R B S IR
R
Department of Mathematics

College of Science

National Taiwan University

Master Thesis

TReAF AP ER T T 2 A -g f WE S AR
New Poisson-Boltzmann Models with Steric Effects and

the Strongly Repulsive Interactions

= / Ve

K
E

&

Hsin-Hsiu Tsal

AR e M L S W L
Advisor: Tai-Chia Lin, Ph.D.

PR R 107 # 6 7

June 2018

doi:10.6342/NTU201801038



B 3L 2 K2 rE 2 i
Uéiééﬁyéﬁgﬂia
FREFANABREERZH AR LS 2

New Poisson-Boltzmann Models with Steric Effects and the
Strongly Repulsive Interactions

A X fh RKAkR1E B (R05221004) LRI EEKRE $# 2
TRZAB L2 HNER 107 £ 6 A 8 H??Q'F%]:g‘aihéf-ﬁgéﬁ
WA ORI 0 45 LIE A

S A %

[]/% / &*E z—i?%(#x )

Vér

(&%)

RN

/\f\p
Dx\

—

)

J
A1

AEXIE AR (% 4%)
(REBHZREREAFRE)

d0i:10.6342/NTU201801038



3R

E#Rs fXfahmedp o RAREET 245487 LFE G0 3o “ﬁ% dl
o EEFS KEAGBIEHITT BALF S o R G R E oA S0l
PEF AN DAL PR B A RTengEF > 4 F] 5 R R A ¥ Poisson-Boltzmann
A2F L 20 PRIE R HR AW F R o B o ME £ 8N - Aot R s S AR4p B

PECEAFLIIETURY cFLyFI AR hwmY A FNAD

Rorirf et ppa g £

2018.06.30

i d0i:10.6342/NTU201801038



i &

PR HACNTE AR R R PFER S s el P A
Fomiph-B ol P RTEARELF ORI ARAR LR cEFZAPH
FE R F LRGSR FR o R R EErEZY PR WE SRR
> Fpt3 7 Bo Li ehficd] o A% ~ # 1 Poisson-Nernst-Planck = #2 with steric
effects 4% _fs » New Poisson-Boltzmann = #% with steric effects » ¥ ® P ¥ 12

AR Li e e

BAES AP TR AR i MR P A A AT PR R

£ R R T ER

iii d0i:10.6342/NTU201801038



Abstract

Studying the transport of ions plays an important role in many problems, such as
ion channels. Over the past decades, original Poisson-Boltzmann (PB) equation was
widely used to describe the electrolyte solutions. However, due to the development
of nanotechnology, some new experiment outcomes were found but could not be de-
scribed. Therefore, Li’s model was constructed. In this work, we further investigate
a new Poisson-Boltzmann (PB) type equation called the PB_ ns equation, which is
derived from the steady-state of the Poisson-Nernst-Planck system with steric ef-

fects and shows that PB_ ns equation can reduce to Li’s model.

Keywords: Poisson-Boltzmann equations, Poisson-Nerst-Plank equations, New Poisson-

Boltzmann equations, steric effects, strongly repulsive interactions.
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1 Introduction

Studying the transport of ions plays an important role in many problems, such as
semiconductors, electro-kinetic fluids, colloidal systems in physics and ion channels
in biology [1,4,12-14,18]. Over the past decades, original Poisson-Boltzmann (PB)
equation was widely used to describe the electrolyte solutions [6,7,16,17]. However,
due to the development of nanotechnology, experts found that without considering
the steric effects of ions, some experiment outcomes can not be described. The im-
portance of steric effects raised up. Particularly, Bikerman’s model [2], Andelman’s
model [3] and Li’s model [11] are all well-known models. The first two models con-
sider that all the species are of the same ion size and Li’s model goes further to
consider the different ion size.

In this work, we further investigate a new Poisson-Boltzmann (PB) type equation
called the PB_ ns equation, which is derived from the steady-state of the Poisson-

Nernst-Planck system with steric effects [12] which is represented as

log co + gooco + go1c1 + goac2 = Uo, (1.1)
loger +gioco+g1ic1 +g12c2 = q19 + M, (1.2)
logea + g20c0 +821¢1 + 82202 = —q2¢ + 2, (1.3)
82A¢ =qiC1 —q2C2 in Q, (1.4)

0 + 192 = Bpg on IQ. (1.5)

Q C R" is an open bounded smooth domain. ¢ is the electrostatic potential. cq
is the concentration of water which is the solvent. ¢y, ¢; are the concentration of
the anion and cation respectively. ¢; is the valence of the ith ion species and is
positive for i = 1,2. y; is the chemical potential of the ith ion species for i =0,1,2.
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gij = gji~ €ijla —I—aj)12 is a positive constant depending on ion radii a;, @; and the
energy coupling constant g; of the ith and jth species ions, respectively for i, j =
0,1,2. @pg := Ppa(x) € C?(dQ) is the extra electrostatic potential at the boundary.
€ is the dielectric constant and 7, is a nonnegative constant depending on €. Since
0 < e << 1 is fixed in this work, without loss of generality, we may assume € = 1.

Hence, (1.4)-(1.5) becomes

AP = gic1 — qrcr in Q,
¢ +T]g—v = (pq ON Q. (17)

We will prove that if G = (g;;) is nonnegative definite and

800 8ot
det >0,

820 821
then ¢ and ¢;, for i =0, 1,2 exist and are unique (c.f. theorem 2.1), and the solution
can be obtained by Newton’s method (c.f. theorem 2.4). In particular, we consider
gij, for i, j=0,1,2, as a function of A. That is, given A, there exists one set of g;;
and hence we obtain the corresponding ¢a, ¢; A, for i =0,1,2. Moreover, we assume:

(A1) B0 — &1L _ %2 _3, 50 =12

0 01 02

oq
(=}
oo
oo

(A2) gi;j=8&;A>0, i,j=0,1,2.
(A3) Ni:lli/\+ﬂi, .ai>07 1207172

(A4) 2’l.i:'“()_ul‘hj'l:()a i=1,2.
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where g;;, fi;, fl; are positive constants. Under this assumption,

800

G = gg’, where g = go1 |

802

and

A =50 g, =82

goo’ oo
Moreover, we can observe that u;, which represents the chemical potential, is positive

as A large enough. Also, it is clear that G is nonnegative definite and

800 801
det > 0.

820 821

If we multiply 4; to (1.1) and subtract it by (1.2),

Alogcop —logeip = —q10 + ;. (1.8)

Multiplying A, to (1.1) and subtracting it by (1.3),

M logcoa —logean = 29 + I, (1.9)
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Hence, the PB_ ns equations become

logco A + gooco.a + go1C1,A + 802C2,A = Mo,
Alogcop —logeip = —q1oa+ 1,
Mlogeon —loger A = g2 + I, (1.10)
AP = gic1 A —qac2. A in Q,

Or+NE = ¢y on 0.

