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摘要

　　研究離子擴散的行為在很多應用問題上扮演重要的角色，如生物離子通道等

等，而泊松-玻爾茲曼方程便是描述此行為的模型且被廣泛應用。隨著奈米科技

的發展，許多新的結果被發現。然而，這些結果卻無法用泊松-玻爾茲曼方程解

釋，因此有了 Bo Li 的模型。本論文研究 Poisson-Nernst-Planck 方程 with steric

effects 的穩定態，New Poisson-Boltzmann 方程 with steric effects，並且證明可以

從此模型推得 Li 的模型。

關鍵字：泊松-玻爾茲曼方程、泊松-能斯特-普朗克方程、新泊松-玻爾茲曼方

程、位阻效應、強交互作用。
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Abstract

Studying the transport of ions plays an important role in many problems, such as

ion channels. Over the past decades, original Poisson-Boltzmann (PB) equation was

widely used to describe the electrolyte solutions. However, due to the development

of nanotechnology, some new experiment outcomes were found but could not be de-

scribed. Therefore, Li’s model was constructed. In this work, we further investigate

a new Poisson-Boltzmann (PB) type equation called the PB_ns equation, which is

derived from the steady-state of the Poisson-Nernst-Planck system with steric ef-

fects and shows that PB_ns equation can reduce to Li’s model.

Keywords: Poisson-Boltzmann equations, Poisson-Nerst-Plank equations, New Poisson-

Boltzmann equations, steric effects, strongly repulsive interactions.
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1 Introduction

Studying the transport of ions plays an important role in many problems, such as

semiconductors, electro-kinetic fluids, colloidal systems in physics and ion channels

in biology [1,4,12–14,18]. Over the past decades, original Poisson-Boltzmann (PB)

equation was widely used to describe the electrolyte solutions [6,7,16,17]. However,

due to the development of nanotechnology, experts found that without considering

the steric effects of ions, some experiment outcomes can not be described. The im-

portance of steric effects raised up. Particularly, Bikerman’s model [2], Andelman’s

model [3] and Li’s model [11] are all well-known models. The first two models con-

sider that all the species are of the same ion size and Li’s model goes further to

consider the different ion size.

In this work, we further investigate a new Poisson-Boltzmann (PB) type equation

called the PB_ns equation, which is derived from the steady-state of the Poisson-

Nernst-Planck system with steric effects [12] which is represented as

logc0 +g00c0 +g01c1 +g02c2 = µ0, (1.1)

logc1 +g10c0 +g11c1 +g12c2 = q1ϕ +µ1, (1.2)

logc2 +g20c0 +g21c1 +g22c2 =−q2ϕ +µ2, (1.3)

ε2∆ϕ = q1c1 −q2c2 in Ω, (1.4)

ϕ +ηε
∂ϕ
∂ν = ϕbd on ∂Ω. (1.5)

Ω ⊂ Rn is an open bounded smooth domain. ϕ is the electrostatic potential. c0

is the concentration of water which is the solvent. c1, c2 are the concentration of

the anion and cation respectively. qi is the valence of the ith ion species and is

positive for i = 1,2. µi is the chemical potential of the ith ion species for i = 0,1,2.

1
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gi j = g ji ∼ εi j(ai +a j)
12 is a positive constant depending on ion radii ai, a j and the

energy coupling constant εi j of the ith and jth species ions, respectively for i, j =

0,1,2. ϕbd := ϕbd(x) ∈ C2(∂Ω) is the extra electrostatic potential at the boundary.

ε is the dielectric constant and ηε is a nonnegative constant depending on ε . Since

0 < ε << 1 is fixed in this work, without loss of generality, we may assume ε = 1.

Hence, (1.4)-(1.5) becomes

∆ϕ = q1c1 −q2c2 in Ω, (1.6)

ϕ +η ∂ϕ
∂ν = ϕbd on ∂Ω. (1.7)

We will prove that if G = (gi j) is nonnegative definite and

det

 g00 g01

g20 g21

≥ 0,

then ϕ and ci, for i = 0,1,2 exist and are unique (c.f. theorem 2.1), and the solution

can be obtained by Newton’s method (c.f. theorem 2.4). In particular, we consider

gi j, for i, j = 0,1,2, as a function of Λ. That is, given Λ, there exists one set of gi j

and hence we obtain the corresponding ϕΛ, ci,Λ, for i = 0,1,2. Moreover, we assume:

(A1) gi0
g00

= gi1
g01

= gi2
g02

= λi > 0, i = 1,2.

(A2) gi j = g̃i jΛ > 0, i, j = 0,1,2.

(A3) µi = µ̃iΛ+ µ̂i, µ̃i > 0, i = 0,1,2.

(A4) λiµ̃0 − µ̃i = 0, i = 1,2.

2
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where g̃i j, µ̃i, µ̂i are positive constants. Under this assumption,

G = g⃗⃗gT , where g⃗ =


g00

g01

g02

 ,

and

λ1 =
g̃01

g̃00
, λ2 =

g̃02

g̃00
.

Moreover, we can observe that µi, which represents the chemical potential, is positive

as Λ large enough. Also, it is clear that G is nonnegative definite and

det

 g00 g01

g20 g21

≥ 0.

If we multiply λ1 to (1.1) and subtract it by (1.2),

λ1 logc0,Λ − logc1,Λ =−q1ϕ +µ1. (1.8)

Multiplying λ2 to (1.1) and subtracting it by (1.3),

λ2 logc0,Λ − logc2,Λ = q2ϕ +µ2. (1.9)

3
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Hence, the PB_ns equations become

logc0,Λ +g00c0,Λ +g01c1,Λ +g02c2,Λ = µ0,

λ1 logc0,Λ − logc1,Λ =−q1ϕΛ +µ1,

λ2 logc0,Λ − logc2,Λ = q2ϕΛ +µ2,

∆ϕΛ = q1c1,Λ −q2c2,Λ in Ω,

ϕΛ +η ∂ϕΛ
∂ν = ϕbd on ∂Ω.

(1.10)

Here, µ i = µ̂0λi− µ̂i, i = 1,2. Passing Λ → ∞, (ci,Λ,ϕΛ) converge uniformly to (c∗0,ϕ
∗)

for i = 0,1,2 and ϕΛ → ϕ∗ in C2,α(Ω) (c.f. Theorem 3.1), where (c∗0,ϕ
∗) satisfies

g̃00c∗0 + g̃01c∗1 + g̃02c∗2 = µ̃0,

λ1 logc∗0 − logc∗1 =−q1ϕ∗+µ1,

λ2 logc∗0 − logc∗2 = q2ϕ∗+µ2,

∆ϕ∗ = q1c∗1 −q2c∗2 in Ω,

ϕ∗+η ∂ϕ∗

∂ν = ϕbd on ∂Ω.

(1.11)

This implies

c∗0 =
1

g̃00
(µ̃0 − g̃01c∗1 − g̃02c∗2),

g̃01
g̃00

log g̃00c∗0 − log g̃01c∗1 =−q1ϕ∗+(µ1 + log g̃00 − log g̃01),

g̃02
g̃00

log g̃00c∗0 − log g̃02c∗2 = q2ϕ∗+(µ2 + log g̃00 − log g̃02),

∆ϕ∗ = q1c∗1 −q2c∗2 in Ω,

ϕ∗+η ∂ϕ∗

∂ν = ϕbd on ∂Ω.

which is Li’s model. This shows that the PB_ns model can reduce to Li’s model by

passing limit.

4
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There are two main difficulties when dealing with the limiting behavior of PB_ns

equations. Firstly, the PBns model is an differential equation coupled with algebraic

equations. Unfortunately, we can not solve them explicitly. Therefore, to deal with

the differential equation, we have to consider the algebraic equations and vice versa.

Secondly, there are too many unknown parameters such as c0, c1, c2, and ϕ . To

overcome this difficulty, we hope that we can transform c1, c2, and ϕ into functions

of c0, and this can be achieved by (1.8)-(1.9) plus maximal principle estimate (c.f.

proposition 3.2).

The following are the main procedures when coping with limiting behavior.

1. The existence and uniqueness of ϕ and ci, for i = 0,1,2 (c.f. section 2).

If G = (gi j) is nonnegative definite and g00g12 ≥ g01g20, then the PB_ns equations

have the unique solution. Moreover, the unique solution still can exists even though

G is not nonnegative definite (c.f. section 4).

2. Maximal principle estimate (c.f. proposition 3.2).

With maximal principle estimate, we can transform ϕ into a function of c0.

3. ci,Λ(ϕΛ) and ϕΛ are uniformly bounded to Λ, for i = 0,1,2 (c.f. proposition 3.3).

The advantage of uniform boundedness is that a uniformly bounded term multiply

a term which converges to 0 still converges to 0. Note that ci,Λ(ϕ) is still uniformly

bounded, for i = 0,1,2, provided ϕ(x) is bounded (c.f. proposition 3.4).

4. (ci,Λ,ϕΛ) converge uniformly to (c∗0,ϕ
∗), for i = 0,1,2 (c.f. theorem 3.1).

Because ci,Λ(ϕΛ) and ϕΛ are uniformly bounded to Λ, unformally, differentiating the

first equation of (1.10) by Λ, then since logc0,Λ−µ̂0
Λ → 0 as Λ → ∞, we can see the

uniform convergence of (1.10) to (1.11).

5. ϕΛ → ϕ∗ in C2,α(Ω) (c.f. theorem 3.1).

5
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By the standard elliptic theorem,

|ϕΛ −ϕ∗|2,α;Ω ≤C(|ϕΛ −ϕ∗|0;Ω + | fΛ(ϕΛ)− f ∗(ϕ∗)|0,α;Ω),

where fΛ = q1c1,Λ − q2c2,Λ and f ∗ = q1c∗1 − q2c∗2, C is a constant. This result thus

follows from the uniform convergence of (ci,Λ,ϕΛ), for i = 0,1,2, and the convergence

of [ fΛ(ϕΛ)− f ∗(ϕ∗)]α;Ω to 0.

This paper is organized as follows: Firstly, we prove the existence and unique-

ness of ϕ and ci, for i = 0,1,2. Secondly, we discuss the limiting behavior. In the

last of this work, we generalize the assumption that G is nonnegative definite.

2 Existence and Uniqueness

The PB free energy can be denoted as

E[ϕ ,c0,c1,c2] =
∫

Ω ∑2
i=0(ci logci +

gii
2 c2

i )+g01c0c1 +g02c0c2 +g12c1c2

−(µ0 +1)c0 − (q1ϕ +µ1 +1)c1 − (−q2ϕ +µ2 +1)c2 − 1
2 |∇ϕ |2dx.

It is clear that δciE = 0, for i = 0,1,2, and δϕ E = 0 imply (1.1)-(1.3) and (1.6)

respectively. The existence and uniqueness theorem is as follows:

Theorem 2.1. Let Ω be a bounded smooth domain and ϕbd ∈C2(∂Ω). Suppose that

G is nonnegative definite and

det

 g00 g01

g20 g21

≥ 0,

6
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then (1.6) has a unique solution ϕ0 ∈ C∞(Ω)∩C2,α(Ω) for some α > 0 with the

boundary condition (1.7).

To prove this theorem, we divide it into two parts, algebraic equations part and

differential equation part.

2.1 Algebraic Equations

In the beginning, we prove the existence of ci, for i = 0,1,2, by intermediate value

theorem.

Theorem 2.2. For any fixed ϕ , there exists ci, i = 0,1,2, satisfying (1.1)-(1.3).

