Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 數學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/1225
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor林太家
dc.contributor.authorHsin-Hsiu Tsaien
dc.contributor.author蔡欣修zh_TW
dc.date.accessioned2021-05-12T09:34:31Z-
dc.date.available2020-06-26
dc.date.available2021-05-12T09:34:31Z-
dc.date.copyright2018-06-26
dc.date.issued2018
dc.date.submitted2018-06-21
dc.identifier.citation[1] M.Z. Bazant, K. Thornton, A. Ajdari, Diffuse-charge dynamics in electrochemical systems, Phys. Rev. E 70, 021506 (2004).
[2] J. Bikerman, Structure and capacity of the electrical double layer, Phil. Mag. 33, 384-397 (1942).
[3] I. Borukhov, D. Andelman, H. Orland, Steric effects in electrolytes: a modified Poisson–Boltzmann equation, Phys. Rev. Lett. 79, 435 (1997).
[4] B. Eisenberg, Y. Hyon, C. Liu, Energy variational analysis of ions in water and channels: field theory for primitive models of complex ionic fluids, J. Chem. Phys. 133, 104104 (2010).
[5] Lawrence. C. Evans, Partial Differential Equations, American Mathematical Society (1998).
[6] M Fixman, The Poisson–Boltzmann equation and its application to polyelectrolytes, J. Chem. Phys. 70, 4995 (1979).
[7] F. Fogolari, A. Brigo, H. Molinari, The Poisson–Boltzmann equation for biomolecular electrostatics: a tool for structural biology, J. Mol. Recognit. 15, 377-392 (2002).
[8] David Gilbarg and Neil. s. Trudinger, Elliptic Partial Differential Equations of Second Order, Springer (2001).
[9] Chiun-Chang Lee, Hijin Lee, YunKyong Hyon, Tai-Chia Lin and Chun Liu, New Poisson–Boltzmann type equations: one-dimensional solutions, Nonlinearity 24, 431–458 (2011).
[10] Qing Han and Fanghua Lin, Elliptic Partial Differential Equations, American Mathematical Society (2000).
[11] Bo Li, Pei Liu, Zhenli Xu and Shenggao Zhuo, Ionic size effects: generalized Boltzmann distributions, counterion stratification and modified Debye length, Nonlinearity 26, 2899-2922 (2013).
[12] Tai-Chia Lin and Eisenberg. B, Multiple solutions of steady-state Poisson-Nernst-Plank equations with steric effects, Nonlinearity 28, 2053-2080 (2015).
[13] W. Liu, Geometric singular perturbation approach to strady-state Poisson-Nernst-Planck systems, SIAM J. Appl. Math., 65(3), 754–766 (2005).
[14] P.A. Marcowich, The Stantionary Semiconductor Device Equations, Springer-Verlag (1986).
[15] Robin Nittka, Regularity of solitions of linear second order elliptic and parabolic boundary value problems on Lipschitz domains, J. Differential Equations 251, 860-880 (2011).
[16] W. Rocchia, E. Alexov, and B. Honig, Extending the Applicability of the Nonlinear Poisson−Boltzmann Equation: Multiple Dielectric Constants and Multivalent Ions, J. Phys. Chem. B, 105 (28), 6507–6514 (2001).
[17] Kim A. Sharp and Barry Honig, Calculating Total Electrostatic Energies with the Nonlinear Poisson-Boltzmann Equation, J. Phys. Chem. 94, 7684-7692(1990).
[18] J. Zhang, X. Gong, C. Liu, W. Wen and P. Sheng, Electrorheological Fluid Dynamics, Phys. Rev. Lett. 101(19), 194503 (2008).
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/handle/123456789/1225-
dc.description.abstract研究離子擴散的行為在很多應用問題上扮演重要的角色,如生物離子通道等等,而泊松-玻爾茲曼方程便是描述此行為的模型且被廣泛應用。隨著奈米科技的發展,許多新的結果被發現。然而,這些結果卻無法用泊松-玻爾茲曼方程解釋,因此有了Bo Li 的模型。本論文研究Poisson-Nernst-Planck 方程with steric effects 的穩定態,New Poisson-Boltzmann 方程with steric effects,並且證明可以從此模型推得Li 的模型。zh_TW
dc.description.abstractStudying the transport of ions plays an important role in many problems, such as ion channels. Over the past decades, original Poisson-Boltzmann (PB) equation was widely used to describe the electrolyte solutions. However, due to the development of nanotechnology, some new experiment outcomes were found but could not be described. Therefore, Li’s model was constructed. In this work, we further investigate a new Poisson-Boltzmann (PB) type equation called the PB_ns equation, which is derived from the steady-state of the Poisson-Nernst-Planck system with steric effects and shows that PB_ns equation can reduce to Li’s model.en
dc.description.provenanceMade available in DSpace on 2021-05-12T09:34:31Z (GMT). No. of bitstreams: 1
ntu-107-R05221004-1.pdf: 723994 bytes, checksum: 2abbe903fd0fa2637d3bac8735d0b10f (MD5)
Previous issue date: 2018
en
dc.description.tableofcontents口試委員審定書 i
致謝 ii
摘要 iii
Abstract iv
1 Introduction 1
2 Existence and Uniqueness 6
2.1 Algebraic Equations 7
2.2 Differential Equation 13
3 Limiting Behavior of ϕ and ci 24
3.1 Uniform Boundness of ϕ and ci 25
3.2 Proof of Theorem 3.1 30
4 Generalization of G 37
5 Conclusion Remark 43
dc.language.isozh-TW
dc.subject強交互作用zh_TW
dc.subject泊松-玻爾茲曼方程zh_TW
dc.subject泊松-能斯特-普朗克方程zh_TW
dc.subject新泊松-玻爾茲曼方程zh_TW
dc.subject位阻效應zh_TW
dc.subjectPoisson-Boltzmann equationsen
dc.subjectstrongly repulsive interactionsen
dc.subjectsteric effectsen
dc.subjectNew Poisson-Boltzmann equationsen
dc.subjectPoisson-Nerst-Plank equationsen
dc.title考慮粒子大小與強交互作用之新泊松-玻爾茲曼方程zh_TW
dc.titleNew Poisson-Boltzmann Models with Steric Effects and
the Strongly Repulsive Interactions
en
dc.typeThesis
dc.date.schoolyear106-2
dc.description.degree碩士
dc.contributor.oralexamcommittee陳俊全,李俊璋
dc.subject.keyword泊松-玻爾茲曼方程,泊松-能斯特-普朗克方程,新泊松-玻爾茲曼方程,位阻效應,強交互作用,zh_TW
dc.subject.keywordPoisson-Boltzmann equations,Poisson-Nerst-Plank equations,New Poisson-Boltzmann equations,steric effects,strongly repulsive interactions,en
dc.relation.page45
dc.identifier.doi10.6342/NTU201801038
dc.rights.note同意授權(全球公開)
dc.date.accepted2018-06-22
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept數學研究所zh_TW
顯示於系所單位:數學系

文件中的檔案:
檔案 大小格式 
ntu-107-1.pdf707.03 kBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved