Op/pOp = Fp × Fp ×M2(Fp). The map ZpS3 →

ZpS3/(pOp) ⊂ Fp × Fp ×M2(Fp) induces a map ρ : FpS3 → Fp × Fp ×M2(Fp).

Since FpS3 is not semisimple for p = 2, 3, we know that its image ρ(FpS3) is

not equal to Fp × Fp × M2(Fp). Looking at H (modulo 2 or 3), we have ρ(F2S3) ∼=

{(x,−x,M2(F2))|x ∈ F2}. Thus its semisimple quotient is F2 ×M2(F2). This is com-

patible with the fact that all non-isomorphic simple F2S3-modules class are U and V

(over F2). For p = 3 we see that ρ(F3S3) is isomorphic to an F3-subalgebra of M2(F3) of

dimension 3. This is a Borel subgroup of M2(F3), so we can choose a basis such that the

image ρ(F3S3) ∼=


⋆ ⋆

0 ⋆


. Its semisimple quotient is F3 × F3.

3.3 Finiteness of the group ring ZG

Let G be a finite group. For the rest of this chapter and Chapter 4, an R-module will

mean an R-lattice unless specifically stated otherwise. In this section, we will state a

criterion of G that ZG is of finite representation type (for R-lattices). We follow mainly

Heller and Reiner [17] and [18].
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Let p be a prime number. For a ZG-module M , and recall that we denote Z(p) ⊗ZM

by M(p) and Zp ⊗Z M by Mp, respectively. Let K be a number field, and R the ring

of integers in K. Suppose P is a prime ideal of R containing integer p, and then we

denote localization of R at P by R(P ) and the completion of R(P ) by RP . Let KP be the

completion of K at P .

Definition 51. Let K, P and G be as above. We call K is a splitting field for G relative

to KP
1 if for any simple KG-module M , its completion MP is also a simple KPG module.

If we write KG =
∏r

i=1Mni
(Di) into a product of simple K-algebras, where Di are

division K-algebras. Any simple G-module then is of the form M = Dni
i of column Di-

vectors. It is easy to compute that EndKG(M) ≃ Dopp
i . Since taking centralizer commutes

with base change, we have EndKPG(MP ) ≃ Dopp
i ⊗K KP . Therefore, the module MP is

G-simple if and only if Di⊗K KP remains a division algebra. Thus, that K is a splitting

field of G relative to KP means that the number r of simple factors in KG and the

numbers ni of sizes of simple factors remain the same after the completion at P .

Theorem 52. If K is a splitting field for G relative to KP , then given an R(P )G-module

M , the map M 7→ RPM induces a one-one correspondence between the set of isomorphism

classes of R(P )G-modules and those of RPG-modules.

Proof. See [10], Theorem 30.18.

Corollary 53. Suppose K is a splitting field for G relative to KP . An R(P )G-module M

is indecomposable if and only if the RPG-module RPM is indecomposable.
1This terminology is due to Heller [19]. However, it is not taken in Curtis and Reiner [10]. We

illustrate the idea as follows. For a field extension L/K of characteristic 0, we may call K is a relatively
splitting field of G with respect to L if the number r of simple factors and the numbers ni of size in its
Wedderburn decomposition remain the same after tensoring L over K. Recall that K is a splitting field
of G if KG is a product of matrix algebras over K, or equivalently, any simple KG-module is absolutely
simple. In other words, K is a relatively splitting field of G with respect to K precisely when K is a
splitting field of G.
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Proposition 54. Suppose G is an abelian p-group of exponent pe, and K and vP are as

above. Let L be the field extension of K by adjoining a primitive pe-th root of unity ξ. If

vP has only one extension on L, then K is a splitting field of G relative to KP .

Proof. This is originally proved in the case where G is a cyclic p-group; see [17],

Theorem 1.4. Write C = Cpe1 × · · · × Cper with e1 ≤ e2 ≤ · · · ≤ er = e. Then

KG = ⊗r
i=1KCpei . We first show that the K-algebra KG is a product of finite field

extensions of the form K(ξj) with j ≤ e, where ξj is a primitive pj-th root of unity. We

prove this by induction on r. The case r = 1 is clear. When r > 1, one has

KG = (
r−1⊗
i=1

⊗KKCpei )⊗K KCper

Using the induction hypothesis, both ⊗r−1
i=1KCpei and KCper are products of field ex-

tensions of the form K(ξj) with j ≤ e. Thus, KG is a product of field extensions

K(ξi) ⊗K K(ξj) for some integers 0 ≤ i ≤ j ≤ e. Since K(ξi)/K is Galois and

K(ξi) ⊂ K(ξj), the tensor is the product of [K(ξi) : K]-copies of K(ξj). This proves

our assertion.

Since every irreducible KG-module is a factor K(ξj) of KG, its completion KP ⊗K

K(ξj) is a simple KPG-module if it is a field. Since there is only one prime of L over P ,

there is only one prime in its subfield K(ξj). Therefore, KP ⊗K(ξj) is a field and hence

a simple KPG-module.

Lemma 55. Let Q(ξ) be the pe-th cyclotomic field. There exists a number field K and a

prime P of K over p which is linearly disjoint from Q(ξ) but KP is isomorphic to Qp(ξ).

In particular, the prime P splits completely in the Galois extension K(ξ) of K.

Proof. Let Q(ξ) = Q[t]/(f(t)), where f is a monic irreducible polynomial over Q of

degree d = φ(pe). Consider the Q[x] = Q[x1, . . . , xd]-algebra Q(ξ)[x, t]/(F (x, t)), where

x = (x1, . . . , xd) and F (x, t) = td + x1t
d−1 + · · · + xd. Using the weak approximation
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and the Hilbert irreducibility, there is a specialization x0 ∈ Qd, such that F (x0, t) is

sufficiently close to f(t) in the p-adic topology and Q(ξ)[t]/(F (x0, t)) is a field. Put

K := Q[t]/(F (x0, t)). By Krasner’s Lemma K ⊗ Qp ≃ Qp(ξ) and hence there is only

prime P of K over p, particularly KP ≃ Qp(ξ). Also K is linearly disjoint from Q(ξ) over

Q, because Q(ξ)[t]/(F (x0, t)) = Q(ξ)⊗Q K.

Remark 56. (1) The reader may find a more general statement of Theorem 52 and Corol-

lary 53 due to Heller in [10], Theorem 30.18. In loc. cit., R(P ) is replaced by any DVR

R, KG is replaced by any semisimple K-algebra, and R(P )G is replaced by any R-order.

(2) It is clear from the proof of Proposition 54 that the condition vP extending uniquely

to L is necessary, otherwise some simple KG-module would split after the completion at

P . This necessary condition holds for some number field, for example K = Q, because p

is totally ramified in Q(ξ). On the other hand, this necessary condition may not hold for

some number fields; see Lemma 55.

(3) It would be interesting to know whether Proposition 54 remains true if G is

replaced by any finite p-group.

Proposition 57. Let G be as in Proposition 54. A ZG-module M is indecomposable if

and only if the corresponding ZpG-module Mp is indecomposable.

Proof. By Corollary 53, Propositions 46 and 54, we only need to show vP has only

one extension on Q(ξ), where ξ is a primitive pe-th root of unity. This follows from the

fact that (p) is totally ramified in Q(ξ).

Definition 58. Let n(G) (resp. n(p)(G), np(G)) be the number of isomorphism classes

of indecomposable ZG (resp. Z(p)G, ZpG)-modules.

Theorem 59. Let G be as in Proposition 54. Suppose there are only finitely many

isomorphism classes of indecomposable of ZpG-modules. Then there are only finitely

many isomorphism classes of indecomposable of ZG-modules.
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Proof. Since vp has only one extension of Q(ξ), Q is a splitting field for G relative to

Qp by Proposition 54. If np(G) finite, then n(p)(G) is finite, by Theorem 52. Then we

deduce from Theorem 42 that n(G) is finite.

Theorem 60. Let G be a cyclic group of order p2. There are only finitely many isomor-

phism classes of indecomposable ZpG-modules. There are only finitely many isomorphism

classes of indecomposable ZG-modules.

Proof. For the first statement, see [17] Theorem 3.1. The second statement follows

from the first one and Theorem 59.

Theorem 61. Let G be a cyclic p-group and |G| ≥ p3. There are infinitely many iso-

morphism classes of indecomposable ZpG-modules.

Proof. See [18], Theorem, p. 327.

Remark 62. One can see Theorem 61 by Proposition 57 and Dade’s Theorem (cf. [10]

Theorem 33.8).

Theorem 63. If G is a finite group such that a Sylow p-subgroup is not cyclic for some

prime p, then n(G) is infinite.

Proof. See [17] Theorem 6.1.

Theorem 64. Let G be a finite p-group. Then n(G) is finite if and only if G is cyclic of

order pe for e ≤ 2.

Proof. This follows from Theorems 60, 61 and 63.

Theorem 65. Let G be a finite p-group. Then np(G) is finite if and only if G is cyclic

of order pe for e ≤ 2.

Proof. This follows from Theorems 60, 61 and Remark 73.
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Suppose R is a commutative ring. We introduce relative projectivity in Section 2.1

for kG-modules. This notion can be defined for RG-modules in the same way, and

Proposition 8 remains true. Namely, we have

Proposition 66. Suppose H is a subgroup of G such that |G/H| is invertible in R. Then

every RG-module M is H-projective.

Proof. See [43] Proposition 11.3.5.

For the following proposition one needs to assume that R is a complete discrete

valuation ring as we need to apply the Krull-Schmidt-Azuyama Theorem in the proof.

Proposition 67. Let R be a complete discrete valuation ring with the residue field of

characteristic p. Let P be a Sylow p-subgroup of G. Then RG has finite representation

type if and only if RP has finite representation type.

Proof. (⇒): For an indecomposable RP -module V , we have V |V ↑GP↓GP . Since RG has

finite representation type and using Theorem 13 for any indecomposable RG-module U ,

the RP -module U ↓GP has only finitely many indecomposable RP -summands. We have

the ring RP must be of finite representation type.

(⇐): By Proposition 66 we know every indecomposable RG-module is P -projective.

Therefore, we have U |V ↑GP for some indecomposable RP -module V . Again, by Theorem

13 and that there are only finitely many indecomposable RP -modules, RG is of finite

representation type.

Lemma 68. Let G be a finite group, and P a Sylow p-subgroup of G. Suppose there are

infinitely many non-isomorphic indecomposable ZP -modules {Mi} such that their comple-

tions (Mi)p are all indecomposable ZpP -modules. Then ZG is not of finite representation

type.

Proof. The idea of proof follows from [17] Theorem 6.1. We prove by contradiction. By

Theorem 42, the Z-ranks of {Mi} are unbounded. Suppose n(G) is finite. Let Y1, · · · , Ym
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be full non-isomorphic indecomposable ZG-modules and we have Z-ranks of {Yi} are

bounded. Write Mi ↑GP= ⊕Y aj
j . Then we have Mi| Mi ↑Gp ↓GP . Passing to the completion,

we have (Mi)p| ⊕j (Yj)
aj
p ↓GP . Since (Mi)p is indecomposable and Zp is a complete discrete

valuation ring , by Theorem 13, we have (Mi)p| (Yj)p ↓GP for some j. However, since the

Zp-rank of (Mi)p is unbounded, Z-ranks of {Yi} are unbounded. This contradicts with

that Z-ranks of {Yi} are bounded. Therefore, n(G) is infinite.

Theorem 69. Suppose G is a finite group, then n(G) is finite if and only if np(G) is

finite for each prime number p such that p | |G|.

Proof. For the implication (⇐), see [21] Theorem 8. For the other implication (⇒),

by Proposition 67, np(G) is finite if and only if np(P ) is finite, where P is a p-Sylow

subgroup of G. Assume np(P ) is not finite, proving by contradiction, and then we need

to show n(G) is finite. By Lemma 68, it suffices to construct a family {Mi} of non-

isomorphic indecomposable non-isomorphic ZP -modules such that (Mi)p remains ZpP -

indecomposable for all Mi. By Theorem 65, P divides into two cases: P non-cyclic

and P cyclic of order pe with e ≥ 3. If P is non-cyclic, Cp × Cp is a homomorphic

image of P (cf. Theorem 22). Therefore, any indecomposable ZCp × Cp-module is also

an indecomposable ZP -module. We reduce non-cyclic P to Cp × Cp.

For P a cyclic group of order pe with e ≥ 3, by Theorem 61, we have {Mi}, a set

of non-isomorphic indecomposable ZP -modules. By Proposition 57, each Mi remains

indecomposable after completion.

For P = Cp × Cp, by Proposition 72, we have {M ′
2n+1}, a set of non-isomorphic ZP -

indecomposable modules. By Remark 73, (M ′
2n+1)p is an indecomposable ZpP -module.