Proof. For any fixed ϕ ∈ R, let µ0 = α , q1ϕ + µ1 = β , −q2ϕ + µ2 = γ . Then (1.1)-

(1.3) become

logc0 +g00c0 +g01c1 = α −g02c2, (2.1)

logc1 +g10c0 +g11c1 = β −g12c2, (2.2)

logc2 +g20c0 +g21c1 +g22c2 = γ. (2.3)

Given any c2, by (2.1),

c1 =
1

g01
(α −g02c2 − logc0 −g00c0),

and

logc0 +g00c0 ≤ α −g02c2.

Since logc0 + g00c0 is monotone increasing to c0, we obtain that c0 has an upper

bound M = M(c2), where logM+g00M = α −g02c2. Observe that c1 → 0 as c0 → M.

7
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Let

h1(c0) = log( 1
g01

(α −g02c2 − logc0 −g00c0))+g10c0 +
g11
g01

(α −g02c2 − logc0 −g00c0)

−β +g12c2

= log( 1
g01

(− logc0 −g00c0 +α −g02c2))− g11
g01

(logc0 +g00c0)+g10c0 +
g11
g01

(α −g02c2)

−β +g12c2.

Then h1 → ∞ as c0 → 0 and h1 →−∞ as c0 → M. By intermediate value theorem,

there exists cs
0 ∈ (0,M) such that h1(cs

0) = 0. Hence we have the result that for given

c2, there exists c0 = c0(c2), c1 = c1(c2) such that (2.1) and (2.2) hold.

The last step is to solve c2 by (2.3). Observe first that c0 and c1 are bounded if

c2 is bounded by (2.2). Secondly, c0 → 0 and c1 → 0 as c2 → ∞ by (2.1) and (2.2)

respectively. Let

h2(c2) = logc2 +g20c0 +g21c1 +g22c2 − γ.

Then h2 →−∞ as c2 → 0 and h2 → ∞ as c2 → ∞. By intermediate value theorem,

there exists cs
2 such that h2(cs

2) = 0 and we complete the proof. �

Next, we prove the uniqueness of ci for fixed ϕ ∈R by the nonnegative definiteness

of G = (gi j). This means ci is a function of ϕ , for i = 0,1,2.

Theorem 2.3. If G = (gi j) is nonnegative definite, then ci is a function of ϕ , for

i = 0,1,2.

8
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Proof. For any fixed ϕ , let

c1 =


c1

0

c1
1

c1
2

 ,c2 =


c2

0

c2
1

c2
2


be two solutions of (1.1)-(1.3). Then


log c1

0
c2

0

log c1
1

c2
1

log c1
2

c2
2

+G(c1 − c2) =


0

0

0

 .

Multiplying (c1 − c2)T ,

(c1 − c2)T


log c1

0
c2

0

log c1
1

c2
1

log c1
2

c2
2

+(c1 − c2)T G(c1 − c2) = 0.

Since G is nonnegative definite, (c1 − c2)T G(c1 − c2)≥ 0. Also,

(c1 − c2)T


log c1

0
c2

0

log c1
1

c2
1

log c1
2

c2
2

≥ 0.

This implies

(c1 − c2)T


log c1

0
c2

0

log c1
1

c2
1

log c1
2

c2
2

= 0.

9
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Hence c1 = c2. �

Remark 2.1. We have known that ci is a function of ϕ , for i = 0,1,2. In particular,

if G is nonnegative definite and consider f(c0,c1,c2,ϕ) = ( f1, f2, f3), where

f1 = logc0 +g00c0 +g01c1 +g02c2 −µ0,

f2 = logc1 +g10c0 +g11c1 +g12c2 −q1ϕ +µ1,

f3 = logc2 +g20c0 +g21c1 +g22c2 +q2ϕ −µ2,

then det[∂ ( f1, f2, f3)
∂ (c0,c1,c2)

] = M > 0 (c.f. proposition 2.5), where

M = det


1
c0
+g00 g01 g02

g10
1
c1
+g11 g12

g20 g21
1
c2
+g22

 .

Since f is a smooth function, by implicit function theorem, ci is a smooth function

to ϕ , for i = 0,1,2.