Here, @t; = floA; — fl;, i = 1,2. Passing A — oo, (c;j A, 9a) converge uniformly to (cg;, ¢*)

for i=0,1,2 and g5 — ¢* in C>*(Q) (c.f. Theorem 3.1), where (cj, 9*) satisfies

goocy + go1¢] + go2cs = Ho,
Mlogey—loge] = —q19* + 1y,
A logey —logcs = q20™ + 1y, (1.11)
A9* = qic] — qac5 in Q,

(P*—Fn%iv = (pg on IQ.
This implies

1/~ ~ ~
€5 = 7g5 (Fo — 80167 — §0263),

1 1og goocy — log gorct = —q10* + (I, +log oo — log go1),
% loggOOCEk) - 10g§02C§ = Q2¢* + (ﬁz + loggo() — IOggOQ),
AP* = qic] — qacs in Q,

TS
0" +N% = $pa on IQ.

which is Li’s model. This shows that the PB_ns model can reduce to Li’s model by

passing limit.
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There are two main difficulties when dealing with the limiting behavior of PB_ ns
equations. Firstly, the PBns model is an differential equation coupled with algebraic
equations. Unfortunately, we can not solve them explicitly. Therefore, to deal with
the differential equation, we have to consider the algebraic equations and vice versa.
Secondly, there are too many unknown parameters such as cg, c1, ¢2, and ¢. To
overcome this difficulty, we hope that we can transform ¢y, ¢;, and ¢ into functions
of ¢p, and this can be achieved by (1.8)-(1.9) plus maximal principle estimate (c.f.
proposition 3.2).

The following are the main procedures when coping with limiting behavior.

1. The existence and uniqueness of ¢ and ¢;, for i =0,1,2 (c.f. section 2).

If G = (gij) is nonnegative definite and goog12 > g01820, then the PB_ns equations
have the unique solution. Moreover, the unique solution still can exists even though
G is not nonnegative definite (c.f. section 4).

2. Maximal principle estimate (c.f. proposition 3.2).

With maximal principle estimate, we can transform ¢ into a function of cg.

3. cia(9a) and ¢ are uniformly bounded to A, for i=0,1,2 (c.f. proposition 3.3).
The advantage of uniform boundedness is that a uniformly bounded term multiply
a term which converges to 0 still converges to 0. Note that ¢; o(¢) is still uniformly
bounded, for i =0, 1,2, provided ¢(x) is bounded (c.f. proposition 3.4).

4. (cin,9Pa) converge uniformly to (cj, ¢*), for i=0,1,2 (c.f. theorem 3.1).
Because ¢; o(@4) and ¢ are uniformly bounded to A, unformally, differentiating the
first equation of (1.10) by A, then since lOgCOTA_uO — 0 as A — oo, we can see the
uniform convergence of (1.10) to (1.11).

5. 0p — ¢* in C>*(Q) (c.f. theorem 3.1).

5 d0i:10.6342/NTU201801038



By the standard elliptic theorem,

[0A — 0" [2,0:0 < C(|9r — 0" o.0 + 1 fa () — F*(97)0,0:0)5

where fo = qicia —qacon and f* = gic] — qac5, C is a constant. This result thus

follows from the uniform convergence of (c; o,94), for i =0,1,2, and the convergence

of [fa(¢a) = f*(97)] a2 to 0.
This paper is organized as follows: Firstly, we prove the existence and unique-
ness of ¢ and c¢;, for i =0,1,2. Secondly, we discuss the limiting behavior. In the

last of this work, we generalize the assumption that G is nonnegative definite.

2 Existence and Uniqueness

The PB free energy can be denoted as

E[9,co,c1,02) = Jo X7 o(cilogei+ 8c?) + gorcoct + goacoca + g12c1€2

—(o+1)co— (19 + 1+ Vet — (—q29 + o + 1)er — 5|V ?dx.

It is clear that 6,E =0, for i =0,1,2, and §E = 0 imply (1.1)-(1.3) and (1.6)

respectively. The existence and uniqueness theorem is as follows:

Theorem 2.1. Let Q be a bounded smooth domain and ¢pg € C*(dQ). Suppose that

G is nonnegative definite and

800 8ot
det >0,

820 &21
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then (1.6) has a unique solution ¢y € C*(Q)NC>%*(Q) for some o >0 with the

boundary condition (1.7).

To prove this theorem, we divide it into two parts, algebraic equations part and

differential equation part.

2.1 Algebraic Equations

In the beginning, we prove the existence of ¢;, for i =0,1,2, by intermediate value

theorem.
Theorem 2.2. For any fized ¢, there exists ¢;, i =0,1,2, satisfying (1.1)-(1.3).

Proof. For any fixed ¢ € R, let up =o, 190 + 1 =B, —g20 + o = y. Then (1.1)-

(1.3) become

log co + gooco + go1¢c1 = A — go2¢2, (2.1)
logcer + gioco+g11c1 = B —g12c2, (2.2)
logcy + gooco + g21¢1 + 82202 = 7. (2.3)
Given any ¢z, by (2.1),
1
c1 = — (o0 — goaca —logco — gooco),
801

and

logco+ gooco < & — gnca.

Since logco + gooco is monotone increasing to cg, we obtain that co has an upper

bound M = M(c;), where logM + gooM = ot — gpaca. Observe that ¢y — 0 as co — M.

7 d0i:10.6342/NTU201801038



Let

1

eur (00— go2c2 — logco — gooco)

hi (co) = log(g-(0t — goac2 —log o — gooco)) +g10¢0 +
=B+ 81202
€1

= log(; (—1ogco — gooco + & — goaca)) — Gt (g co + gooco) + 8100 + it (& — goac)

—B +gic.

Then hy — o« as ¢cg — 0 and h; — — as ¢g — M. By intermediate value theorem,
there exists ¢{) € (0,M) such that h(cj)) = 0. Hence we have the result that for given
2, there exists co = co(c2), ¢1 = c1(c2) such that (2.1) and (2.2) hold.

The last step is to solve ¢; by (2.3). Observe first that ¢y and ¢ are bounded if
¢y is bounded by (2.2). Secondly, co — 0 and ¢; — 0 as ¢; — o by (2.1) and (2.2)

respectively. Let

ha(c2) = logca + ga0co + g21¢1 + 82202 — 7.
Then hy — —o as ¢o — 0 and hy, — « as ¢p — co. By intermediate value theorem,
there exists ¢§ such that hy(c3) =0 and we complete the proof. |

Next, we prove the uniqueness of ¢; for fixed ¢ € R by the nonnegative definiteness

of G = (g;j). This means c; is a function of ¢, for i =0,1,2.

Theorem 2.3. If G = (g;;) is nonnegative definite, then c; is a function of ¢, for

i=0,1,2.

8 d0i:10.6342/NTU201801038



Proof. For any fixed ¢, let

< <
1 2
= 7| g
Cé )

logd | +G(c -)=1|o

T

Y

Multiplying (¢! —c?)

+ (' =ATG( - ) =o0.