We also give another proof for P = Cp × Cp when p ≥ 5. Let θ be a p-primitive root

of unity, and p be the prime ideal of Z[θ] lying over (p). Since (p) is totally ramified,

we have Zp[θ] = Z[θ]p. Besides, Z[θ]Cp is a homomorphic image of ZCp × Cp. Since

Q(θ)Cp ∼= Q(θ)p and p ≥ 5, by Dade’s Theorem (see [10] Theorem 33.8), we have {Mi},
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a family of non-isomorphic indecomposable Z[θ]Cp-modules, therefore, non-isomorphic

indecomposable ZCp×Cp-modules. Moreover, by Proposition 54, Q(θ) is a splitting field

for Cp relative to Q(θ)p. By Proposition 46 and Corollary 53, Z[θ]p ⊗ Mi is Z[θ]pCp-

indecomposable, therefore, Zp[θ]Cp-indecomposable. Consequently, we have a family of

non-isomorphic indecomposable ZCp×Cp-modules such that the completions of them are

still ZpCp × Cp-indecomposable.

Remark 70. By Theorem 65, Proposition 67 and Theorem 69, we have that given a finite

group G, n(G) is finite if and only if for each prime p | |G|, a Sylow p-subgroup of G is

cyclic of order p or p2.

3.4 Infinitely many indecomposable lattices

Let G = Cp×Cp = ⟨a⟩×⟨b⟩. In this section we construct infinitely many indecomposable

ZG-modules. We follow [17] when p = 2, and modify it for other prime numbers.

Proposition 71. Let p = 2. Let M ′
2n+1 be a free Z-module with basis {x1, · · · , xn, y0, y1, · · · , yn}.

Define the action of G = Cp × Cp by

(a+ (−1)i)xi = yi−1, (b+ (−1)i)xi = yi,

(a+ (−1)i)yi = (b− (−1)i))yi = 0.
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Or more explicitly,

(a− 1)xi = yi−1, for i is odd, (a+ 1)xi = yi−1, for i is even,

(b− 1)xi = yi, for i is odd, (b+ 1)xi = yi, for i is even,

(a− 1)yi = 0, for i is odd, (a+ 1)yi = 0, for i is even,

(b− 1)yi = 0, for i is even, (b+ 1)yi = 0, for i is odd.

x1 x2 xn

y0 y1 y2 yn−1 yn

0 0 0 0 0

a− 1
b− 1

a+ 1
b− 1

a+ (−1)n
b+ (−1)n

. . .

a+ 1
b− 1

a− 1
b+ 1

a− 1
b− (−1)n−1

a+ (−1)n
b− (−1)n

. . .

. . . . . .

Then M ′
2n+1 is an indecomposable ZG-module.

Proof. We need to check the action defined above is well defined. Therefore, we need

to check M ′
2n+1 is annihilated by (a2 − 1) and (b2 − 1), and this is clear. Also we need

to check abx = bax, for x ∈ M ′
2n+1. This can be seen from (a + (−1)i)(b − (−1)i)xi =

(b − (−1)i)(a + (−1)i)xi, so abxi = baxi. Also, abyi = bayi is clear. Hence M ′
2n+1 is a

ZG-module.

Observe that M ′
2n+1/2M

′
2n+1 is the same as the F2G-module M2n+1 defined in Section

2.2. If M ′
2n+1 decomposes into N1 ⊕ N2 as ZG-modules, then M2n+1 = M ′

2n+1 ⊗ F2 =

N1 ⊗ F2 ⊕N2 ⊗ F2 as F2G-modules. Then M ′
2n+1 is an indecomposable ZG-module.

Now we want to construct indecomposable ZG-modules for p ≥ 3. Let θ be a primitive

p-th root of unity, and let G = Cp × Cp = ⟨a⟩ × ⟨b⟩. Let M ′
2n+1 be a free Z[θ]-module
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with basis {x1, · · · , xn, y0, y1, · · · , yn}. Define the action of G on M ′
2n+1 by

(a− θ2)xi = yi−1, for i is odd,

(b− θ2)xi = yi, for i is odd,

(a− θ)xi = yi−1, for i is even,

(b− θ)xi = yi, for i is even, and

ayi =


θyi, for i is even,

θ2yi, for i is odd,

byi =


θ2yi, for i is even,

θyi, for i is odd.

The diagram of this Z[θ]G-module is similar to the diagram in Proposition 71. Observe

that M ′
2n+1/pM

′
2n+1

∼= M2n+1, where M2n+1 is defined in Section 2.2 and p = (θ − 1)

is the unique prime ideal in Z[θ] lying over (p). Since M ′
2n+1 is a free Z[θ]-module and

M ′
2n+1/pM

′
2n+1 is FpG-indecomposable, M ′

2n+1 is an indecomposable Z[θ]G-module.

Via the inclusion ι : ZG→ Z[θ]G, we may regard M ′
2n+1 as a ZG-module.

Proposition 72. The ZG-module M ′
2n+1 contains an indecomposable ZG-submodule of

Z-rank greater than or equal to 2n+ 1. In particular, there are infinitely many indecom-

posable ZG-modules {Mi} whose Z-ranks are unbounded.

Proof. Suppose M ′
2n+1 = N1⊕· · ·⊕Nr decomposes into indecomposable ZG-modules.

By Proposition 54 and Corollary 53, their completions (Ni)p are indecomposable ZpG-

modules. Since p(M ′
2n+1)p is a ZpG-submodule, we have M2n+1 = M ′

2n+1/pM
′
2n+1 =

⊕(Ni)p/p(M
′
2n+1)p. Since M2n+1 is FpG-indecomposable, after a suitable change of order

of factors, we have (N1)p/p(M
′
2n+1)p = M2n+1 and (Ni)p/p(M

′
2n+1)p = 0 for all i > 1.

Then the Z-rank of N1 is dimFp N1/pN1 ≥ dimFp(N1)p/p(M
′
2n+1)p = 2n + 1. N1 is a
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desired submodule.

Remark 73. By Proposition 54 and Corollary 53, the completions {(Mi)p} of indecompos-

able ZG-modules in Proposition 72 are ZpG-indecomposable. We shall prove that M ′
2n+1

is not ZG-indecomposable in general.

Here is another construction of infinitely many ZCp×Cp-modules when p = 3. Similar

to Proposition 72, we consider a Z[θ]G-module first.

Let θ be a primitive root of X3− 1, therefore θ2+ θ+1 = 0. Let G = ⟨a⟩× ⟨b⟩, where

orders of a and b are 3. Let N ′
2n+1 be a Z[θ]G-module, generated by xi, for i = 1, · · · , n.

Define

(a− θj)xi = yi,j, (b− θj)xi = zi,j.

The Z[θ]-module X (the free Z[θ]-module with basis {xi}) is the first floor of N ′
2n+1,

and Y + Z is the second floor. The third is not clear yet. (The different floors have no

intersection.)

Replacing N ′
2n+1 by a quotient of N ′

2n+1 if necessary, we may require that N ′
2n+1

is annihilated by (a2 + a + 1) and (b2 + b + 1). Then (a − θ)2 = a2 − 2θa + θ2 =

(a2 + a + 1) + (−2θa − a − 1 + θ2) = (a2 + a + 1) + [(−2θ − 1)(a − θ) − (θ2 + θ + 1)].

Therefore,

(a− θ)yi,1 = (a− θ)2xi = (a2 + a+ 1)xi + (−2θ − 1)(a− θ)xi − (θ2 + θ + 1)xi

= (−2θ − 1)yi,1 − (θ2 + θ + 1)xi = −(2θ + 1)yi,1. (3.1)

Thus, we must define (a − θ)yi,1 using (3.1). Using a similar way to calculate other

terms, and then we should define (a− θ2)yi,2 = (2θ + 1)yi,2.

Since (a − θj)xi = yi,j, we have axi = yi,1 + θxi = yi,2 + θ2xi. Therefore, we get

yi,2 = yi,1 + (θ − θ2)xi. Doing the same for zi,2, we only consider the actions on yi,1 and
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zi,1. If we identify zi−1,1 and yi,1, then we get the following relations:

(a− θ)zi,1 = (a− θ)yi+1,1 = −(2θ + 1)yi+1,1 = −(2θ + 1)zi,1, for 1 ≤ i < n,

(b− θ)yi,1 = (b− θ)zi−1,1 = −(2θ + 1)zi−1,1 = −(2θ + 1)yi,1, for 1 < i,

(a− θ)zn,1 = (a− θ)(b− θ)xn = (b− θ)(a− θ)xn = (b− θ)yn,1 = −(2θ + 1)yn,1,

(b− θ)y1,1 = (b− θ)(a− θ)x1 = (a− θ)(b− θ)x1 = (a− θ)z1,1 = −(2θ + 1)zn,1.

Since Z[θ]/(1− θ) = F3, we have 2θ + 1 = 0 in F3, and hence N ′
2n+1/(1− θ)N ′

2n+1 =

M2n+1. Thus, N ′
2n+1 is Z[θ]G-indecomposable. Via the inclusion ι : ZG → Z[θ]G, again

we regard N ′
2n+1 as a ZG-module.

Proposition 74. The ZG-module N ′
2n+1 contains an indecomposable ZG-module N with

Z-rank ≥ 2n+ 1.

Proof. The proof is similar to that of Proposition 72.

We now give an example that M ′
2n+1 is a decomposable ZG-module. Take n = 2 and

p = 3. The Z-rank of M ′
5 is (2n+1)(p− 1) = 10. Let N1 be the ZG-submodule of M ′

2n+1

generated x1 and x2. Since M ′
2n+1 is annihilated by (a − θ)(a − θ2) = a2 + a + 1 and

b2 + b + 1, it is actually a Z[θ][a, b]/(a2 + a + 1, b2 + b + 1)-module. Also Z[a, b]/(a2 +

a + 1, b2 + b + 1) = Z⟨1, (a − 1), (b − 1), (a − 1)(b − 1)⟩. Therefore, N1 is generated by

elements x1, x2, (a− 1)x1, (b− 1)x1, (a− 1)(b− 1)x1, (a− 1)x2, (b− 1)x2, (a− 1)(b− 1)x2
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over Z. We compute all of them:

(a− 1)x1 = (a− θ)x1 + (θ − 1)x1 = y0 + (θ − 1)x1,

(b− 1)x1 = (b− θ)x1 + (θ − 1)x1 = y1 + (θ − 1)x1,

(a− 1)(b− 1)x1 = (a− 1)(y1 + (θ − 1)x1) = (a− 1)y1 + (θ − 1)(y0 + (θ − 1)x1)

= (θ − 1)y1 + (θ − 1)y0 − 3θx1,

(a− 1)x2 = (a− θ2)x2 + (θ2 − 1)x2 = y1 + (−θ − 2)x2,

(b− 1)x2 = (b− θ2)x2 + (θ2 − 1)x2 = y2 + (−θ − 2)x2,

(a− 1)(b− 1)x2 = (a− 1)(y2 + (−θ − 2)x2) = (a− 1)y2 + (−θ − 2)(y1 + (−θ − 2)x2)

= (−θ − 2)y2 + (−θ − 2)y1 + (3θ + 3)x2.

Note that (θ − 1)2 = θ2 − 2θ + 1 = −3θ and (θ + 2)2 = θ2 + 4θ + 4 = (3θ + 3). On

the other hand, let N2 be the ZG-submodule generated by y1. We have a · y1 = θy1

and b · y1 = θ2y1 = (−θ − 1)y1. Then N2 = ⟨y1, θy1⟩Z. Now it is easy to see that the

8 Z-generators of N1 and 2 Z-generators of N2 form a Z-basis for M ′
5. This shows that

M ′
5 = N1 ⊕N2 decomposes into two indecomposable ZG-modules.
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Chapter 4

Integral representations of specific

finite groups

According to Theorem 69, given an arbitrary finite group G, we know precisely when ZG

is of finite representation type with respect to ZG-lattices. As a remainder, ZG-modules

in this chapter will be meant to be ZG-lattices (cf. Definition 38 and Section 3.3). We

describe integral representations of cyclic groups of order p and dihedral groups of order

2p with p a prime number. Our references are Reiner [33] and Lee [30]. At the end of

this chapter, we use results of Lee [30] to discuss integral representations of S3 = D3 in

more details.

4.1 Cyclic groups of prime order

This section states the main theorem of [33] without proof. We only consider integral

representations. Let p be a prime number, o the integral closure of Z in Q(θ), where θ

is a primitive p-th root of unity. Let Φp(X) = Xp−1 + · · · + 1. Let G be a cyclic group

generated by g of order p and ZG be its group ring. Let s = Φp(g) = 1 + g + · · ·+ gp−1.
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Suppose M is an integral representation of ZG. Consider a submodule M0 of M ,

M0 = {m ∈M : sm = 0},

and M0 can be viewed as a ZG/(s) ∼= o-module. Suppose for some m ̸= 0 ∈ M0,

and f(g)m = 0, for some f(X) ∈ Z[X]. Since sm = 0, we may assume deg(f) ≤

deg(Φp). Since Φp(X) is irreducible in Z[X], we have f(X) = n or nΦp(X); otherwise,

f(X)g(X)+h(X)Ψp(X) = m for some integer m and g(X), h(X) ∈ Z[X]. The former is

impossible, since m ̸= 0. Consequently, M0 is o-torsion free. Therefore M0 is o-isomorphic

to

o⊕ · · · ⊕ o⊕ a, (4.1)

with n direct summands, a an element of ideal class of o. Observe that as o-modules, we

have

M0 ⊃ (g − 1)M ⊃ (g − 1)M0 = (θ − 1)M0.