Numerically, we can use Newton’s method to solve the algebraic equations.

Theorem 2.4. If the initial guess is near the root of (1.1)-(1.3) enough, then the

Newton’s method converges to the root.

Proof. Consider an arbitrary closed ball B of the root. Let

F(c0,c1,c2) =


f1

f2

f3

=


logc0 +g00c0 +g01c1 +g02c2 −µ0

logc1 +g10c0 +g11c1 +g12c2 −q1ϕ −µ1

logc2 +g20c0 +g21c1 +g22c2 +q2ϕ −µ2

 .

10
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Applying Newton’s method,


c(n+1)

0

c(n+1)
1

c(n+1)
2

=


c(n)0

c(n)1

c(n)2

−A−1(c(n)0 ,c(n)1 ,c(n)2 )F(c(n)0 ,c(n)1 ,c(n)2 ),

where A(c0,c1,c2) =


1
c0
+g00 g01 g02

g10
1
c1
+g11 g12

g20 g21
1
c2
+g22

 .

Let


ĉ0

ĉ1

ĉ2

 be the root of F = 0. Then


c(n+1)

0

c(n+1)
1

c(n+1)
2

−


ĉ0

ĉ1

ĉ2



=


c(n)0

c(n)1

c(n)2

−


ĉ0

ĉ1

ĉ2

+A−1(c(n)0 ,c(n)1 ,c(n)2 )(F(ĉ0, ĉ1, ĉ2)−F(c(n)0 ,c(n)1 ,c(n)2 ))

=


c(n)0

c(n)1

c(n)2

−


ĉ0

ĉ1

ĉ2

+A−1(c(n)0 ,c(n)1 ,c(n)2 )


f̂1(ĉ0, ĉ1, ĉ2)− f1(c

(n)
0 ,c(n)1 ,c(n)2 )

f̂2(ĉ0, ĉ1, ĉ2)− f2(c
(n)
0 ,c(n)1 ,c(n)2 )

f̂3(ĉ0, ĉ1, ĉ2)− f3(c
(n)
0 ,c(n)1 ,c(n)2 )

 .

Applying the mean value theorem component by component,
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
c(n+1)

0

c(n+1)
1

c(n+1)
2

−


ĉ0

ĉ1

ĉ2



=


c(n)0

c(n)1

c(n)2

−


ĉ0

ĉ1

ĉ2

−A−1(c(n)0 ,c(n)1 ,c(n)2 )A(c∗0,c
∗
1,c

∗
2)(


c(n)0

c(n)1

c(n)2

−


ĉ0

ĉ1

ĉ2

)

= (I −A−1(c(n)0 ,c(n)1 ,c(n)2 )A(c∗0,c
∗
1,c

∗
2))(


c(n)0

c(n)1

c(n)2

−


ĉ0

ĉ1

ĉ2

)

= A−1(c(n)0 ,c(n)1 ,c(n)2 )



1
c(n)0

− 1
c∗0

0 0

0 1
c(n)1

− 1
c∗1

0

0 0 1
c(n)2

− 1
c∗2


(


c(n)0

c(n)1

c(n)2

−


ĉ0

ĉ1

ĉ2

),

where c∗i ∈ (c(n)i , ĉi)for i = 0,1,2. Therefore,

∥


c(n+1)

0

c(n+1)
1

c(n+1)
2

−


ĉ0

ĉ1

ĉ2

∥

≤ ∥A−1(c(n)0 ,c(n)1 ,c(n)2 )∥∥



1
c(n)0

− 1
c∗0

0 0

0 1
c(n)1

− 1
c∗1

0

0 0 1
c(n)2

− 1
c∗2


∥∥


c(n)0

c(n)1

c(n)2

−


ĉ0

ĉ1

ĉ2

∥.

Since B is compact, there exists a constant M such that ∥A−1(c(n)0 ,c(n)1 ,c(n)2 )∥ ≤ M.