This implies

9 d0i:10.6342/NTU201801038



Hence ¢! = ¢2. |

Remark 2.1. We have known that c; is a function of ¢, fori=0,1,2. In particular,

if G is nonnegative definite and consider f(cq,c1,¢2,0) = (f1, f2, f3), where

f1 =1logco+gooco + goic1 + goac2 — Mo,
fr=logcr+gioco+giict +812¢2 —q19 + Uy,

f3 =logca+gooco + g21¢1 + 82202 +q20 — o,

then det[%] =M >0 (c.f. proposition 2.5), where

1
20 T 800 801 802

M = det 810 $+g11 g12

£20 21 é + 822

Since £ is a smooth function, by implicit function theorem, c¢; is a smooth function

to ¢, fori=0,1,2.
Numerically, we can use Newton’s method to solve the algebraic equations.

Theorem 2.4. If the initial guess is near the root of (1.1)-(1.3) enough, then the

Newton’s method converges to the root.

Proof. Consider an arbitrary closed ball B of the root. Let

S logco + gooco + go1¢1 + goz2c2 — Ho
F(co,cr,e2) = | fo | = | loger +gioco+ gric1 +g12ca — q19 — i
/3 logca 4+ gr0c0 +821¢1 + 82260+ G20 — o

10 d0i:10.6342/NTU201801038



Applying Newton’s method,

[ C(()n+1) | [ c(()n) ]
e P B R R
an+1) an)
%+g00 8o1 802
where A(co,c1,¢2) = 810 % +811 812
| 82 821 %4-822 |
- N i,
Let | &, | be the root of F =0. Then
¢2
(()n—l—l) %o
c§n+1) —| &
- én—i—l) - - &, -
c(()n) ¢o
I B N RS
an) &)
_ c(()") |1 ¢o _ _ f](éo,él,éz)—fl(cf)”),cg”),cé")) |
— C(ln) —| & —i—A_l(c(()n),cgn),an)) fz(éo,él,éz)—fz(c(()n),c(ln),cgn))
Y & Feo.er.62) = faleg” el 5

Applying the mean value theorem component by component,

11 d0i:10.6342/NTU201801038



(()n+1) 2o
§n+1) — | &
_ gn+1)_ _62_
Cén) ¢o c(()n) ¢o
=| || a [ AT S| ™ || e )
an) [65) cg") éo
_c(()”)_ _@0_
= (=AY el Al e e (| W | = | e |)
an) ér
=A@ |0 ek o (0 e
where ¢} € (cl(n),éi)for i =0,1,2. Therefore,
-anﬂ)_ -60-
e | =L e [
C§n+1) &
<A™ (Co ,cl, )HH 0 %—% 0 ] an) — | & I
_ 0 0 C;I"V%_ _cg")_ _62_

Since B is compact, there exists a constant M such that [|A~! (c(() ),cg ,C )|| <M.

12 d0i:10.6342/NTU201801038



Hence, if (n) | is closed enough to ¢ |- then

1
an) 62
(()n-l—l) 2o C(()n) 2
1
1 e | =] [H<sl| & | =] & |
CghLl) 52 an) @2
(n+1)
o

This implies | "1 | is also in B and we can repeat this process until it converges.

2.2 Differential Equation

Counsider the functional
1 2 0 00
Eqlo] =5 [ V9Pdr+ [ F(en?.e2)dx+By9),

where Z—g = qic1 — qacy and F(¢) is strictly convex to ¢ which will be defined in

proposition 2.6.

5, 10] = 27 Joa (9 — ®pa)?dS if >0,
0 ifn=0.

Hence, (1.6)-(1.7) can be regarded as the Euler-Lagrange equation of Ey. To prove

the existence and uniqueness of ¢, we need the monotonicity of ¢; and ¢; to ¢.

13 d0i:10.6342/NTU201801038



Proposition 2.5. If G is nonnegative definite and

dey My dey
then a0 = M >0, a0 =

% +800  8oi 802
M=det| ¢ e en
| 82 821 i +822 |
% +8w O 802
My=det| g g g12
| 80 ¢ é T8 |
ctgn g 0
M = det 210 %+g11 q1
i 820 821 —q2 |

Proof. Differentiating the system

1
20 T 800

£10

820

By Cramer’s rule,

det

8o1
1
a—f—gll

821

dey _
dp

800 8ol

820 821

M
=37 <0, where

802

812

|
o T8» |

M, dey
M’ de

14

d C0

de

dCl
d¢

dCz
de

(1.1)-(1.3) with respect to ¢, then

q1

-

d0i:10.6342/NTU201801038



If G is nonnegative definite, then

goo &o1 800 802 811 812
det ,det ,det

810 811 820 822 821 822

This implies that

1 _
M= + 800 n 811 i 822 +g00811 801810
cpC1C2 Cc1C2 coC2 coC1 (6]

+800g22—802g20+g11g22—g12821 +detG > 0

C1 Co

1 q1822 + 92812 41800
M, = 1 + + +q1(800822 — 802820) +g2(g00&12 — g02810) >0 >
coC2 o )

q2 491821 1T92811 92800
My =— — — —q2(800811 — &01810) — q1(800821 — 801820) <O -
cocl co ci

dey My, de M
dp M~ dp¢ M

Secondly, we need to define F(e91?,¢792?) in the functional.

Proposition 2.6. Let (X1,X3) = (e19,e792%). Let G be nonnegative definite and

800 &o1
det >0

820 821

Then there exists a differentiable function F(@) = F(X1,X2) such that

dF
7 = q1C1 — q202.

d¢

15 d0i:10.6342/NTU201801038



Moreover, F(¢) is a strictly convex function to ¢.

Proof. Let (c1,¢2) = (01X1,6:X5) for some 0 = 0;(¢) and 6, = 6,(¢). Then (1.1)-

(1.3) becomes to

logco + gooco + g0101.X1 + 8026:X2 = Lo,
log 61 +go1co +81101X1 +81260X0 = Uy, (2.4)

log 6> + go2co + 82161 X1 + 8226 X2 = Uy

Differentiating (2.4) with respect to X; and X5, we obtain

wtgo  goXi 802X2 S—fg 80161
g1 stenXi gk 3—)‘2 =7 | gnb |-
R 821X1 9L2+822X2 11 3—,‘2 | I 82101 |
and _ - - _ .
% +800  guiXi 802X2 3—;6(2 802602
g1 stenXi  giXe 3—5; =7 | gnt
L g21X1 9%+822X2 11 g—fé | I 82260, |

Applying Cramer’s rule,

= —(cy 812+ 800812 — 801802);

X, X, A
where
% + &oo 801X1 802X2

A = det go1 9% +guXi  g1Xo

802 g12X1 9% + 822X

16 d0i:10.6342/NTU201801038



1
20 T 800 801 802

= X1 X det go1 ﬁ-’-gn g12 > 0.