Since M0
∼= o⊕ · · · ⊕ o⊕ a and (g− 1)M is its submodule, (g− 1)M ∼= e1 ⊕ · · · ⊕ ena for

some integral o-ideals e1, . . . , en. Also since (g − 1)M ⊃ (θ − 1)M0, we have ei can only

be o or (θ− 1) for each i. Assume there are precisely r elements of {ei} such that ei = o.

After permutation of the order, we let B be

(g − 1)M/(θ − 1)M0 = o/(θ − 1)⊕ · · · ⊕ o/(θ − 1) ∼= Fp ⊕ · · · ⊕ Fp,

with r direct summands. The last isomorphism follows from that p is totally ramified in

Q(θ) and po = (1−θ)p−1. Consider M/M0, a Z-free module. Hence we have M =M0⊕X
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as Z-modules, for some X ∼= M/M0 as ZG-modules. Then this gives us

(g − 1)M = (g − 1)M0 + (g − 1)X (4.2)

= (θ − 1)M0 + (g − 1)X. (4.3)

Note that this may not be a direct sum. By (4.3), we have a surjective Z-linear map

ϕ : X → B defined by

ϕ(x) = (g − 1)x, x ∈ X.

Therefore given x ∈ X, we have

(g − 1)x ≡ a1β̄1 + . . .+ arβ̄r mod (1− θ)M0, ai ∈ Fp.

Since M/M0 is a free Z-module, we may assume that it is of rank m with basis {xi}.

Moreover, since ϕ is surjective, we can choose {xi} such that {ϕ(x1), · · · , ϕ(xr)} is

linearly independent, and we have m ≥ r. By changing the basis, we may assume

ϕ(xi) = ciβ̄i, ci ∈ Fp,

ci ̸= 0 when 1 ≤ i ≤ r, and ci = 0 when r < i ≤ m.

Therefore, we have (g − 1)xi = ciβi + (g − 1)ui, ui ∈ M0. Let yi = xi − ui, then

(g − 1)yi = ciβi. Since M =M0 ⊕X as Z-modules, we have

M =M0 ⊕ Y =M0 ⊕ Zy1 ⊕ · · · ⊕ Zym,

and

gyi = yi + ciβi, gm = θm, m ∈M0.

Furthermore, we may assume (cf. [33], Lemma 4), ci = 1, for 1 ≤ i ≤ r.
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Theorem 75. Suppose M is an integral representation of ZG. Let n be the Z[θ]-rank of

M0, a in (4.1) , r the dimension of (g − 1)M/(θ − 1)M0, and m the Z-rank of M/M0.

Then m,n, r and a (with restrictions r ≤ m, r ≤ n) are invariants of M and determine

M uniquely. We may write M = M0 ⊕ Zy1 ⊕ · · ·Zyr ⊕ · · · ⊕ Zym as Z-modules. The

action of G on M is defined by

gyi = yi + βi, 1 ≤ i ≤ r,

gyj = yj, r + 1 ≤ j ≤ m,

gm = θm, m ∈M0.

Proof. See [33], Theorem, p. 145.

Corollary 76. The indecomposable ZG-modules are described as in Theorem 75 with

(r, m, n) = (0, 1, 0) or (0, 0, 1) or (1, 1, 1). Hence the number of non-isomorphic

indecomposable ZG-modules is 2h+ 1, where h is the class number of Z[θ].

Proof. See [33], Corollary, p. 145.

Example 77. Let G = ⟨g⟩ be a cyclic group of order 2. Using Theorem 75 and Corollary

76, we find out all ZG-indecomposable modules. Our θ, the primitive 2-th root of unity,

equals to −1.

(1) For (r, m, n) = (0, 1, 0), we have M0 = 0, M = 0 ⊕ Zy = Zy, B = (g −

1)M/(θ− 1)M0 = 0. By Theorem 75, we have g · y = y. This is the trivial representation

of G, denoted by Z.

(2) For (r, m, n) = (0, 0, 1), we have M0 = Z, (g − 1)M = (θ − 1) = (2), M =

M0 = Zx, and (g + 1) · x = 0. Therefore, we have g · x = −x, and denote M by Z′.

(3) For (r, m, n) = (1, 1, 1), we have M0 = Z, (g − 1)M = Z = M0, and M =

M0 ⊕ Zy = Zx ⊕ Zy. If we pick β = x, then g · x = −x, g · y = y + x. Letting e1 = y

and e2 = x+ y, we have g · e1 = e2 and g · e2 = e1, and denote M by L.
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These 3 integral representations of G = C2 will be used in Section 4.2.

4.2 Dihedral groups of order 2p

Let p ̸= 2 be a prime. In the following, we state some results of integral representations

of dihedral groups of order 2p. Our reference is Lee [30].

Let S = Z or Z(2p) = { n
m
|n,m ∈ Z for k ∤ m, k = 2 and p}. Let θ be a primitive

p-th roots of unity, K the field Q(θ) and K0 the field Q(θ + θ̄), where θ̄ is the conjugate

of θ. Let R and R0 be the integral closures of S in K and K0. Let G = ⟨a, b⟩, where

a2 = bp = e, and ab = bp−1a.

Let Aut(K/K0) = ⟨α⟩ ∼= C2. Let Λ = R ◦ C2 be a twisted group ring (cf. Definition

35). Note that R0 is fixed by α, and hence Λ is an R0-algebra via ϕ : R0 → Λ, where

1 7→ 1. However, Λ is not an R-algebra. Let ΛQ := Q⊗Z Λ, and then ΛQ is a K0-algebra.

Moreover, ΛQ is isomorphic to M2(K0) (cf. [10] Example 28.3).

The following is the motivation for studying projective Λ-modules of finite R-rank.

At first, SG is the twisted group ring S[b]◦C2, where C2 = ⟨a⟩ and C2 acts on S[b] by

a(b) = aba−1 = bp−1 and a(1) = 1 (cf. Definition 35). Let Ψp(X) = Xp−1+Xp−2+ . . .+1,

the cyclotomic polynomial of degree p− 1. We have that

SG/Ψp(b)SG ∼= Λ by a 7→ α and b 7→ θ.

Suppose M is a finitely generated S-free SG-module. Consider the submodule

M0 = {m ∈M : Ψp(b)m = 0},

and we can regard M0 as an SG/Ψp(b)SG ∼= Λ-module. This is a finitely generated,

R-torsion free module, hence an R-projective module. By Proposition 78, M0 is Λ-
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projective. Since M/M0 is annihilated by (b− 1), M/M0 is an S[a]-module. Hence M is

an extension of M/M0 by M0.

In [30], it is proved that the number of isomorphism classes of indecomposable ZG-

modules is related to the class number of R0. We describe this relation between an S-free

SG-indecomposable module and an ideal of R0 briefly.

Given an SG-module M , the module M is an extension of an S[a]-module M/M0 by

M0, which is a Λ-module. Hence, we need to study Λ-modules M0, S[a]-modules M/M0

and extensions of M/M0 by M0.

Consider ϕ : R → Λ, 1 7→ 1, the natural map, and ϕ is a ring homomorphism. Hence

a Λ-module can be regarded as an R-module.

Proposition 78. Every R-projective Λ-module is Λ-projective.

Proof. See [30] Proposition 1.1.

Definition 79. A ring R is said to be a left hereditary ring if every left ideal of R is a

left projective R-module.

Proposition 80. The ring Λ is a left hereditary ring.

Proof. See [30] Proposition 1.2.

Proposition 81. Suppose Γ is a left hereditary ring. Then any Γ-projective module is

Γ-isomorphic to an external direct sum of left ideals of Γ.

Proof. See [10] Proposition 4.3.

By Propositions 80, 81 we have that any Λ-projective module is Λ-isomorphic to

an external direct sum of left ideals of Λ. Since Λ is an R-free module of rank 2, the

submodules of Λ are of R-rank 1 or 2. Ideals of Λ which are of R-rank two are Λ-

isomorphic to direct sums of two R-rank one ideals of Λ (see [30] Theorem 1.1). Hence

any Λ-projective module is isomorphic to an external direct sum of left ideals of R-rank

1 of Λ.
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Definition 82. An R-ideal I in K is said to be ambiguous if I = Ī.

Suppose I is an ambiguous ideal in K. If x ∈ I, we have x̄ ∈ I. Therefore, we may

regard I as a Λ-module of R-rank 1 by defining α · x = x̄ for x ∈ I.

Proposition 83. Two ambiguous ideals I1 and I2 of K are Λ-isomorphic if and only if

I1 = xI2 for some x ∈ K×
0 .

Proof. If I1 is Λ-isomorphic to I2, then it is R-isomorphic to I2. We have I1 = xI2 for

some x ∈ K×. Since I1 and I2 are Λ-isomorphic, we have x(a · y) = α · (xy), ∀y ∈ I2.

Therefore, we have xȳ = xy, so x ∈ K×
0 . The converse is clear.

Proposition 84. The set of isomorphism classes of left ideals of Λ of R-rank 1 is in

bijection with that of K×
0 -equivalence classes of fractional ambiguous ideals of K.

Proof. Suppose I is an ambiguous ideal in K. We know that I can be viewed as a

Λ-module of R-rank 1. Since I is R-torsion free, I is R-projective, therefore, Λ-projective.

By Proposition 81, it is Λ-isomorphic to a left ideal of Λ.

Conversely, suppose L is a left ideal of Λ of R-rank one, and then LQ is a left ideal of ΛQ

of K-rank one. Recall that we have an isomorphism ΛQ ∼= M2(K0). Hence LQ is a simple

ΛQ-module. We can embedd K ↪→ ΛQ as ΛQ-modules by sending r to r · (1 + α). Since

any two simple modules over ΛQ are isomorphic, we have a ΛQ-isomorphism LQ ≃ K.

Therefore, we have L ↪→ K as a Λ-embedding; hence L is Λ-isomorphic to an ambiguous

ideal of K. By Proposition 83, two ambigiuous ideals of R are Λ-isomorphic if and only

if they are K×
0 -equivalent. The proof is complete.

Proposition 85. An ideal I in R is ambiguous if and only if I can be written as the

form (1− θ)εWR, where W is an ideal of R0 and ε = 0 or 1.

Proof. Suppose I is an ambiguous ideal of R. We can decompose I into a product

of prime ideals, say, I = Q1Q2 · · ·Qr. Since Ī = I, Qi breaks into 2 cases. For some Qi,
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there exists Qj in the decomposition of I such that Qj = Qi, and the other Qi = Qi. We

may write I as (Q1Q̄1) · · · (QmQ̄m)(Q2m+1 · · ·Qr), where the first 2m factors are of the

first case and the remnants of the factors are of the second case. Note that since Q(θ) is

a field extension of K0 of degree 2, given an ideal P of R0, we have that

PR =



QQ̄ , if P is split,

Q2 , if P is ramified,

Q , if P is inert.

Also since K is the p-th cyclotomic extension, we have that P is ramified only if P is

the prime ideal lying over (p). The prime ideal lying over ramified P is (1 − θ). For

2m+ 1 ≤ i ≤ r, Qi is either ramified or inert. So we have that

I = P1 · · ·PmP2m+1 · · ·Pn(1− θ)r−nR = (1− θ)εWR,

where ε = 1 if r − n is odd and ε = 0 if r − n is even.

On the other hand, consider (1−θi)/(1−θj) where ij ̸= 0 (mod p). Since p is a prime

number, we have mj + np = i for some m and n ∈ Z. Therefore, we have

(1− θi) = 1− θmjθnp = 1− θmj = (1− θj)(1− (θj)2 + · · ·+ (θj)m−1).

Consequently, (1− θi)/(1− θj) ∈ R. Similarly for its inverse, hence (1− θi)/(1− θj) is a

unit of R. Also since θ is a unit of R, the element (θ− θ̄)/(1− θ) = θ(1− θp−2)/(1− θ) is

a unit of R. Hence (1− θ)εWR = (θ− θ̄)εWR, and (θ− θ̄)εWR is obvious an ambiguous

ideal of R.

Proposition 86. Two ambiguous ideals (1− θ)εWR and (1− θ)ε
′
W ′R are Λ-isomorphic

if and only if ε = ε′ and W and W ′ are in the same ideal class of R0.
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Proof. By Proposition 83, two ambiguous ideals (1 − θ)εWR and (1 − θ)ε
′
W ′R are

Λ-isomorphic ⇔ (1− θ)εWR = x(1− θ)ε
′
W ′R for some x ∈ K×

0 . Multiplying both sides

by a non-zero element of R0, we may assume x ∈ R0. Also we have that xR = (1−θ)mX,

where X is a coprime-to-(1 − θ) ideal of R and m is even. Therefore, we have ε = ε′.

Further, we have WR = xW ′R. Since the homomorphism ι : I(R0) → I(R) is injective,

where I(R0) is the ideal group of R0 and I(R) is the ideal group of R, we have W = xW ′.

Therefore, (1− θ)εWR = x(1− θ)ε
′
W ′R ⇔ ε = ε′ and W and W ′ are in the same ideal

class of R0.

Theorem 87. Let h be the class number of R0. There are 2h non-isomorphic, indecom-

posable, projective, Λ-modules of R-rank 1.

Proof. Suppose M is a projective and indecomposable Λ-module of R-rank 1. Then

M is isomorphic to a left ideal of Λ of R-rank 1 by Proposition 84. Then this follows

from Propositions 83, 85 and 86.

We may choose a set of representatives {Ui} for ideal classes of R0, and express the

ambiguous ideals of R by (θ − θ̄)εUiR up to Λ-isomorphism.

Proposition 88. If M is a projective Λ-module, then M is isomorphic to a direct sum

of UiR and (θ̄ − θ)UiR.

Proof. This follows from Propositions 81 and 85.

Proposition 89. Suppose M is a projective Λ-module of R-rank N , and

M ∼=
n⊕
i=1

Uni
R
N−n⊕
i=1

(θ̄ − θ)Umi
R.

The class of (
∏
Uni

)(
∏
Umi

) in R0 and n are invariants of M , and they determine M

uniquely up to Λ-isomorphism.
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Proof. See [30] Theorem 1.3.

Let X and Y be two SG-modules. Let F ∈ HomS(SG,HomS(Y,X)) be an element,

then F (a) and F (b) are elements in HomS(Y,X). Write Fa and Fb for F (a) and F (b),

respectively. We will use F to construct an SG-module MF which is an extension of Y

by X. Let MF = X ⊕ Y as S-modules. We define the action of G on MF as follows:

a · (x, y) = (a · x+ Fa(y), a · y), b · (x, y) = (b · x+ Fb(y), b · y).

We can find out what conditions of F should be satisfied to order to make M an

SG-module. For example, since

(aa) · (x, y) = a · (a(x, y)) = a(a · x+ Fa(y), a · y)

= ((aa) · x+ a · Fa(y) + Fa(a · y), (aa) · y) = 1 · (x, y) = (x, y),

we have

a · Fa(y) + Fa(a · y) = 0. (4.4)

Similarly, we have

p−1∑
i=0

bp−1−iFb(b
i · y) = 0 (4.5)

and

aFb(y) + Fa(b · y) = bp−1 · Fa(y)− bp−1Fb(b
p−1a · y). (4.6)

These are all restrictions on F for making M an SG-module. We denote MF by (X,Y ;F ).

Conversely, suppose we have an SG-module M and M is an extension of Y by X. Since
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Y is S-projective, we can choose a decomposition of S-modules M = X ⊕ Y . This

decomposition induces an element F ∈ HomS(SG,HomS(Y,X)) which satisfies above

conditions.

Denote by S the trivial representation of G, and denote by S ′ := S the SG-module

with G-action given by a · s = −s and b · s = s, for s ∈ S. Let L be a free S-module with

basis {e1, e2}, together with G-action given by a · e1 = e2 and a · e2 = e1 and b · ei = ei

for i = 1 or 2. Let {Ui} be a representative system of the ideal class group of R0. Let

Ai denote the SG-module UiR with G-action given by a · x = x̄ and b · x = θx, for

x ∈ UiR. Let A′
i denote the SG-module with set elements in UiR but with G-action

given by a · x = −x̄ and b · x = θx for x ∈ UiR. According to the discussion at the

beginning of this section, together with Theorem 89 and Example 77, every SG-module

M is an extension of

Sr ⊕ S ′s ⊕ Lt by An1 ⊕ · · · ⊕ Anα ⊕ A′
m1

⊕ · · · ⊕ A′
mβ
.

Since the functor Hom commutes with the functor oplus, we may consider only F ∈

HomS(SG,HomS(Y,X)) with Y = S, S ′ or L, and X = Ai or A′
i first.

Proposition 90. After fixing (Y, X) such that (Y, X) ̸= (S, Ai) or (S ′, A′
i), there exists

a unique indecomposable extension of Y by X up to SG-isomorphism. In other words,

the extension of Y by X is either trivial (decomposable) or the unique indecomposable

SG-module up to isomorphism.

Proof. See [30] Proposition 2.2.

Proposition 91. For (Y, X) = (S, Ai) or (S ′, A′
i), there does not exist any indecom-

posable extension.

Proof. See [30] Lemma 2.1.
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By Proposition 90, we may drop F from the notation (X,Y ;F ) and denote the unique

indecomposable extension by (X,Y ). The following is a more explicit expression of these

indecomposable extensions.

Let Fa, Fb ∈ HomS(S,A
′
i), and define

Fb(s) = sn0, and Fa(s) =
¯−Fb(1) + θ̄Fb(1)

(θ̄ − 1)
= s

(−n̄0 + θ̄n0)

θ̄ − 1
(4.7)

for n0 ∈ A′
i and n0 ̸∈ (θ − 1)A′

i. For Fa, Fb ∈ HomS(L,Ai), we define

Fa(e1) = n0 and Fb(e2) = n0

where n0 is an element in A′
i and n0 ̸∈ (θ − 1)A′

i and for any P , P |2R, n0 ̸∈ P .

Using the conditions (4.4) and (4.6), we have that

Fa(e2) = Fa(e1) and n̄0 + Fa(e2) = θ̄n0 − θ̄Fb(e1). (4.8)

By Proposition 46 and the fact that M0 is Z-free, we can reduce finding the indecom-

posable ZG-modules to finding the indecomposable Z(2p)G-modules. Now we denote by

R and R0 the integral closures of Z(2p) in K and K0, respectively. Since Z(2p) has only

finitely many maximal ideals (in fact two), R and R0 have only finitely many maximal

ideals as well. Thus, R0 and R are Dedekind domains having only finitely many maximal

ideals, and hence they are PID. Lee proves that any indecomposable Z(2p)G-modules is

one of the following 5 forms:

(A′,Z(2p)), (A,Z′
(2p)), (A,L), (A

′, L) and (A′ + A,L).

The former 4 types are proved by a matrix calculation, and the last one follows from a

result of Swan [39]. Once all indecomposable Z(2p)G-modules are known, all indecompos-

53



doi:10.6342/NTU201800167

able ZG-modules are known.

For S = Z or Z(2p), there are 5 types of indecomposable SG-extensions. Also there

are Ai, A′
i and S, S ′, L as SG-modules. Eventually, all integral representations of G are

of these 7h+ 3 types, where h is the class number of the integral closure of S in K0.

Theorem 92. For S = Z or Z(2p) and R0 be the integral closure of S in K0. Let h be the

class number of R0. These 7h + 3 isomorphism classes of indecomposable SG-modules

are all isomorphism classes of indecomposable SG-modules.

Proof. See [30] Theorem 2.1.

Since the Krull-Schmidt Theorem holds for Z(p)G- and Z(2)G-modules (see [30] The-

orem 3.1.), we can consider the unique decompositions of Z(2p)G-modules into indecom-

posable Z(p)G- and Z(2)G-modules after scalar extensions. For two Z(2p)G-modules M

and N , by Proposition 47 M ∼= N if and only if M(p)
∼= N(p) and M(2)

∼= N(2).

If a Z(2p)G-module M decomposes as

M ∼= Zs1(2p) ⊕ Z′
(2p)

s2 ⊕ Ll ⊕ Ar1 ⊕ A′r2 ⊕ (A,Z′
(2p))

u1 ⊕ (A′,Z(2p))
u2

⊕ (A,L)v1 ⊕ (A′, L)v2 ⊕ (A+ A′, L)t,

then

s1 + u2, s2 + u1, r1, r2, u1 + v1 + t, u2 + v2 + t, s1 + l + v1, s2 + l + v2

are invariants of M and determine M up to Z(2p)G-isomorphic. This follows from Propo-

sition 47. Below is the chart of decompositions of indecomposable Z(2p)G-modules.
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Z(2p)G-module Z(2)G-module Z(p)G-module
Z(2p) Z(2) Z(p)

Z′
(2p) Z′

(2) Z′
(p)

L L(2) Z(p) ⊕ Z′
(p)

R0R = R R(2) R(p)

R′
0R = R′ R′

(2) R′
(p)

(R,Z′) R(2) ⊕ Z′
(2) (R(p),Z′

(p))

(R′,Z) R′
(2) ⊕ Z(2) (R′

(p),Z(p))

(R,L) R(2) ⊕ L(2) (R(p),Z(p) ⊕ Z′
(p)) = Z(p) ⊕ (R(p),Z′

(p))

(R′, L) R′
(2) ⊕ L(2) (R′

(p),Z(p) ⊕ Z′
(p)) = Z′

(p) ⊕ (R′
(p),Z(p))

(R +R′, L) R(2) ⊕R′
(2) ⊕ L(2) (R(p) +R′

(p),Z(p) ⊕ Z′
(p)) =

Z′
(p) ⊕ (R′

(p),Z(p))⊕ Z(p) ⊕ (R(p),Z′
(p))

Table 4.1: Decompositions of Z(2p)Dp modules with coefficients Z(p) and Z(2)

Theorem 93. Let M be a ZG-module, and write

M ∼= Zs1 ⊕ Z′s2 ⊕ Ll ⊕ UiδR
r1 ⊕ (θ̄ − θ)UiϵR

r2 ⊕ (UiζR,Z
′)u1 ⊕ (θ̄ − θ)UiηR,Z)u2

⊕ (UiλR,L)
v1 ⊕ ((θ̄ − θ)UiµR,L)

v2 ⊕ (R + (θ̄ − θ)UiνR,L)
t,

then we have s1 + u2, s2 + u1, r1, r2, u1 + v1 + t, u2 + v2 + t, s1 + l + v1, s2 + l + v2

are invariants of M and they determine M up to Z(2p)G-isomorphism. The class of

(
∏

Uiδ)(
∏

Uiϵ(
∏

Uiζ(
∏

Uiη)(
∏

Uiλ)(
∏

Uiµ)(
∏

Uiη)

in R0 is also an invariant of M .

4.3 An example

We keep the notation in Section 4.2. Let p = 3, G = S3, and R0 be the integral closure

of S = Z in Q(θ + θ̄), where θ = (1 + ı
√
3)/2. Fortunately, R0 = Z is PID. Hence, there

are 7 + 3 = 10 isomorphism classes of indecomposable ZS3-modules. We will write down

these indecomposable ZS3-modules explicitly.
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Via ρ : ZG → ZC2, with C2 = ⟨a⟩, a 7→ a and b 7→ 1, we have 3 indecomposable

ZG-modules, Z,Z′ and L. Since the class number of R0 is 1, A = ZR = R = Z[θ] with

a · r = r̄ and b · r = θr, and A′ = ZR = R = Z[θ] with a · r = −r̄ and b · r = θr.

For the other indecomposable ZG-extensions, since we can pick A = ZR, we can

choose n0 = 1, whch satisfies all conditions in (4.7) and (4.2).

For (A,Z′;F ) = R⊕Z, substituting n0=1 in (4.7), we have Fb(s) = s, and Fa(s) = s.

For (A,L;F ) = R ⊕ Ze1 ⊕ Ze2, we have Fa(e1) = 1, Fa(e2) = 1, Fb(e2) = 1 and

Fb(e1) = −2θ + 1.

Recall the action of G on (X,Y ;F ) is defined by

a · (x, y) = (a · x+ Fa(y), a · y) and b · (x, y) = (b · x+ Fb(y), b · y).

Then we have the Table 4.2. Due to typesetting, we write the module (A + A′, L;F )

separately.

For (r, r′, s1e1, s2e2) ∈ (A+ A′, L;F ),

a · (r, r′, s1e1, s2e2) = (r̄ + s1 + s2,−r̄′ + s1 + s2, s2e1, s1e2),

b · (r, r′, s1e1, s2e2) = (θr + s2 + (−2θ + 1)s1, θr
′ + s2 + (−2θ + 1)s1, s1e1, s2, e2).
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SG-Module Fa a acts on it
Z s 7→ s
Z′ s 7→ −s
L e1 7→ e2, e2 7→ e1
A s 7→ s̄
A′ s 7→ −s̄

(A′,Z;F ) Fa(s) = s (r, s) 7→ (−r̄ + s, s)
(A,Z′;F ) Fa(s) = s (r, s) 7→ (r̄ + s, −s)
(A,L;F ) Fa(e1) = 1, (r, s1e1, s2e2)

Fa(e2) = 1 7→ (r̄ + s1 + s2, s2e1, s1e2)
(A′, L;F ) Fa(e1) = 1, (r, s1e1, s2e2)

Fa(e2) = 1 7→ (−r̄ + s1 + s2, s2e1, s1e2)

SG-Module Fb b acts on it
Z s 7→ s
Z′ s 7→ s
L e1 7→ e1, e2 7→ e2
A s 7→ θs
A′ s 7→ θs

(A′,Z;F ) Fb(s) = s (r, s) 7→ (θr + s, s)
(A,Z′;F ) Fb(s) = s (r, s) 7→ (θr + s, s)
(A,L;F ) Fb(e2) = 1, (r, s1e1, s2e2)

Fb(e1) = (−2θ + 1) 7→ (θr + s2 + (−2θ + 1)s1, s1e1, s2, e2)
(A′, L;F ) Fb(e2) = 1, (r, s1e1, s2e2)

Fb(e1) = (−2θ + 1) 7→ (θr + s2 + (−2θ + 1)s1, s1e1, s2, e2)

Table 4.2: Actions of S3 on indecomposable ZS3-lattices and Z(6)S3-lattices
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Chapter 5

Chow’s theorem for semi-abelian

varieties and bounds for splitting

fields for algebraic tori

5.1 Introduction

A connected algebraic group T over a field k is an algebraic torus if there is a k̄-

isomorphism T ⊗ k̄ ≃ (Gm)
d⊗k k of algebraic groups, where d = dimT , k̄ is an algebraic

closure of k and ks is the separable closure of k in k̄. We say T splits over a field extension

K of k if there is a K-isomorphism T ⊗k K ≃ (Gm)
d ⊗k K. The main purpose of this

paper is to extend methods for proving the following fundamental result.

Theorem 94. Any algebraic torus T over a field k splits over ks. In other words, Ts

splits over a finite separable field extension of k.

This theorem is well known and it is stated and proved in the literature several times.

Surprisingly, different authors chose their favorite proofs which are all quite different. The

first proof is given by Takashi Ono [32, Proposition 1.2.1]. Armand Borel gave another

proof in his book Linear Algebraic Groups; see [2, Proposition 8.11]. In the second edition
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of his book Linear Algebraic Groups, T.A. Springer included a systematic treatment of the

rationality problem of algebraic groups where he also gave another proof of Theorem 94;

see [37, Proposition 13.1.1]. Another proof, due to John Tate, is given in Borel and Tits

[3, Proposition 1.5]. Jacques Tits himself also provided one proof in his Yale University

Lectures Notes; see [41, Theorem 1.4.1].

The proof given by Borel uses the property that the ks-valued points of T are semi-

simple. Note that this property is also shared by diagonalizable groups. Thus, Borel’s

proof generalizes Theorem 94 to diagonalizable k-groups. Springer’s proof has more flavor

of differential geometry; one key ingredient of his proof uses derivations. One may view

that Springer uses derivations and connections to treat purely inseparable descent. Note

that the classical Galois descent deals with the descent of separable algebraic extensions.

It is known that this method of using group theory fails for the descent of inseparable

field extensions. However, the hidden information can be revealed using derivations

and connections. Springer’s proof of Theorem 94 is an interesting application of the

inseparable descent. The proofs given by Tits and by Tate uses only the properties of

characters. The ideas of their proofs are similar: Both uses the same argument that a

suitable p-power of any character χ of T is defined over ks. The only difference is that

Tits works with the coordinate ring k̄[T ] of T while Tate works with its function field

k̄(T ). That Tate proves the ks-rationality of χ uses the language in Weil’s foundation,

while Tits’ argument is more elementary.

Ono’s proof relies on an analogue of Chow’s theorem for tori (see [32, Lemma 1.2.1])

Chow’s theorem states as follows. Let K/k be a primary field extension, that is, k is

separably algebraically closed in K. If X and Y are two abelian varieties over k, then the

monomorphism Homk(X,Y ) → HomK(XK , YK), where XK := X⊗kK, is also surjective;

see [8], also see [29, Chapter II, Theorem 5], [6, Lemma 1.2.1.2], [9, Theorem 3.19] and

[45, Lemma 6.7]. Ono did not give a proof of the analogous result for tori. However, he
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pointed out (in the proof of [32, Lemma 1.2.1]) that the original proof of Chow for abelian

varieties also works for tori . Thus, we revisit Chow’s theorem, aiming at supplementing

Ono’s proof. The original proof given by Chow uses the language in Weil’s foundation.

A modern proof of Chow’s theorem, due to Brian Conrad, is given in [9, Theorem 3.19].

The central idea is Grothendieck’s faithfully flat descent.

Grothendieck’s descent theory has been a very powerful tool of algebraic geometry.

The standard reference is SGA 1 [16]. The reader can also find the exposition in some

books or articles working with moduli spaces or étale cohomology, for example, Milne [31,

Chapter 1, Section 2], Freitag and Kiehl [15, Appendix A], , Bosch, Lütkebohmert, and

Raynaud [4, Chapter 6] and B. Conrad [9, Section 3]. The faithfully flat descent is a

very clean formulation which reorganizes both the classical Galois descent and the purely

inseparable descent through derivations over fields in one unified way (regardless the

explicit structure of the flat base in question). More powerfully, this simple formulation

works for arbitrary base schemes, so it is far beyond the combination of both separable

and inseparable descent over fields.

The idea of Conrad’s proof of Chow’s theorem is pursued further in this article. We

generalize Chow’s theorem to semi-abelian varieties, which includes the case of tori. This

completes Ono’s proof of Theorem 94 by an alternative method. We refer to Section 5.5.2

for the definition of semi-abelian varieties.

Theorem 95. Let X and Y be two semi-abelian varieties over a field k, and let K be a

primary field extension of k. Then the monomorphism of Z-modules

Homk(X,Y ) → HomK(XK , YK), XK := X ⊗k K, (5.1)

is bijective.

Besides proofs given by Borel, Springer, Tate, Ono, Tits, we also give a new proof of
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Theorem 94. Our proof is based on a second proof of Theorem 95, which does not rely

on he faithfully flat descent.

It is obvious that Theorem 94 is merely one of many theorems appearing in the theory

of algebraic groups. Why do we care only on this single result? Below are two reasons:

(a) There are already several different and interesting proofs given by experts from the

viewpoints from algebraic geometry, number theory. differential geometry, group

representation theory and arithmetic. Thus, reorganizing these proofs as well as

the methods and ingredients behind should be useful and illuminating.

(b) Though tori are the simplest connected linear algebraic groups and have been stud-

ied for several decades, there are several problems that remain open and have been

tried out in various cases up to now. Among them, we are interested in the classi-

fication of algebraic tori over an arbitrary field. Because a solution would rely on

the development of integral representations of finite groups, solutions to the Inverse

Galois problem and Noether’s problem. These are very active ongoing research

topics.

We illustrate the point (b) in more detail. Let Γk := Gal(ks/k) be the absolute Galois

group of k. Using Theorem 94, the functor

a k-torus T 7→ X∗(T ) := Homks(Gmks , Tks) (5.2)

gives rise to an equivalence between the category of algebraic tori over k and the category

of finite free Z-module together with a continuous action of Γk, or ZΓk-lattices. If K/k

is a finite Galois extension with Galois group G := Gal(K/k), then this functor induces

a bijection 
isomorphism classes

of k-tori splitting

over K

 ∼−→


isomorphism

classes of ZG-

lattices

 . (5.3)
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Thus, classification of tori over k can be divided into two steps:

(1) Classify all finite groups G which are quotients of Γk (the IGP).

(2) Classify integral representations of G.

Noether’s problem is the most prominent and famous problem in the IGP. We refer to

[26] for a survey of Noether’s problem and the references within for more details. For

recent development of Noether’s problem, we refer to works of M.-C. Kang [22, 24] and

those of H. Kitayama and A. Yamasaki [28, 27, 44].

We conclude this paper with the best bound for the degrees of splitting fields of tori.

Proposition 96. (Corollary 118) For any d ≥ 1 and any number field k, there exists

a d-dimensional T over k such that [kT : k] = Max(d,Q), where kT is the (minimal)

splitting field of T and Max(d,Q) is the maximal order of finite subgroups of GLd(Q).

The paper is organized as follows. Section 2 consists of minimal preliminaries of diag-

onalizable groups and gives a proof of Theorem 94 due to Borel. Section 3 includes basic

properties of derivations and connections as well as a formulation for purely inseparable

descent. A proof due to Springer is also included. Section 4 includes the proofs of Tits

and Tate. Theorem 95 is proved in Section 5; we also give a different proof of Theorem 95

and hence that of Theorem 94.

5.2 Characters and diagonalizable groups

In this section we shall present a proof of Theorem 94 due to Armand Borel. A basic

result is that any set of characters is linearly independent in the following sense.

Lemma 97. Let H be an abstract group, k any field, and let X be the set of all homo-

morphisms H → k×. Then X is k-linearly independent as a subset in the k-vector space
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C(H, k) of k-valued functions on H. That is, for any distinct characters χ1, . . . , χn and

elements a1, . . . , an ∈ k, then

a1χ1 + · · ·+ anχn = 0 in C(H, k) =⇒ a1 = · · · = an = 0. (5.4)

Proof. See [2, Lemma 8.1].

Let G be a linear algebraic group over a field k. Put K := k̄. Let X(G) :=

Homk̄-gp(G,Gm) denote the group of all characters, which is a finitely generated abelian

group. The subgroup of k-rational characters is denoted by X(G)k.

Definition 98. (1) We say that G is diagonalizable if the coordinate ring K[G] is spanned

by X(G) over K.

(2) We say that a diagonalizable group G splits over k if the coordinate ring k[G] is

spanned by X(G)k over k.

By Lemma 97, the abelian group X(G) is a linearly independent subset in K[G]. So

if G is diagonalizable, then K[G] is equal to the group algebra K[X(G)] of the abelian

group X(G). Any group algebra K[H] admits a natural structure of Hopf algebra with

the co-multiplication ∆ : K[H] → K[H] ⊗K K[H] defined by ∆(h) = h ⊗ h. Then

K[G] = K[X(G)] as Hopf algebras. Particularly, G is commutative.

It is clear from the definition that an algebraic torus is precisely a connected di-

agonalizable algebraic group. We recall basic properties of diagonalizable groups. Let

Dn ⊂ GLn, for n ≥ 1, denote the diagonal split torus of dimension n.

Proposition 99. Let G be a linear algebraic group over K. The following statements

are equivalent:

1. G is diagonalizable.
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2. G is isomorphic to a subgroup of Dn for some n ≥ 1.

3. For any rational representation π : G → GLn, the subgroup π(G) is conjugate to a

subgroup of Dn.

4. G contains a dense commutative subgroup consisting of semi-simple elements.

Proof. See [2, Proposition 8.4].

Proposition 100. Let G be a diagonalizable group over k. The following statements are

equivalent:

1. G splits over k.

2. G is isomorphic to a k-subgroup of Dn for some n ≥ 1.

3. For any rational representation π : G → GLn defined over k, the subgroup π(G) is

conjugate over k to a subgroup of Dn.

Proof. See [2, Proposition 8.4’].

Theorem 101. Any diagonalizable k-group G splits over ks.

Proof. Choose a k-embedding G ⊂ GLn. By Proposition 99, G(ks) contains a dense

commutative subgroup S consisting of semi-simple elements. As S is commutative and

every element s in S is diagonalizable in GLn(ks), we can diagonalize simultaneously the

matrices s for all s ∈ S. That is, there is an element g ∈ GLn(ks) such that gSg−1 ⊂

Dn(ks). Since S is dense, the inner automorphism Int(g) sends G into a subgroup of Dn.

Therefore, G is ks-isomorphic to a subgroup of Dn, which splits over k by Proposition 100.

This completes the proof of the theorem.

Theorem 94 follows from Theorem 101, because any algebraic torus is a diagonalizable

group. We remark that the property Proposition 99 (4) was also used by Rosenlicht who

showed that any algebraic k-torus is unirational; see [35, Proposition 10].
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5.3 Derivations, connections and inseparable descent

In this section we present the second proof of Theorem 94 due to T.A. Springer. The

proof is actually quite long as one needs to develop several setups. The key idea is to

deduce purely inseparable descent through derivations and connections. This may be

viewed as an extension of the Galois descent which handles only the case of separable

extensions.

5.3.1 Derivations

Definition 102. Let R be a commutative ring and A a commutative R-algebra. Let M

be an A-module. An R-derivation of A on M is an R-linear map D : A→M such that

D(ab) = aD(b) + bD(a), ∀ a, b ∈ A. (5.5)

Let DerR(A,M) denote the set of all R-derivations of A on M . It is equipped with a

natural A-module structure by defining (bD)(x) := bD(x) for b ∈ A and D ∈ DerR(A,M).

Note that D(r · 1) = 0 for any r ∈ R.