12
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Hence, if


c(n)0

c(n)1

c(n)2

 is closed enough to


ĉ0

ĉ1

ĉ2

, then

∥


c(n+1)

0

c(n+1)
1

c(n+1)
2

−


ĉ0

ĉ1

ĉ2

∥ ≤ 1
2
∥


c(n)0

c(n)1

c(n)2

−


ĉ0

ĉ1

ĉ2

∥.

This implies


c(n+1)

0

c(n+1)
1

c(n+1)
2

 is also in B and we can repeat this process until it converges.

�

2.2 Differential Equation

Consider the functional

Eη [ϕ ] =
1
2

∫
Ω
|∇ϕ |2dx+

∫
Ω

F(eq1ϕ ,e−q2ϕ )dx+Bη [ϕ ],

where dF
dϕ = q1c1 − q2c2 and F(ϕ) is strictly convex to ϕ which will be defined in

proposition 2.6.

Bη [ϕ ] =


1

2η
∫

∂Ω(ϕ −ϕbd)
2dS if η > 0.

0 if η = 0.

Hence, (1.6)-(1.7) can be regarded as the Euler-Lagrange equation of Eη . To prove

the existence and uniqueness of ϕ , we need the monotonicity of c1 and c2 to ϕ .

13
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Proposition 2.5. If G is nonnegative definite and

det

 g00 g01

g20 g21

≥ 0,

then dc1
dϕ = M1

M > 0, dc2
dϕ = M2

M < 0, where

M = det


1
c0
+g00 g01 g02

g10
1
c1
+g11 g12

g20 g21
1
c2
+g22

 ,

M1 = det


1
c0
+g00 0 g02

g10 q1 g12

g20 −q2
1
c2
+g22

 ,

M2 = det


1
c0
+g00 g01 0

g10
1
c1
+g11 q1

g20 g21 −q2

 .

Proof. Differentiating the system (1.1)-(1.3) with respect to ϕ , then


1
c0
+g00 g01 g02

g10
1
c1
+g11 g12

g20 g21
1
c2
+g22




dc0
dϕ

dc1
dϕ

dc2
dϕ

=


0

q1

−q2

 .

By Cramer’s rule,
dc1

dϕ
=

M1

M
,

dc2

dϕ
=

M2

M
.
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If G is nonnegative definite, then

det

 g00 g01

g10 g11

 ,det

 g00 g02

g20 g22

 ,det

 g11 g12

g21 g22

≥ 0.

This implies that

M =
1

c0c1c2
+

g00

c1c2
+

g11

c0c2
+

g22

c0c1
+

g00g11 −g01g10

c2

+
g00g22 −g02g20

c1
+

g11g22 −g12g21

c0
+detG > 0

,

M1 =
q1

c0c2
+

q1g22 +q2g12

c0
+

q1g00

c2
+q1(g00g22 −g02g20)+q2(g00g12 −g02g10)> 0 ,

M2 =− q2

c0c1
− q1g21 +q2g11

c0
− q2g00

c1
−q2(g00g11 −g01g10)−q1(g00g21 −g01g20)< 0 .

Hence,
dc1

dϕ
=

M1

M
> 0,

dc2

dϕ
=

M2

M
< 0.

�

Secondly, we need to define F(eq1ϕ ,e−q2ϕ ) in the functional.

Proposition 2.6. Let (X1,X2) = (eq1ϕ ,e−q2ϕ ). Let G be nonnegative definite and

det

 g00 g01

g20 g21

≥ 0.

Then there exists a differentiable function F(ϕ) = F(X1,X2) such that

dF
dϕ

= q1c1 −q2c2.

15
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Moreover, F(ϕ) is a strictly convex function to ϕ .

Proof. Let (c1,c2) = (θ1X1,θ2X2) for some θ1 = θ1(ϕ) and θ2 = θ2(ϕ). Then (1.1)-

(1.3) becomes to

logc0 +g00c0 +g01θ1X1 +g02θ2X2 = µ0,

logθ1 +g01c0 +g11θ1X1 +g12θ2X2 = µ1,

logθ2 +g02c0 +g21θ1X1 +g22θ2X2 = µ2.