802 812 ﬁ + 822

Let f(Xl,Xz) = (91 (X],Xz), 92(X1,X2)). Then

20, 96

“ox o

Vxf
By the curl-divergence theorem, f is a gradient of some F : R> — R. That is,
VF(X1,X2) = f(X1,X2) = (61(X1,X2), 02(X1,X2)).

Therefore,

dF _ dF dX N dF dX,
d¢ dX, dop dX> ¢

= 0191X1 — 622 X2 = q1c1 — qaca.

Moreover, proposition 2.5 implies

cF_ e do
d¢2_chd¢ q2d¢

0.
Hence F is strictly convex to ¢. |
To prove the existence of ¢, we apply the standard direct method to find the

minimizer ¢y in Hy (), where

H'(Q) if n>0.
Hn —

{ue HY(Q):u—¢py € H}(Q)} if n=0.

17 d0i:10.6342/NTU201801038



Hence ¢ satisfies

/Q[V%VV +(q1¢1(¢0) — q2¢2(90) )vldx + By[o;v] = 0, (2.5)
for any v H'(Q) if n >0 and v € H}(Q) if n =0 where

i Joa (@0 — @pa)vdS if 1 > 0.

0 ifn=0.

én [00:v] =

The theorem is as follows:

Theorem 2.7. Let G be nonnegative definite and

800 801
det

820 821

Then Ey has a minimizer ¢o € Hy.

Proof. It n > 0, then

/ |V¢|2dx+/ F(e1? o7 %9) dx—i—%/ (0 — Bpg)>dS.

for ¢ € HY(Q).
Claim: Ey[¢] is coercive on H'(Q).
Since F is strictly convex to ¢ and gjc; > gacy for some large ¢, there exists a

constant m € R such that

/ F(e?? e~ dx > m. (2.6)
Q

18 d0i:10.6342/NTU201801038



On the other hand, by Young’s inequality,

3 JolVOPdx+ 55 [50(9 — 9pa)’dS

> Cp (Jo [VOIPdx+ [50[97dS) — % [5a|@pal*dS,

where Cp = min{%,ﬁ}. By (2.6)-(2.7),

Enlo] > Cy (/§2’V¢’2dx+/(99’¢|2d‘9) — %/aQWMIZdS—i—m. (2.8)

Note that ¢py € L?(dQ). To complete the claim, we also need Friedrichs’ inequality.

2 2 2 2 1
[1opar<c (/Q\vm at [ o ds), Vo e H'(Q), (2.9

where C is a positive constant depending only on the space dimension n and the
measures of Q and Q.

Let M >0 and ¢ € H'(Q) satisfying |En[¢]| < M. Then (2.8)-(2.9) immediately
give

191y 1= (107 +1voPax)” < clan

for some constant C(M). This prove the claim.

In accordance with the definition of an infimum, there exists a minimizing se-

quence {¢,}°_, C H'(Q) such that

n=1

lim Ep[¢,] =d:= inf Enlo]. 2.10
Jim Eylgn) =d = inf Eq[o] (210)

By (2.10) and coerciveness of En, we get sup [|@n /|1 (q) < eo. Along with (2.8), we

neN

may obtain sup [5q |¢,|>dS < eo. Consequently, there exists a subsequence of {@, }(for
neN

19 d0i:10.6342/NTU201801038



notation convenience, we still denote it by {¢,}) such that ¢, — ¢y weakly in H' ()

and ¢, — ['gy weakly in L?(dQ) as n — oo, where I'¢y is the trace of ¢y on dQ. Note

that ¢, — @y weakly in H'(Q) implies V¢, — V@ weakly in L?>(Q). Then by the

standard theorem, we have
liminf / Vo [2dx > / Vo |2dx,

liminf \q)n—q)bd!zdSz/ ITPo — Ppal*dS,
oQ Q

n—soo

and

r}l_r)I(}o(])n =@ a.e. in Q.

On the other hand, the Fatou’s lemma and (2.13) give

liminf [ F(¢,)dx > / F(¢o)dx.
Combining (2.10)-(2.12) and (2.14), we get

d = lim Ey (9] > Ey (0] > d.

Therefore, the minimum d is achieved at ¢y € H'(Q).

(2.11)

(2.12)

(2.13)

(2.14)

If n =0, then it becomes a Dirichlet problem. Thus by theorem 2 of [5], we get

the minimizer ¢ € {u € H'(Q) : u— ¢py € H}(Q)}.

To deal with the regularity of ¢, firstly, we let

f(9) =qic1(9) —qaca(9).

20

d0i:10.6342/NTU201801038



Since f is monotone increasing from —eo to eo which we can see from (1.1)-(1.3) and

proposition 2.5, there exists a unique s such that f(s) =0. Hence

T 9 —s) g #s,

)_
AD=F(0)=F(0)—f(s)=2 7
W —s)  itg=s,

This implies that ¢g is a weak solution of the equation

L8109 —s) i go £,

Up—s) it =y

A =

Here, we need some information to %

Proposition 2.8. There exists M > 0 such that |%€¢m| <M for all ¢ € R. In

particular, |]W| <M for all ¢1,¢» € R.

Proof.

df(9) _ dei  de
do —(J1d¢ Q2d¢

Using the same notation as proposition 2.5,

dey _ My
o M
a1, 9180+90812 | 018
coy T 2y 22+ M 41 (800822~ 802820) +42(800812— 802810)
T T 800 4 811 | %22 | %00811-801810_, 800822802820 ; 811822812821 ’
ccrez Terey T T T o L AT
dC2 _ ]ﬁ
o M
0 4181+9811 D8
— oy~ A =T g (200811 —801810) 41 (800821 —801820)
T 1800, 811 | 82 . 800811801810 , 800822802820 811822812821 :
cerea Terey tegey T T o R— Ty T e
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By (1.1)-(1.3), if ¢ — oo, then cg, ¢; — 0 and ¢; — 0. This implies that

dey  qi
— = 2 as ¢ —> oo,
a9 e
d
di(; — 0 as ¢ — oo.
Similarly,
dei —0as ¢ —
— as —o0
do ’
dey —q
—= 5 22 as ¢ — —oo,
a6 e 0

Since dj;(f) is continuous to ¢, there exists M > 0 such that \%] <M for all ¢ € R.

By mean value theorem, |%| < M for all ¢ €R. |

By proposition 2.8, % is bounded. Applying theorem 3.14 of [15], we

N

obtain ¢y € C*¥(Q) for some a > 0.

Consider A¢ = f(¢p) again. If n >0, then by proposition 2.8, for any x,y € Q,

_S(9o(x)) = f(9o(y)) _ o) —
|f(9o(x)) — f(9o(y))| = | 90(x) — 6o(y) (¢o(x) = ¢o(¥))| < M[¢o(x) — do(y)|-

Hence ¢g € CO¥*(Q) implies f € C»*(Q). By the standard elliptic theorem (c.f.