If ϕ : A → B is an R-algebra homomorphism and N is a B-module, then one can

regard N as an A-module. Thus, one obtains a map of A-modules

ϕ0 : DerR(B.N) → DerR(A.N), D 7→ D ◦ ϕ. (5.6)

The map ϕ0 induces a short exact sequence of A-modules

0 → DerA(B.N) → DerR(B.N) → DerR(A.N). (5.7)
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5.3.2 Tangent spaces

We show how to use derivations to reformulate the tangent space of an algebraic variety

at a point. Let X ⊂ An be a closed subvariety of the affine n-space over K, where K is

an algebraically closed field, and let x = (a1, . . . , an) ∈ X be a K-point. We write the

coordinate ring of X by K[X] = K[T ]/I, where T = (T1, . . . , Tn) and I = (f1, . . . , fs) ⊂

K[T ] is the ideal of definition. Write the tangent space TxAn = Kn with the standard

basis ∂/∂Ti for i = 1, . . . , n. Then the tangent space TxX ⊂ TxAn consists of vectors

(v1, . . . , vn) ∈ Kn satisfying the linear equations

n∑
i=1

vi
∂fj
∂Ti

(x) = 0, j = 1, . . . , s. (5.8)

Let Mx ⊂ K[X] be the maximal ideal corresponding to x, and K(x) := K[X]/Mx =

K[T ]/(T1 − a1, . . . , Tn − an) the residue field at x, viewed as a K[X]-module or a K[T ]-

module. We can identify the tangent space TxAn with DerK(K[T ], K(x)) as

TxAn ≃ DerK(K[T ], K(x)), v = (v1, . . . , vn) 7→ Dv =
n∑
i=1

viDi, (5.9)

where Di is the unique derivation such that Di(Tj) = δij for j = 1, . . . , n. One easily

sees that the derivation Dv : K[T ] → K(x) factors through K[X] → K(x) if and only v

satisfies the condition (5.8). Thus, the identification (5.9) induces a natural isomorphism

TxX ≃ DerK(K[X], K(x)). (5.10)

Note that Dv is uniquely determined its restriction on Mx, because K[X] = K ⊕Mx.

Thus, by (5.10), we obtain a natural isomorphism

TxX ≃ HomK(Mx/M
2
x , K(x)) = (Mx/M

2
x)

∗. (5.11)

66



doi:10.6342/NTU201800167

We call the K(x)-vector space Mx/M
2
x the cotangent space of X at x. The isomorphisms

(5.10) and (5.11) provide two alternative definitions for the tangent space TxX of X at

a point. These reformulations show that the tangent space TxX is an intrinsic property,

in the sense that does not depend on the choice of an embedding of X into the affine

space An. Furthermore, we can use these reformulations to define the tangent spaces of

an arbitrary scheme.

Let f : X → Y be a morphism of algebraic varieties and let x ∈ X be a point. Then

the differentiation of f gives a K-linear map of vector spaces

(df)x : TxX → TyY, y = f(x). (5.12)

If g : Y → Z is another morphism of algebraic varieties and put z = g(y). Then the

differentiation of the composition g ◦ f has the property

(d g◦f)x = (dg)y ◦ (df)x (the chain rule). (5.13)

5.3.3 Kähler differentials

Definition 103. Let R and A be as in Definition 102. Let IA/R denote the kernel of the

multiplication m : A⊗R A→ A. The Kähler differential Ω1
A/R of A over R is defined by

Ω1
A/R := IA/R/I

2
A/R. (5.14)

This is an A-module by the isomorphism A⊗R A/IA/R ≃ A.

It is easy to see that the ideal IA/R is generated by elements a⊗1−1⊗a for all a ∈ A.

For a ∈ A, write

da := [a⊗ 1− 1⊗ a], a ∈ A (5.15)
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the class in Ω1
A/R. Then the map d : A→ Ω1

A/R is an R-derivation of A on Ω1
A/R. If M is

an A-module and φ : Ω1
A/R →M is a morphism A-module, then the composition

d ◦ φ : A→ Ω1
A/R →M (5.16)

is an R-derivation of A on M . Conversely, any R-derivation D ∈ DerR(A,M) arises

in this way. That is, there is a unique A-homomorphism φD : Ω1
A/R → M such that

D = d ◦ φD. This gives a canonical isomorphism of A-modules

HomA(Ω
1
A/R,M)

∼−→ DerR(A,M) (5.17)

which is functorial for all A-modules M .

Consider a covariant functor from the category (A-mod) of A-modules to (A-mod)

defined by

DerR(A, ·) : A-mod → A-mod, M 7→ DerR(A,M). (5.18)

Then by (5.17) the Kähler differential Ω1
A/R represents this functor, and d is the universal

family.

The isomorphism (5.17) linearizes the R-derivations. Thus, the computation of R-

derivations DerR(A,M) is reduced to calculating Ω1
A/R, which can be done explicitly by

linear relations as follows.

Suppose thatA is essentially of finite type overR, sayA = R[x1, . . . , xn]S = (R[T ]/I)S,

where T = (T1, . . . , Tn), I = (f1, . . . , fs) and S is a multiplicatively closed subset which

does not contain zero divisors. Then

Ω1
A/R = A⟨ dx1, . . . , dxn

∣∣ n∑
i=1

yjidxi = 0, j = 1, . . . , s ⟩, (5.19)

where yji := (∂fj/∂Ti)(x1, . . . , xn) ∈ A.
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Let X = SpecA→ SpecK be an affine algebraic variety of dimension d. Then X is a

non-singular algebraic variety if and only if the Kähler differential Ω1
A/K is a locally free

A-module of rank d. This follows from the Jacobian criterion for simple points and the

computation of Ω1
A/K (see (5.19)). More generally, if f : X → S is a morphism of locally

Noetherian schemes locally of finite type, then Ω1
X/S is a locally free OX-module of rank

equal to the relative dimension dim(X/S) and f is flat if and only if f is smooth (see [31,

I, Proposition 3.24] and see [31, I. Remark 3.22] for the definition of smooth morphisms).

Let ϕ : A → B be an R-algebra homomorphism. Then there is a unique morphism

dϕ : Ω1
A/R → Ω1

B/R of A-modules making the following diagram commutative

A
ϕ−−−→ BydA ydB

Ω1
A/R

dϕ−−−→ Ω1
B/R.

(5.20)

Note that dB ◦ ϕ is an R-derivation of A on Ω1
B/R. So the commutative diagram (5.20)

follows from the universal property of (Ω1
A/R, dA). One easily sees that dϕ(da) = dϕ(a)

for all a ∈ A. The map dϕ induces an exact sequence of B-modules

B ⊗A Ω1
A/R

1B⊗dϕ−−−−→ Ω1
B/R −−−→ Ω1

B/A −−−→ 0. (5.21)

Let N be a B-module and φ : Ω1
B/R → N a B-linear homomorphism. The pull-

back (dϕ)∗(φ) = φ ◦ dϕ : Ω1
A/R → N is a morphism of A-modules. We then have the

commutative diagram

HomB(Ω
1
B/R, N)

∼−−−→ DerR(B,N)y(dϕ)∗
yϕ∗

HomA(Ω
1
A/R, N)

∼−−−→ DerA(A,N),

(5.22)

where the horizontal ones are canonical isomorphisms.
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5.3.4 Separable field extensions

Definition 104 (cf. [20, Chap. VI, Sect. 2], [37, Sect. 4.2, p. 63-64]). (1) A field extension

E/k is said to be separably generated if there is a subset {tα} ⊂ E such that

(i) the extension k({tα})/k is purely transcendental, and

(ii) the extension E/k({tα}) is algebraic and separable.

The subset {tα} is called a separating transcendental base.

(2) We call E/k a separable extension if either

• char k = 0, or

• char k = p > 0 and for any k-linearly independent elements x1, . . . , xn in K, their

pth powers xp1, . . . , xpn are also k-linearly independent.

Proposition 105. (1) If k is perfect, then any field extension K/k is separable.

(2) A field extension K/k of finite type is separably generated if and only if it is

separable.

Proof. (1) This follows easily from the definition. Indeed, suppose that {xpi } is k-

linearly dependent, say
∑

i aix
p
i = 0. Then one has

∑
i bixi = 0 and hence {xi} is

k-linearly dependence. (2) See [37, Proposition 4.2.10 and Exercise 4.2.15 (5)]).

Note that Proposition 105 (2) fails if K/k is not of finite type. Indeed, let k = Fp and

K = ∪n≥1Fp(t1/p
n
). Then K/k is not separably generated but K/k is separable.

Definition 106. Let X and Y be irreducible algebraic varieties over a field k, and

f : X → Y a morphism of finite type.

(1) We say that f is dominant if the image f(X) is Zariski dense. In this case, the

function field k(Y ) can be viewed as a subfield of k(X) through the pull-back of functions.

(2) We say that f is separable if f is dominant and the field extension k(X)/k(Y ) is

separable.
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Proposition 107. Let f : X → Y be a separable morphism of irreducible normal alge-

braic varieties over k such that f is a homeomorphism. Then f is an isomorphism.

Proof. The field extension k(X)/k(Y ) is separable of finite type. Since f is a home-

omorphism, f is finite and dimX = dimY = trdeg kk(X) = trdeg kk(Y ). It follows that

k(X) = k(Y ) as k(X)/k(Y ) is both a separable and inseparable finite extension. Thus, f

is a birational finite morphism of normal varieties and it is an isomorphism by the Zariski

main theorem.

We give an example that f is birational and homeomorphic but not isomorphism.

Consider the normalization morphism f : X̃ → X, where X = SpecQ[x, y]/(y2 − x3).

Then f satisfies these properties.

Proposition 108. Let E/k be a field extension of finite type.

(1) dimE Ω1
E/k ≥ trdeg kE.

(2) The equality in (1) if and only if E/k separably generated.

Proof. See [37, Theorem 4.2.9].

Let E and E ′ be field extensions of k of finite type with E ′ ⊂ E. Applying the

constructions (5.7) and (5.21), we get short exact sequences:

0 −−−→ DerE′(E,E) −−−→ Derk(E,E)
β−−−→ Derk(E ′, E), (5.23)

E ⊗E′ Ω1
E′/k

α−−−→ Ω1
E/k −−−→ Ω1

E/E′ −−−→ 0. (5.24)

Clearly, these two are dual with each other. Therefore, β is surjective and α is injective.

Corollary 109. Assume that k is perfect. The following statements are equivalent:

(a) E/E ′ is separately generated.
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(b) α is injective.

(c) β is surjective.

Proof. As is already shown, statements (b) and (c) are equivalent. By (5.24), α is injec-

tive if and only if dimE′ Ω1
E′/k+dimE Ω1

E/E′ = dimE Ω1
E/k. Since k is perfect, by Prop. 105

and 108 dimB Ω1
B/k = trdeg kB for B = E or E ′. On the other hand, we always have

trdeg kE = trdeg E′E+ trdeg kE
′. It follows that α is injective if dimE Ω1

E/E′ = trdeg E′E.

The latter is equivalent to that E/E ′ is separably generated by Proposition 108.

5.3.5 Connections

Let A be a commutative k-algebra, where k is any field. Let D = DA := Derk(A,A) denote

theA-module of all k-derivations ofA on itself. It admits a natural structure of Lie algebra

over k. If D1, D2 ∈ D, then the Lie bracket is defined by [D1, D2] := D1D2 −D2D1. The

bracket is not A-bilinear. Let hor(A) := {a ∈ A|D(a) = 0,∀D ∈ D}. Elements of hor(A)

are called horizontal elements. It is easy to check that hor(A) is a k-subalgebra of A, and

that the bracket is hor(A)-bilinear.

If char k = p > 0, then Dp := D ◦D ◦ · · · ◦D (p times) is again a k-derivation of A.

This gives a p-Lie (or restricted Lie) algebra structure on D. More precisely, the operator

D 7→ Dp satisfies the following three conditions (cf. [37, Sect. 4.4]:

(a) (aD)p = apDp for a ∈ k and D ∈ D.

(b) ad(Dp) = (adD)p for all D ∈ D.

(c) We have (Jacobson’s formula)

(D +D′)p = Dp +D′p +

p−1∑
i=1

i−1si(D,D
′), (5.25)
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where si(D,D′) is the coefficient of ai in ad(aD + D′)p−1(D′) for 1 ≤ i ≤ p − 1,

i.e.
∑p−1

i=1 si(D,D
′)ai = ad(aD +D′)p−1(D′).

We now introduce connections. We consider a field extension E/k of finite type, and

let D = DE := Derk(E,E). The subfield hor(E) of horizontal elements consists of all

algebraic and separable elements of E over k. Recall that E/k is said to be primary if k is

the algebraic separable closure of k in E. Then E/k is primary if and only if k = hor(E).

We shall give two definitions of connections and then show that they represent the same

notion through a natural transformation.

Definition 110. Let E/k and DE be as above, and let A be an E-vector space.

(1) A connection on A for the extension E/k is a map

∇ : A→ Ω1
E/k ⊗E A (5.26)

such that ∇(ax) = da⊗ x+ a∇(x) for all x ∈ A and a ∈ E.

(2) A connection of DE on A is an E-linear map

c : DE → Endk(A) (5.27)

such that c(D)(ax) = D(a)x+ a(c(D)(x)) for all D ∈ DE, a ∈ E and x ∈ A.

Suppose ∇ : A → Ω1
E/k ⊗E A is a connection. For any D ∈ DE, let φD : Ω1

E/k → E

the corresponding E-linear map so that D = φD · d. The contraction ∇D at D is defined

to be the composition

∇D : A
∇−−−→ Ω1

E/k ⊗ A
φD⊗1−−−→ A. (5.28)

Lemma 111.

(1) One has ∇D(ax) = D(a)x+ a∇D(x) and ∇aD = a∇D for all a ∈ E and x ∈ A.
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(2) Conversely, let c : DE → Endk(A) be a connection then there exists a unique ∇

such that c(D) = ∇D for all D ∈ DE.

Proof. (1) By definition, ∇D(ax) = φD(da ⊗ x + a∇(x)) = D(a)x + a∇D(x). The

equality ∇aD = a∇D follows from φaD = aφD and ∇D = φD · ∇.

(2) Choose an E-basis {dfi} for Ω1
E/k. Let {φi} be the dual basis for HomE(Ω

1
E/k, E).

Recall that Ω1
E/k is an finite dimensional E-vector space. Put Di := φi · d. Then the

map c is uniquely determined by c(Di) ∈ Endk(A). Put xi := c(Di)(x) ∈ A. Define

∇(x) =
∑

i dfi ⊗ xi. The condition of E/k being of fintie type is used here. It is easy to

see ∇Di
(x) = xi = c(Di)(x) for all i. Thus, ∇D(x) = c(D)(x) for all D ∈ DE.

Given a connection ∇, one extends morphisms

∇i : Ω
i
E/k ⊗ A→ Ωi+1

E/k ⊗ A, Ωi
E/k := ∧iΩ1

E/k, ∇0 = ∇ (i ≥ 1) (5.29)

by

∇i(ω ⊗ x) = dω ⊗ x+ (−1)iω ∧∇i−1(x). (5.30)

Definition 112.

(1) The curvature of ∇ is K(∇) := ∇1 · ∇ : A → Ω2
E/k ⊗ A. K(∇) is a 2-form with

values in Endk(A).

(2) A connection ∇ is said to be integrable or flat if K(∇) = 0.

Lemma 113. Let c : DE → Endk(A) be the connection of DE on A associated to a

connection ∇ on A. Then ∇ is integrable if and only if c is a Lie algebra homomorphism.

Proof. This follows from a straightforward computation which we omit.

5.3.6 Inseparable descent

Suppose that A = A0⊗kE is endowed with a k-structure defined by a k-subspace A0. We

define a flat connection cA by cA(D)(
∑
ai ⊗ xi) =

∑
D(ai)⊗ xi for ai ∈ E and xi ∈ A0.
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cA is the unique flat connection such that cA(D)(A0) = 0 for all D ∈ DE, and it is called

the canonical flat connection on A (of course, with respect to the k-structure A0). We

now formulate inseparable descent in terms of connections. This is the key ingredient

used in Springer’s proof of Theorem 94

Proposition 114 (Inseparable descent). Let E/k be a field extension of finite type and

DE the k-derivations on E to itself. Assume that hor(E) := {a ∈ E|D(a) = 0,∀D ∈

DE} = k.

(1) Let A0 be a k-vector space and A := A0 ⊗k E. One has {x ∈ A|cA(D)(x) =

0 ∀D ∈ DE} = A0.

(2) If W ⊂ A be an E-subspace, then W is defined over k if and only if cA(D)(W ) ⊂ W

for all D ∈ DE.

(3) Let B0 be another k-vector space and B := B0⊗kE. Let f : A→ B be an E-linear

map. Then f is defined over k if and only if the diagram

A
f−−−→ B

cA(D)

y ycB(D)

A
f−−−→ B

(5.31)

commutes for all D ∈ DE.

Proof. See [37, Proposition 11.1.4 and Corollary 11.1.5].

5.3.7 Proof of Theorem 94

We may assume that char k = p > 0. It suffices to show that the map Homk(T,Gm) →

HomE(T,Gm) is surjective for any finite purely inseparable extension E/k. That is, any

character χ defined over E is defined over k.

We may also assume that Ep ⊂ k. Indeed, suppose that Epn ⊂ k for some n. Then

we have a filtration En = kEpn ⊂ kEpn−1 ⊂ · · · ⊂ E1 = kEp ⊂ E0 = E and Ep
i ⊂ Ei+1.
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By induction, it suffices to show the case Ep ⊂ k.

Let A0 = k[T ] and A = A0⊗kE = E[T ], and cA the flat connection of DE on A. Denote

by ∆ : A→ A⊗E A the co-multiplication; this is an E-algebra homomorphism. Since T

is defined over k, one has ∆ = ∆0 ⊗ E with the co-multiplication ∆0 : A0 → A0 ⊗k A0.

Thus, by Proposition 114 one has a commutative diagram

A
∆−−−→ A⊗E AycA(D)

ycA⊗A(D)

A
∆−−−→ A⊗E A.

(5.32)

As χ ∈ X(T ), one has ∆(χ) = χ⊗ χ. Put f := χ−1 · cA(D)(χ). One computes

∆(f) = ∆(χ−1) ·∆(cA(D)(χ))

= χ−1 ⊗ χ−1 · cA⊗A(D)(χ⊗ χ)

= χ−1 ⊗ χ−1 · [1⊗ χ · (cA(D)(χ)⊗ 1) + χ⊗ 1 · (1⊗ cA(D)(χ))]

= f ⊗ 1 + 1⊗ f.

(5.33)

Write f =
∑

ψ∈X(T ) cψψ with characters cψ in k̄[T ]. It follows from

∆(f) = f ⊗ 1 + 1⊗ f =
∑

cψ(ψ ⊗ 1 + 1⊗ ψ) =
∑

cψ(ψ ⊗ ψ)

that cψ = 0 if ψ ̸= 1. For ψ = 1, it follows from c1(1 ⊗ 1 + 1 ⊗ 1) = c1(1 ⊗ 1) that

c1 = 0. Thus f = 0 and cA(D)χ = 0 for all D ∈ DE. This proves that χ ∈ A0, by

Proposition 114.
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5.4 Three more proofs of Theorem 94

5.4.1 Ono’s proof

Let T be an algebraic tori over k. It suffices to show that any character χ ∈ X(T )k̄ =

Homk̄(T,Gm) is defined over ks.

Since k̄/ks is primary, applying Theorem 95 to A = T and B = Gm, we have an

isomorphism

Homks(T,Gm)
∼−→ Homk̄(T,Gm).

Thus, every character is defined over ks.

We remark that T. Ono did not provide a proof of Theorem 95 for tori. Instead he

pointed out (see [32, Lemma 1.2.1]) that the proof of Chow’s theorem [8] also works for

tori. Note that Chow’s proof was established upon Weil’s foundation. Brian Conrad [9,

Theorem 3.19] gave a modern proof of Chow’s Theorem. We extend Conrad’s idea and

prove Theorem 95; see Section 5.5. The main ingredient is Grothendieck’s faithfully flat

descent.

5.4.2 Tits’ proof

Let T be an algebraic tori over k and k[T ] the coordinate ring. Choose a k-basis {φi}

for k[T ]. Let χ ∈ X(T )k̄ ⊂ k̄[T ] = k[T ] ⊗k k̄ be a character over k̄. We shall show that

χ ∈ ks[T ].

Write χ =
∑n

i=1 aiφi, where ai ∈ k̄. If char k = 0, there is nothing to prove. Thus, we

assume char k = p > 0. There exists a p-power q = pr such that aqi ∈ ks for all i. Then

χq =
∑

i a
q
iφ

q
i lies in ks[T ]. For t ∈ T , we have χq(t) = χ(tq) =

∑
i aiφi(t

q), because χ is

a character. So,

χq =
∑
i

aiφ
′
i, φ′

i(t) := φi(t
q).

77



doi:10.6342/NTU201800167

Using the fact that the morphism T → T , t 7→ tq, is defined over k and is surjective,

one easily shows that {φ′
i} is a ks-linearly independent subset in k[T ]. If V0 is the ks-

subspace generated by φ′
i, then V0 ⊗ks k̄ is a subspace of k̄[T ] defined over ks, and we

have
∑
aiφ

′
i ∈ ks[T ] ∩ V0 ⊗ks k̄ = V0. This shows that ai ∈ ks and χ ∈ ks[T ].

5.4.3 Tate’s proof

We include Tate’s proof [3, Proposition 1.5] for the sake of completeness. In fact Tate’s

proof is close to Tit’s but it uses the language in Weil’s foundation. Again it suffices to

show that if χ is a character defined over a finite inseparable extension of k, then it is

defined over k. Again we can assume char k = p > 0. Let q be a p-power so that χ ∈ k1/q.

One has χ(tq) = χq(t) ∈ k(t), then χ(tq) ∈ k(t)∩ k1/q(tq) (t ∈ T ). But if t is generic over

k, the field k(t) is linearly disjoint of k̄, and then k(t)∩ k1/q(t) = k(tq) and χ(tq) ∈ k(tq).

The element tq is also generic over k, because x 7→ xq is a bijective morphism from T to

itself; the inclusion χ(tq) ∈ k(tq) then shows that χ is defined over k.

5.5 Chow’s theorem for semi-abelian varieties

In this section we shall give a proof of Theorem 95. As mentioned in Section 5.1, the

main ingredient is Grothendieck’s faithfully flat descent.

5.5.1 Faithfully flat descent

We recall some basic terminology needed to describe the flat descent.

Definition 115.

(1) A ring homomorphism A→ B of commutative rings is said to be flat if the functor

⊗AB : A-mod → B-mod is exact, where A-mod denotes the category of A-modules.
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(2) A morphism f : X → Y of schemes is said to be flat if for any point x ∈ X

with y = f(x), the ring homomorphism OY,y → OX,x of local rings is flat. We say f is

faithfully flat if it is flat and surjective.

(3) We say f is quasi-compact if the pre-image f−1(U) of every open affine subscheme

U of Y is quasi-compact, that is, it is a finite union of open affine subschemes.

(4) A scheme X is said to be quasi-affine if it is quasi-compact and it is contained in

an affine scheme. A morphism f of schemes is said to be quasi-affine if it is quasi-compact

and the pre-image f−1(U) of every open affine subscheme U of Y is quasi-affine.

(5) Let Y be a Noetherian scheme. A morphism f : X → Y of schemes of finite type is

said to be projective (resp. quasi-projective) if X is isomorphic to a closed (resp. locally

closed) subscheme of the projective scheme PN
Y for some positive integer N .

We first describe the flat descent for morphisms. Let p : S ′ → S be a morphism of

base schemes, and let X → S be a morphism of schemes. For any integer n > 1, write

S(n) := S ′ ×S · · · ×S S
′ (n times), and X(n) := X ×S S

(n). Let p1, p2 : S ′′ := S(2) → S ′ be

two projection maps.

Proposition 116. Let p : S ′ → S be a faithfully flat and quasi-compact morphism of

base schemes. Let X and Y be two schemes over S and let f ′ : X ′ → Y ′ a morphism of

schemes over S ′. If p∗1(f ′) = p∗2(f
′), then there is a unique morphism f : X → Y over S

such that f ′ = p∗(f).

Proof. See [15, A.III.1 Lemma].

We now describe the flat descent for objects. For any two integers 1 ≤ i < j ≤ 3,

denote by pij : S(3) → S(2) the projection map at the i-th and j-th components. Let

pni : S(n) → S ′ denote the i-th projection map. Clearly, one has p1pij = p3i and p2pij = p3j

in Hom(S(3), S ′). If X ′/S ′ is a scheme over S ′ and α : p∗1(X
′) → p∗2(X

′) is a morphism
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over S(2), then the pull-back morphism p∗ij(α) is a morphism

p∗ij(α) : (p
3
i )

∗(X ′) → (p3j)
∗(X ′).

Definition 117.

(1) Let p : S ′ → S be a faithfully flat and quasi-compact morphism of schemes. A

descent datum for p consists of a pair (X ′/S ′, α), where X ′/S ′ is a scheme over S ′ and

α : p∗1(X
′)

∼−→ p∗2(X
′) is an isomorphism of schemes over S ′′ satisfying the condition

p∗23(α) ◦ p∗12(α) = p∗13(α). (5.34)

(2) A descent datum (X ′/S ′, α) is said to be effective if there exits a scheme X/S

over S and an isomorphism p∗(X) ≃ X ′ over S ′.

Theorem 118. Let (X ′/S ′, α) be a descent datum for a faithfully flat and quasi-compact

morphism p : S ′ → S of base schemes. If X ′/S ′ is quasi-affine, then (X ′/S ′, α) is

effective.

Proof. See [15, A.III.6 Proposition].