Theorem 6.31 of [8]), there exists a unique solution ® € C>%(Q). In particular,
[ Ivovss @) —qea@plds+ 3 [ @=opds=0 @15
for any v € H'(Q). If we subtract (2.5) by (2.15) and let v = ¢y — @, then
/Q V(o —‘D)|2dx+%/89(¢o —®)%dS =0

This implies V(o —P) =0 in Q and ¢y = P in trace sense on dQ almost everywhere.
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Hence ¢y = ® almost everywhere in Q. Since ¢y € C¥%(Q) and ® € C>*(Q), ¢y =D
on Q. This shows that ¢y € C>*(Q). Applying the standard elliptic regularity
theorem (c.f. Theorem 6.17 of [8]), g9 € C*(Q) NC>*(Q). Similar argument can be
applied for 1 =0 (c.f. Theorem 6.14 of [8]).

At last, we prove the uniqueness of the solution. Suppose ¢1,¢, € C*(Q)N
C>%(Q) are two distinct solutions of (1.6)-(1.7). Subtracting (1.6) for ¢ = ¢, by
(1.6) for ¢ = ¢;, multiplying ¢; — ¢ and then integrating it over Q with integration

by parts and the fact (¢; — @) + n%(m —¢)=0o0n dQ,

Jo V(91— ¢2)|2dx+ % L0 (91 — ¢2)%dS
+q1 Jo(c1(91) —c1(92))(¢1 — ¢2)dx
—q1 Jo(c2(91) — c2(¢2)) (¢1 — §2)dx = 0.

By proposition 2.5,

q /9(61(%) —c1($2)) (91 — 2)dx— q2 /Q(Cz(%) —c2(42)) (91 — ¢2)dx > 0.

Therefore,

[ 961~ ¢2)Par-+ % [ @—g:pas <o,

which implies ¢; = ¢, in Q.
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3 Limiting Behavior of ¢ and c;

In this section, we assume:

o
=)
3
o9
2
o

(A2) glj:gle>Oa l:.]:(),l?z
(A3) W= LA+, >0, i=0,1,2.

<A4) 2’l.a()_.al:()a i=1,2

where g;;,, fl;, fli are positive constants. Under this assumption,

800

G = gg', where g = 201

802

Since, it is clear that G is nonnegative definite and

800 8ol
det >0,

820 821

the existence and uniqueness of ¢ and ¢;, for i=0,1,2, can be asserted. As a result,

we can further consider the limiting behavior. The theorem is as follows:

Theorem 3.1. Let Q be a bounded open smooth domain in R" and suppose that

(A1) — (A4) hold. Then
(i) (cin,Pa) = (¢}, 0%) uniformly, for i=0,1,2.

(ii) ¢n — 0* in C>4(Q).

where (cf,9*) satisfies
g00cp + &o1¢1 + Zo2cs = o,
Mlogey—logey = —q1¢™ + 1y,
Alogey —loges = qa0™ + 1,

24
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AQ* = qi1c] —qac5 in Q, (3.4)

(P* +T[% = (Pbd on dQ. (35)

In particular, gp — @™ = 0(%) as A — oo,

3.1 Uniform Boundness of ¢ and ¢;

To deal with the limiting behavior, we should understand the order of ¢ and c;, for
i =0,1,2 with respect to A first. For any fixed A, according to (1.8), (1.9), we can

write

cl1 = efﬁl eql¢ (CO)AI ,
ey = e 229 (o) 2.

Hence (1.6) becomes

AP = gre e (co)M — gre 2929 (o) (3.7)

with the boundary condition (1.7).

Since ¢ is continuous on Q which is compact, the maximum and minimum exist.
To obtain the upper bound and the lower bound of ¢, we have two cases. One case
is that the extrema of ¢ happens in Q. In this case, we deal with it by (3.7). The
other case is that the extrema of ¢ happens on dQ. In this case, we deal with it by

the boundary condition. The following is the proposition.

Proposition 3.2. Let ¢y be the solution of (1.6) with boundary condition (1.7).

Then m* < ¢g < M*, where

1 A2 ,—1I,
. . . . qrcye
m’ = min rgbn¢bd,ngn log )

Q q1tq qlcgle—ﬁl
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1 A p—Hy
M* = max { max ¢p,, max log qz(Co))L R
90 Q 1+4q2 " qi(co)te

Proof. We only prove the lower bound part. The other part is similar. Since @y is
continuous in a compact set , there exists xo € Q such that ¢y(x) > @o(x) for all

x € Q. If xg € Q, then
0 < Ao (x0) = gre F1eN%00) [eq 9y (x0)) M — gre Fre™ 29000 [ (¢ (x0))]) 2.
This implies
gae e~ 00) (9o (x0)))%2 < gre PN N00) [y (o (x0))] .

Hence,

1 g2[co(9o(x0))]2e 2
do(x) > ¢o(x0) > p—— log 41 co(6o(x0) e T

If xp € dQ, then n%(xo) <0. By (1.7), ¢o(x) > ¢o(x0) > ¢pg. Combining these two

results, we complete the proof. [ |

Applying proposition 3.2, we can show that @4, c; A(¢a) are uniformly bounded.
To prove this proposition, Observe that if co(¢a) is uniformly bounded, then so
are ¢j A(QPa), c2a(9a) and ¢p by (3.6) and proposition 3.2. Hence, to obtain the

estimate, we consider (1.2) and replace ¢y A, c2 A and ¢a by coa.

Proposition 3.3. Suppose that (A1)-(A4) holds, then Px, cia(Pa) are uniformly
bounded in A. Moreover, c; A(9a) is uniformly bounded and away from 0 to A for
i=0,1,2.

Proof. According to proposition 3.2, there are four cases:
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i) min < < max .
(i) ag¢bd_¢A_aQ¢bd

Y2
. . < e < 1 (co,)"2e
(i) min@g < P < max 7 log e e
o U B2(con)2e "2
: — < <
(ifi) U%n e d1(cop) e Bl = PA < Max Ppg
~ o1 B2 (con)2e 2 1 0 (con)2e 2
) _ < < >
() mﬁm N1+q2 log qi(coa)*te M = On = mgx a1+ log qi(coa)*te M1

Claim: ¢ 5 has a uniform upper bound.

If cop > 1, then logcoa > 0, and hence by (1.1), goocoa < Mo. This implies
co.A < max{l, K °A+“"} which is uniformly bounded to A. Hence there exists cj; such
that coa < cy for all A sufficient large.

Claim: c¢p 5 has a uniform lower bound which is larger than 0.

By (1.2) and (3.6),

Ailogeo n — A flo+ A(Zrocon + 811 (con) e Fredi9 4 g1y (cop) 2e Fre™ 20 — fiy) = 0.
Using the inequality x >log(1+x) for x > —1, then
Acon—1)—Afo+Algiocon+g11(con) e Fre™ 1 g15(cop)2e Pre™ 2™ — 1] >0.

For case(i), since (3.8) holds for any point in Q, if mincoa < 1, then
Q

Al ((mﬁinco,/\)’l'" —1)—Aifip

+A[g10(minco A)* + g11(minco o) e F1e™M” 4 g5 (mincg o) e Fee=9™ — 3] > 0,
o Q Q
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i A il
where A4, = min{1,A;,A,}. Hence co > (%W)Am, where

T * T _ *
A=gio+gne Fe™ 4 gpe e

. N 1
This implies co o > min{1, (M:f—W)W} which is uniformly bounded to A. As a

result, there exists c¢,, > 0 which is independent of A such that co A > cp.

For case (iv), without loss of generality, we may assume Ay > A;. Since

q2 (mln CO’A)AQ*A'I efﬁ2

. . 1 q2(cop) e 2 1 Q
m" = min log — o~ log — ,
o q1tq2 qilcop)Me ™M qitq gre H
and
1 co A 2o 1 A=A ,— My
M* = max log 92( O’A)l — < log 42(cm) — ‘ ;
Q q1tq2 " qilcoa)Me M T qi+q qreH
we have by (3.8),
N ~ A —T0 qre P2y 1 A= (la—4)
11C07A+A[810C0,A+811(C0,A) le ﬂ1(%)q1+qz (CM)quz

_ o) 2 _
+g12(c0,A)12e—Nz(%)ql+qz (mﬁincO’A)qﬁqz 01 > 1 A+ flgds + As.

If minco o < 1, then
Q

_ iy a1 —492 _
ll (min CQ’A))L” + A(glo(rnin CO7A))L” —+ §11 (min C07A)A’167“1 (%) q1+92 (CM) q1+a2 (A2=21)
Q Q Q 1

Y _ e —12_ - N
ne—u2(‘12_7])q1+qz) > ‘LL1A—|—,LLO)~1 +A'17

+g12(r%n €o,A) T

— mi CAUSRRIPLY ; fu A+flod+2 7=
where A, = min{1, 4;, %2°2=} Hence co,q = min{1, (F=55==)% }, where

- —q
q1+47

—Hy _q =) _
e — e

qle_“l

o ~  —1,,492
B=_gio+ge " ( =
qie "1
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This implies that there exists ¢, such that coa > cp.
The arguments are similar for case (ii) and (iii) and we complete the claim.
Since cpa is uniformly bounded, then so are cja, caa and @p by (3.6) and
proposition 3.2.

Since what we are interested are not only ¢; (@) but also ¢; A(¢*), we need the

following proposition.

Proposition 3.4. Suppose that (A1)-(A4) holds, then c;A(@) is uniformly bounded

and away from 0 to A for i =0,1,2, provided ¢(x) is bounded.
Proof. The proof is the same as proposition 3.3 case (i). |

Remark 3.1. Since c;p(¢) is uniformly bounded and away from 0, for i=0,1,2,

provided ¢(x) is bounded. By proposition 2.5 and (A1) — (A2),

1 q1822 | 41800
dCl,A . Aﬁ CO,AC2,A + Co,A + A

do M 1 B0 _&n 4 _8»

COACLAC2A  CLAC2ZA ~ COAC2A  COACLA

_ C1,A 1T q1822C1,AC2 A+ 41800C0,AC1 A
1+ gooco.a +811¢C1,A +822C1.A

ClA ~ ~
At q1820c1 ac2,A+q1800C0,AC1,A
=71, - = =
A T 800C0.A+811C1 A+ 822€C1 A

b

which is uniformly bounded and away from 0. The same argument can be applied to

dCzJ\

a9 -

Now, we can start to prove theorem 3.1. In the beginning, we use (1.6)-(1.7) and
(3.4)-(3.5) to prove that ¢p — ¢* uniformly as A — co. Next, we can divide (1.1)

by A and subtract it by (3.1). Consequently, applying (3.6), we can show ¢ — ¢
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uniformly provided ¢ — ¢* uniformly as A — oo. This implies ¢; A — ¢; uniformly

also, for i = 1,2. Finally, we show

[SA(OA) — [F(07)] a0 — 0 as A — oo,

where fo = qic1 A —qaco A and f* = qic] — gac;. Therefore, by the standard elliptic

theorem and the uniform convergence results, ¢, — ¢* in C>%(Q).

3.2 Proof of Theorem 3.1

Proof. Claim: ¢p — ¢* uniformly.

Subtracting (1.6) by (3.4),

A(r—97) = q1(c1,a(92) —¢1(97)) — g2 (c2.a(9a) —c2(¢7))

Let
A =cia(@a) —c1A(97), Az=cia(9")—ci(97),

By =coA(Qr) —c2A(97), Br=coa(9") —c5(9%).
Then

A(Pr— ¢") = q1 (A1 +A2) — q2(B1 + Ba).

For A, applying mean value theorem,

d
A= 9) (00— 0",

where @5, € (¢a,0*). By remark 3.1, d;ip"\ is positive and uniformly bounded away

from O.
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For A,, dividing (1.1) by A and subtracting it by (3.1),

Z00(con(97) — c5(6%)) + Bor (c1.(9%) — €(9%)) + Zoa(can(9¥) — c3(97)) = Folotcon@))
By (3.6),

goo(coa(9*) —cj(9*)) + Gore F1eN?” ((con(9))™ — (c§(9*)M)

+gooe e R (o (97 — (e(9))) = Ftpal®),

This implies that

where

(con(@ D! —(GODN |y ano (C0n(07) = (c5(6)2

_5 5. ,— M1 ,q19"
A=goo+8ore e con(97) —ci(6%) co.a(9*) —<5(9%)

Since the right hand side tends to 0 uniformly as A tends to infinity by proposition
3.4 and A > gpo, Ay — 0 as A — . Moreover, since the right hand side is of O(%)
as A — oo, Ay is of O(1) as A — oo

The same argument can be applied to By ,B,. That is,

d
By =28 (8) (0= 9"),

where %(%2) is negative and bounded away from 0, ¢s, € (Pa,9*). By is of 0(}\)

as A — oo,
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If max(ga — 0*)? = (¢p — 0*)%(xa), where xp € Q, then we have a(q)"a_vd)*)z (xp) >
Q

0. Since (on — 9")(xa) + 1270 (1) = 0, (9n — 0%)%(xa) + FALOV () = 0.

This implies ¢ = ¢*.

If max(¢p — 0*)% = (pp — 0*)%(xp), where xp € Q, then
Q

0> A(Pr — 0%)*(xa) > 2A(0n — 0% ) (xA) ($a — ¢*) (xA)

=2(q1(A1 +A2) —q2(B1+B2))(9r — ¢7)(xA)-

This implies that

(0155 (0) = 2G5 (952) max(9n = 9°)° = (41 5" (9) — 2G5 (92)) (92 = 9°)(xa)
= (9141 — q2B1)(9a — 97) (xa) < (—q1A2+q2B2)(9a — ¢7)(xA)

< (—q1A2+q2B2) (sup 9] +sup [97]) = O() as A — .
Q Q

Since ql%(%l) _QZ%(%Z) is positive and bounded away from 0, we complete

the proof.
Claim: c¢;A(¢a) — ¢} (¢*) uniformly, for i=0,1,2.