Remark 119. A classical Weil descent states that if p : S ′ → S is SpecK → Spec k for

an algebraic separable field extension K/k and X ′ is a quasi-projective algebraic variety

over K, then any descent datum (X ′/K ′, α) is effective. Comparing Weil’s descent and

Theorem 118, one may ask whether the assumption of X ′ in Grothendieck’s flat descent

can be weakened by assuming only that X ′ is quasi-projective. However, this is not the

case. Indeed, there exists an étale covering S ′ → S of schemes and a descent datum

(X ′/S ′, α) relative to S ′ → S such that X ′ → S ′ is projective, but the descent datum is

not effective in the category of schemes. See [38, Tag 08KF] for a counterexample.
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5.5.2 Proof of Theorem 95

Recall that a semi-abelian variety is a connected commutative smooth algebraic group G

which is an extension of abelian variety by an algebraic torus, that is, the affine subgroup

of G is an algebraic torus.

Recall the statement of Theorem 95 that X and Y are two semi-abelian varieties

over a field k, and K/k is a primary field extension. We must show that any morphism

f : XK → YK over K is defined over k.

Let p : S := SpecK → Spec k and p1, p2 : S ′′ := S ×Speck S → S be the projection

maps. Put K ′ := K⊗kK. Since K/k is a primary extension, the scheme S ′′ is irreducible

and hence connected. Now let f ∈ HomK(XK , YK). By Proposition 116, it suffices to

show that p∗1(f) = p∗2(f).

Let x = ∆ : SpecK = S → S ′′ = S×Spec kS be the K-valued point of S ′′ defined by the

diagonal morphism. As pi ◦∆ = id, one has x∗p∗1(f) = x∗p∗2(f), i.e. the morphisms p∗1(f)

and p∗2(f) agree on the fiber over the point x. Let ℓ be any prime different from char k.

The morphism p∗i (f) : XK′ → YK′ induces a morphism XK′ [ℓn] → YK′ [ℓn], where XK′ [ℓn]

denotes the ℓn-torsion finite subgroup scheme of XK′ . Since XK′ [ℓn] has order prime to

char k, it is a finite étale group scheme. Denote by p∗i (f)[ℓn] the restriction of p∗i (f) to the

finite group scheme XK′ [ℓn]. As p∗1(f)x = p∗2(f)x, one has p∗1(f)[ℓn]x = p∗2(f)[ℓ
n]x. Since

XK′ [ℓn] is finite étale over K ′ and S ′′ is connected, the rigidity of étale morphisms [31,

I. Corollary 3.13, p. 26] shows that p∗1(f)[ℓn] = p∗2(f)[ℓ
n]. Now the collection {XK′ [ℓn]}n

forms a Zariski dense subset of XK′ , and it follows that p∗1(f) = p∗2(f). This proves

Theorem 95.

5.5.3 A descent lemma

The purpose of this subsection is to prove another descent result. This yields a second

and simpler proof of Theorem 95 and hence yields another proof of Theorem 94 using
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Ono’s approach.

Lemma 120. Let X and Y be k-schemes locally of finite type. Let {Xn}n≥1 be a sequence

of closed k-subschemes of X. Suppose that the scheme-theoretic closure of the image⨿
Xn → X is equal to X. Let K/k be a field extension, and f : X ⊗k K → Y ⊗k K a

K-morphism. If the morphisms fn := f |Xn : Xn⊗K → Y ⊗K are defined over k for all

n, then f is defined over k.

Proof. We first show that we can reduce the statement to the case where both X

and Y are affine. Let Ui and Vi be affine coverings of X and Y , respectively, such that

f(Ui ⊗ K) ⊂ Vi ⊗ K. Clearly, {Xn ∩ Ui}n≥1 is a sequence of closed subschemes of Ui

satisfying the same condition of the lemma. If each morphism fi := f |Ui⊗K is defined

over k, then we can glue fi to be a map g which is defined over k and one has g⊗K = f .

Write X = SpecA and Y = SpecB. Let In be the ideal of A defining the closed

subscheme Xn. The map f is given by a map also denoted by f : B ⊗K → A⊗K. The

assumptions say that the induced map fn : B ⊗k K → (A/In) ⊗k K is defined over k,

that is, fn(B) ⊂ A/In, and that the natural map A →
∏

nA/In is injective. Since the

image f(B) is contained in A ⊗ K and
∏

nA/In, it is contained in A. This proves the

lemma.

5.5.4 Second proof of Theorem 95

Let f ∈ HomK(XK , YK). Let ℓ be a prime different from char k. Since X[ℓn] and Y [ℓn]

are finite étale group schemes, the functor H(S) := HomS(X[ℓn]× S, Y [ℓn]× S) for any

k-scheme S is representable by a finite Z/ℓn-module scheme over k. In particular, one

has H(K) = H(k) for any primary field extension K/k. Thus, the restriction of f to

X[ℓn] ⊗k K is defined over k for any n. Since the collection {X[ℓn]}n≥1 of finite étale

group subschemes forms a Zariski dense subset of X and X is reduced, it follows from

Lemma 120 that f is defined over k.
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5.6 Bounds for splitting fields of tori

5.6.1 Splitting fields

Let T be an algebraic torus over a field k of dimension d. The group of characters of T .

denoted X(T ), is a finite free Z-module of rank d equipped with a continuous action of

the Galois group Γk := Gal(ks/k). Thus, one has a group homomorphism

ρT : Γk → Aut(X(T )) ≃ GLd(Z). (5.35)

The spitting field of T by definition is the smallest field extension kT of k such that T splits

over kT . Clearly, ker ρT = Gal(k̄/kT ) =: ΓkT and ρT induces a faithful representation of

Gal(kT/k) on X(T ). In particular, kT is a finite Galois extension of k. For studying

algebraic tori, it is useful to bound the degree of the splitting field of an algebraic torus.

For any positive integer d ≥ 1, let Max(d,Q) denote the maximal order of finite

subgroups in GLd(Q). Clearly, one has [kT : k] ≤ Max(d,Q) for any d-dimensional

algebraic torus T/k. The following lemma provides explicit bounds for [kT : k].

For any integer N ≥ 1, let T [N ] denote the N -torsion finite group subscheme of T .

When N is prime-to-char k, let k(T [N ]) be the field extension of k in ks jointing all the

coordinates of points in T [N ](ks), and let

ρT,N : Γk → Aut(T [N ]ks) ≃ GLd(Z/NZ). (5.36)

Clearly, k(T [N ]) is the Galois separable extension with Γk(T [N ]) = ker ρT,N .

Lemma 121. Let T be a d-dimensional algebraic torus over k.

(1) For any prime-to-char k positive integer N with N ≥ 3, one has kT ⊂ k(T [N ])

and [kT : k] |# GLd(Z/NZ).

(2) If char k ̸= 2, then [kT : k] | 2# GLd(F2).
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Proof. This follows from the fact that the reduction map GLd(Z) → GLd(Z/NZ)

induces an injective map on any finite subgroup G if N ≥ 3 and a map with ker∩G ⊂

{±1} if N = 2. This fact follows immediately from a lemma of Serre.

Definition 122. We say k is a Hilbertian field if it satisfies one of the following variants

of the Hilbert irreducibility property:

(a) For any irreducible and separable polynomial f(x, t) = ad(t)x
d+· · ·+a0(t) ∈ k(t)[x]

over k(t) of degree n ≥ 1, where x and t are indeterminates, there exist infinitely

many specializations t = t0 ∈ k such that f(x, t0) is an irreducible and separable

polynomial over k of degree d.

(b) For any n ≥ 1 and any finite separable extension Kt/k(t1, . . . , tn) of a rational

function field k(t1, . . . , tn) of transcendental degree n, there exist infinitely many

specializations t⇝ t0 ∈ k such that Kt0 is a finite separable extension of k of same

degree [Kt : k(t1, . . . , tn)].

It is well known that any global field is Hilbertian and if k is any field and K is a

finite extension of the rational field k(t) then K is Hilbertian (cf. [13, p. 155]).

We shall prove

Theorem 123. For any d ≥ 1 and any Hilbertian field k of characteristic zero, there

exists a finite Galois extension K/k with group isomorphic to a finite subgroup G ⊂

GLd(Q) of order Max(d,Q).

As an immediate consequence of Theorem 123, we attain the best bound for [kT : k].

Corollary 124. For any d ≥ 1, there exists a d-dimensional algebraic torus T over k

such that [kT : k] = Max(d,Q).
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5.6.2 Proof of Theorem 123

According to [14], the signed permutation group {±1}d ⋊ Sd ⊂ GLd(Q) attains the

maximal order of finite subgroups of GLd(Q) except for d ∈ {2, 4, 6, 7, 8, 9, 10}. The

exceptional cases are listed in Table 1 with maximal-order finite subgroups. Here W (D)

denotes the Weyl group of the root system with Dynkin diagram D.

d Maximal-order subgroup G Max(d,Q) = #G
2 W (G2) 12
4 W (F4) 1152
6 ⟨W (E6),−I⟩ 103680
7 W (E7) 2903040
8 W (E8) 696729600
9 W (E8)×W (A1) 1393459200

10 W (E8)×W (G2) 8360755200
all other d W (Bd) = W (Cd) = {±1}d ⋊ Sd 2dd!

Table 5.1: Maximal-order finite subgroups of GLd(Q)

Theorem 123 follows from the following proposition.

Proposition 125. Let G be the finite subgroup as in Table 1. For any Hilbertian field k

of characteristic zero, there exists a finite Galois extension K/k with group G.

Proof. Note that G is a finite reflection group W except d = 6. Regarding GLn(Q) =

GL(V ) and putting Vk = V ⊗Q k, where V = Qn and Vk = kn, one has GLn(k) =

GL(Vk). In this case, W ⊂ GLn(Vk) is also a finite reflection group acting on Vk. By a

theorem of Chevalley [7], the invariant subring k[x1, . . . , xd]W is k[I1, . . . , Id] for d invariant

homogeneous algebraically independent polynomials Ii over k. Therefore, the invariant

subfield k(x1, . . . , xd)
G = k(I1, . . . , Id) is a purely transcendental extension of k except

d = 6.

For d = 6, the invariant subring k[x1, . . . , x6]W (E6) is generated by invariant homoge-

neous polynomials I2, I5, I6, I8, I9, I12 of degrees 2, 5, 6, 8, 9, 12, respectively. The element
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−I ∈ G maps Ij 7→ (−)jIj. Thus, k[x1, . . . , x6]G = k[I2, I6, I8, I12, I
2
5 , I5I9, I

2
9 ] and hence

the fixed subfield k(x1, . . . , x6)
G = k(I2, I6, I8, I12, I

2
5 , I5I9) is rational over k.

We have proved that k(x1, . . . , xd)G is rational over k for all d. By the Hilbert ir-

reducibility property, there exists a finite Galois extension K of k with Galois group

isomorphic to G.

Consider pairs (Γ, ρ) which consist of a finite group Γ together with a group monomor-

phism ρ : Γ → GLd(Z) for some positive integer d. Two such pairs (Γi, ρi : Γi → GLdi(Z))

(i = 1, 2) are said to be equivalent if d1 = d2 and there exist an automorphism α : Γ1
∼−→

Γ2 and an element g ∈ GLd1(Z) such that gρ1(γ)g−1 = ρ2(α(γ)) for all γ ∈ Γ1. Similarly,

we consider pairs (Γ, ρQ : Γ ↪→ GLd(Q)) and define equivalence classes on all such pairs

in the same way. Denote by T (resp. TQ) the set of equivalence classes of pairs (Γ, ρ)

(resp. (Γ, ρQ)) as above.

To any algebraic tori T over k we associate a triple (kT ,Gal(kT/k), ρT ), where kT is

the splitting field of T , Gal(kT/k) is the Galois group of kT/k, and ρT : Gal(kT/k) →

GLd(Z) (d = dimT ) is the faithful representation induced by (5.35). By (5.3), the triple

(kT ,Gal(kT/k), ρT ) determines T up to isomorphism. The pair (Gal(kT/k), ρT ) is called

the type of T , which is uniquely determined by T up to equivalence. Thus, the association

(Gal(kT/k), ρT ) to T induces a map from the set of isomorphism classes of tori over k

to T . The pre-image of each type (Γ, ρ) consists of all finite Galois extensions k′ of k in

ks such that Gal(k′/k) ≃ Γ. Let ρT,Q : Gal(kT/k) → GLd(Q) denote the representation

induced by the inclusion GLd(Z) ⊂ GLd(Q). Then the association (Gal(kT/k), ρT,Q) to

T induces a map from the set of isogeny classes of tori over k to TQ, and the pre-image

of (Γ, ρQ) is the same as that of (Γ, ρ).

For any positive integer d, denote by Td ⊂ T (resp. Td,Q ⊂ TQ) the subset consisting

of all pairs (Γ, ρ) (resp. (Γ, ρQ)) of degree d. It is obvious that #T1 = 2 and #T1,Q = 2.

We know from [42] and [40] that #T2 = 17 and #T3 = 74. Finite subgroups of GLd(Q)
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up to conjugate for d ≤ 4 are classified in [5], and we have #T3,Q = 32 and #T4,Q = 227

(also see [25, pp. 54, 69]).
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