Dividing (1.1) by A and subtracting it by (3.1),

Zonlco A(9) —ch(6") + Zore 1 ((co.n(90))M e — (ch(6") 1 e?")

+202e 2 ((con(Pa)) e~ 1208 — (cf(9*)) e 10") = Bolozcoaldn)
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This implies that

Zoo(coa(Pr) — c5(0%)) + Zore Fre®19” ((co a(9a)) — (cf(97))M)
+3o2e F2e= 29" ((con(9n))™2 — (c(97))™)

— f%—k’gf%(%) + Go1e M1 (con(92))M (919 — e198) 1 Gope P2 (co 4 (Gn))22 (e~ 929" — e 0200,

Hence,

C(coa(Pn) —cp(97)) = ﬂo_log+°‘“%) +8o1e Fi(con(@p))M (e1?” — ed19n)

+8ope M2 (CO,A(QDA))AZ (709" — ¢~ 004),

where

(con @M = (@GO | g, e (0000 = (G(07))2

—5 ~ —ﬁl q1¢*
C=goo+&ore Me con(9n) —ci(07) co.a(Pa) —c5(9%)

Since @p — ¢* uniformly, the right hand side of the equation tends to 0 as A tends
to infinity. Observe that C > oo, and hence co a(¢a) — c;(¢*) uniformly as A — co.
Note that if coa(Pa) = c;(¢*), then it is nothing to prove.

By (3.6) and mean value theorem,

le1.A(9a) — € (97)] = [eF1 7190 [co 5 (@a)]H — eF1 =019 [c5(9™)]M |
< | 1= 019a [CO7A(¢A)]M _eﬁﬁql%[cé(w)]b |+ ‘eﬁrqlm[cé(w)]kl _eﬁlfqm*[cé(w)]m

< C(lcoa(Pa) — (%) 4 |oa —07])

which tends to 0 as A — oo, for some constant C. The same argument can be applied

to co A(@a). Therefore, c; A(Pa) — ¢ (¢*) uniformly as A — oo.

Claim: %((p) — %((p) uniformly provided ¢(x) is bounded.
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Differentiating the first three equations of (1.10) and (1.11) with respect to ¢, then

by Cramer’s rule,

dC]’A _N17A 61'61< _Nik
dp  Np' do N*’

where

CaﬁﬂLgoo go1 8oz

N = Adet M =1 o |,
€o,A CLA
A -1
€0,A 0 C2A

Ni A = Adet M _

LA Con q 0 |>»
M =1
€0,A 92 C2 A

8oo 8o1 8mn

N*=det| 4 =1

T I ’
goo 0 8oz
Ni = det /Cl_é —q1 0

By proposition 3.4, Nj is bounded and away from 0. In particular, since coa

is uniformly bounded and away from O, ﬁ — 0 as A — co. Moreover, by the

same argument as the previous claim, ¢; A(¢) — ¢} (¢) uniformly as A — . Hence,

(Na,NiA) = (N*,Ny) uniformly as A — co. This implies the claim. The same argu-
dCZAA dCE .

ment can be used to prove d—¢(¢) o WW uniformly as A — oo,

Claim: ¢p — ¢* in C>*(Q).
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Let fao =qicia—qacon and f* = qic] — gacy. Then

A(Pp — 9%) = fa(Pa) — f*(07) in Q,

(Pr—9¢")+ a(%;(p*) =0 on dQ.

By the standard elliptic theorem (c.f. Theorem 6.30 of [8]),

0A = 072,000 < C(I9a = 970+ [fa(94) = /7 (97)0.0c0)-

Since oo — ¢* and fo — f* uniformly as A — oo, it suffices to show

[fa(a) = [ (0)] oo — 0 as A — oo,

Since %(d)) is continuous on a compact set which contains the image of ¢ (x) and

¢*(x) (c.f. Proposition 3.4), given € > 0, there exists 6 > 0 such that if |¢; — | < 6,
df* df

then [45-(61) — 5 (92)] <&

For |¢*(x) — ¢*(v)| > g and given x,y € Q,

A (9a(x)) = F(07 (%)) = [fa(9a () = S (@* (¥))]]
< F1Fal0a(0) = 597 (x)) = [fa(9a () — (9" WD]I* (x) — % (v)]
1AM () = (97 (x)) = [fa(@a () = F*(9* ][9]l — ¥|*.

IA

This implies that

s0p =47 (0 () = (9" () = La(9n0) = (9 )]
x£y

< sup 5| fa(@a(x) = F*(0*(x)) = [fa(9a () = F*(9* 0))]I[9"] s

xFy
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Since the right hand side is a continuous function on Q x Q, it attains its maximum

at (xp,ya). Hence,
sup e (00 () (9 () ~ s (9x0) ~ (0" O))
X#y
< 510 (xA)) = F*(97(xa)) = [fa(@a () — *(9* a9 s

Since fa(Pa) — f*(¢*) uniformly as A — oo, the right hand side tends to 0 as A — eo.

For [¢*(x) — ¢*(y)| < g and given x,y € Q, by mean value theorem,

£A(9A(x)) = (97 (x) = (fal9a () = F*(9* (1))
= 4 (96.A) (B4 (x) — 92 () — G5 (67) (6" (x) — 6* ()]

where @A € (9a(x), 94(y)) and 95 € (¢7(x), ¢7(y)). Let

A= L9 A)(Pn(0) = 9a () = 9" (1) + 97 (),
B = (% (9s.0) — 45 (92))(0* (x) — 9" (v))-

Then

[fA(@A(x)) = (97 (x)) = (fa(9a(¥)) = f*(¢* ()] < |A+[B].

For A, since %(q)&,\) is uniformly bounded (c.f. Remark 3.1), there exists a

constant C > 0 such that
A] < Cloa — 0" a:alx —¥]*.

which tends to 0 as A — oo by theorem 3.14 of [15].

For B, since d 0 (¢)s A) — d¢ ((])S A) uniformly as A — oo by the previous claim, for
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A large enough,

1B] < (1% (95.0) = S (95 )|+ 155 (050) — 5 (97)D]97 (x) = 97 (V)]

< (e+]95(95.0) — U5 (09)][0 " asalr — ¥

Since ¢ — ¢* uniformly as A — oo and |9*(x) — ¢* ()| < g’ for A large enough,
|5, — @] < 0. Hence,

|B| < 2€[¢"]aclx —y|*.

Letting € — 0, we get sup % — 0. This complete the claim. [ |
X7y

4 Generalization of G

In this section, we generalize the condition that G is nonnegative definite. The main
difference is from theorem 2.3 and proposition 2.5 which can be replaced by the
following proposition and theorem. The rest of the proofs are all the same as before.

For the proposition, we consider cg, c¢i, and ¢; as three variables and apply

Lagrange multiplier to find the condition such that M > 0 (c.f. proposition 2.5).

Proposition 4.1. Given G = (g;;) and y;, for i=0,1,2, suppose that

800 8ol 800 802 800 801
(B1) det ,det ,det >0,

810 811 820 822 820 821
E F | H
(B2) @+§+3+J>O,

then we have i% >0 and fl—ig < 0, where

QO —(AE+qyH)++/ (AE+qyH)2+4qAH (ag—q2E)
1= 2¢,AH )

0= —(BE+qiF)++/(BE+qi F)2+4q,BF (ap—q/ E)
2 2¢g1BF :
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for some aq satisfying

logc(l) —Hogcg —|—Ac(1) +Bc(2) =C.

Here,

(928101491820)801

A=@gutqiga — gty

(92810+41820)802

B=qgn+qi8n— "7

C=qt1 +q112 — (2810 +q1820) (Mo + 1),

1

E = g7+ 800,

F =53 + 800822 — 802820,
0

H =%} +goog11 — 801810,

C

(=}

J= gllg22c;lg12821 —|—detG,
0

where cg/l is the upper bound of cq.

Proof. The same as proposition 2.5, by (B1l), M; >0 and M, < 0. Hence we only

have to show M > 0. Firstly, by (1.1),

logco+ gooco < Uo.

Since logcg 4 gooco is monotone increasing to cg, there exists cg’[ > 0 such that

co < cg’l , where

logcf! + gooct = Ho-

Hence by (B1),

1 _
M= + 800 n 811 n 822 Jrgoogn 801810
cpC1Cc2 €12 CpC2 € (89)

E F H
>—+a+a—|—.].

— 12

38 d0i:10.6342/NTU201801038



Note that under the assumption (B1), E, F, H are all nonnegative.

On the other hand, using the fact that log(1+x) <x for x > —1 and by (1.1), then

co— 1+ gooco + go1c1 + go2c2 > Uop.

Hence

Mo + 1 —go1c1 — goaca
goo+1

co > (4.1)

Multiplying (1.2) by ¢2 and (1.3) by ¢; and adding them together, then

g2logcr +qiloger + (g2810+q1820)co + (q2811 +q1821)c1 + (92812 + q1822) 2

=q211 +q1U2-
(4.2)

Substituting (4.1) into (4.2), then one may check
g2logcr +qilogea +Ac) +Bep, < C.

Note that A, B are nonnegative under the assumption (B1). Hence

. E F H ) E F H
M> mn ——+—+—4+J> mn —+—+—+4J,
(c1,c0)€T C1C2 € (o) (c1,;0)€elr C1C2 € (o))

where

I ={(»2): (x,y,2) satisfies (1.1) and (4.2) for some x > 0}
C{(»2): q2logy+qilogz+Ay+Bz < C},

I ={(»2):q2logy+qilogz+Ay+Bz=C.}

Observe that the minimum must be attained in a bounded domain since if ¢; — oo,
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then ¢ — 0 and vice versa. This makes —— 62 + Tt +J goes to infinity. Applying

Cc

Lagrange multiplier, then

This implies

(E +FC2)(ql +BC2) = (E+HC1)(C]2 +Ac1).

Let a= (E+Fc2)(q1 +Bcy) = (E+Hcy)(g2+Acy). Then

—(AE+qoH)++/(AE+q2H)*+4q2AH (a— o E)
2g,AH )

—(BE+q1F)++/(BE+q F)?+4qBF (a— qlE)
quBF

Cy) =

Denote ¢; = cj(a) and ¢ = ¢p(a). Then
g2logcy(a)+qilogea(a) +Acy(a) 4+ Bea(a) =C.

One may check that galoge(a)+gilogea(a) +Aci(a) + Bea(a) is monotone increas-

ing to a. Hence, there exists a unique ag such that
q2 logc(l) +q1 logcg +Ac(1) +Bc(2) =C.

This implies

. E F H E F H
M> mn —+—+—+J=F5+5+75 -|—J>0
c1,02€l C1C2 Cl 2 C C2 Cl C2

since the minimum must be attained in a bounded domain and this is the unique
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solution of Lagrange multiplier. |

The proof of the next theorem is almost the same as the existence part of al-
gebraic equations. The main difference is that we have more information to the
monotonicity. Therefore, we can make sure the solution is unique when applying

intermediate value theorem.

Theorem 4.2. Under the hypothesis of proposition 4.1, and if

811 812
det >0,

821 822
then c¢; is unique for given ¢. That is, c¢; is a function of @, for i=0,1,2.

Proof. For any fixed ¢, by (1.2),

1
cr = g?(q1¢+u1 —logcy — gioco — g11¢1)-

Substituting it into (1.3),

10g(g%(6]1¢ + 1y —logei — gioco — g11¢1)) + 820¢0 + 821€1

+22(q1¢ + 1 —loger — g1oco — 811€1) = —q29 + [

812 ’

Since g11g22 — g12821 is nonnegative, the left hand side is monotone decreasing to cj.
Hence for given co, there exists a unique c{ such that

log(=(q19 + p1 —loge} — groco — g11¢})) + &20¢0 + 8216}

+82(q19 + 1 —logcy — gioco — g11¢7) = —q20 + 2.

That is, ¢ is a function of ¢y, and hence so is ¢;. Note that the existence of ]
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follows from theorem 2.2. Differentiating the system (1.1)-(1.3) with respect to o,

1

@ + 800 + go1¢} + go2ch =0, (4.3)
/

C

c—1+810+8110/1+g12€'2=0, (4.4)
¢ / -

5+gzo+g2101+82202 =0. (4.5)

Applying Cramer’s rule to (4.4) and (4.5),

/ Dl / D2
Cl :—7 C2:—’
D D

where
ﬁ + 811 812
D = det ,

821 é + 822
—810 812

Dy =det )
—820 C]—z + 822
1
o +g11 —&io

D) = det

821 —&20

Substituting ¢} and ¢} into (4.3),

1(D(1+ )+ 801D+ D)—M>0
D co 800 8011 T 802472 _D .

Here, M is the same as the one in proposition 3.3. This implies that logco+ gooco +

goici(co) + goac2(co) is monotone increasing to c¢p. Hence there exists a unique cj)
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such that

log g+ 8ooco + 8o1c1(cp) + goac2(cp) = Ho

and we complete the proof. Note that the existence of ¢ follows from theorem

2.2. |
We have known that G = (g;j) is nonnegative definite if and only if g; > 0 for

i=0,1,2, detG >0 and

800 &o1 800 802 811 812
det ,det ,det

810 811 820 822 821 822

In our generalized condition, we do not ask detG > 0. For example, consider

If o — —oo, then C) — 0. This implies J — oo and hence (B2) holds for o small

enough. Thus, ¢;, for i =0,1,2, can be written as a function of ¢ in this G.

5 Conclusion Remark

Li’s model is a well-known model for electrolyte solutions. In this work, we introduce
the PB_ns model which is derived from the steady-state of the Poisson-Nernst-
Planck system with steric effects. Under the assumption (A1) — (A4), PB_ns model
can be reduced to Li’s model by passing A to infinity. This shows that PB_ns

equations is a more general model.
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