(2.4)

Differentiating (2.4) with respect to X1 and X2, we obtain


1
c0
+g00 g01X1 g02X2

g01
1
θ +g11X1 g12X2

g02 g21X1
1
θ2
+g22X2




∂c0
∂X1

∂θ1
∂X1

∂θ2
∂X1

=−


g01θ1

g11θ1

g21θ1

 ,

and 
1
c0
+g00 g01X1 g02X2

g01
1
θ +g11X1 g12X2

g02 g21X1
1
θ2
+g22X2




∂c0
∂X2

∂θ1
∂X2

∂θ2
∂X2

=−


g02θ2

g12θ2

g22θ2

 .

Applying Cramer’s rule,

∂θ2

∂X1
=

∂θ1

∂X2
=

−1
A

(c−1
0 g12 +g00g12 −g01g02),

where

A = det


1
c0
+g00 g01X1 g02X2

g01
1
θ1
+g11X1 g12X2

g02 g12X1
1
θ2
+g22X2



16
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= X1X2 det


1
c0
+g00 g01 g02

g01
1

θ1X1
+g11 g12

g02 g12
1

θ2X2
+g22

> 0.

Let f (X1,X2) = (θ1(X1,X2),θ2(X1,X2)). Then

∇× f =
∂θ2

∂X1
− ∂θ1

∂X2
= 0.

By the curl-divergence theorem, f is a gradient of some F : R2 → R. That is,

∇F(X1,X2) = f (X1,X2) = (θ1(X1,X2),θ2(X1,X2)).

Therefore,

dF
dϕ

=
dF
dX1

dX1

dϕ
+

dF
dX2

dX2

ϕ
= θ1q1X1 −θ2q2X2 = q1c1 −q2c2.

Moreover, proposition 2.5 implies

d2F
dϕ 2 = q1

dc1

dϕ
−q2

dc2

dϕ
> 0.

Hence F is strictly convex to ϕ . �

To prove the existence of ϕ , we apply the standard direct method to find the

minimizer ϕ0 in Hη(Ω), where

Hη =


H1(Ω) if η > 0.

{u ∈ H1(Ω) : u−ϕbd ∈ H1
0 (Ω)} if η = 0.

17
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Hence ϕ0 satisfies

∫
Ω
[∇ϕ0∇v+(q1c1(ϕ0)−q2c2(ϕ0))v]dx+ B̂η [ϕ0;v] = 0, (2.5)

for any v ∈ H1(Ω) if η > 0 and v ∈ H1
0 (Ω) if η = 0 where

B̂η [ϕ0;v] =


1
η
∫

∂Ω(ϕ0 −ϕbd)vdS if η > 0.

0 if η = 0.

The theorem is as follows:

Theorem 2.7. Let G be nonnegative definite and

det

 g00 g01

g20 g21

≥ 0.

Then Eη has a minimizer ϕ0 ∈Hη .

Proof. If η > 0, then

Eη [ϕ ] =
1
2

∫
Ω
|∇ϕ |2dx+

∫
Ω

F(eq1ϕ ,e−q2ϕ )dx+
1

2η

∫
∂Ω

(ϕ −ϕbd)
2dS.

for ϕ ∈ H1(Ω).

Claim: Eη [ϕ ] is coercive on H1(Ω).

Since F is strictly convex to ϕ and q1c1 > q2c2 for some large ϕ , there exists a

constant m ∈ R such that

∫
Ω

F(eq1ϕ ,e−q2ϕ )dx ≥ m. (2.6)

18
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On the other hand, by Young’s inequality,

1
2
∫

Ω |∇ϕ |2dx+ 1
2η

∫
∂Ω(ϕ −ϕbd)

2dS

≥Cη
(∫

Ω |∇ϕ |2dx+
∫

∂Ω |ϕ |2dS
)
− 7

2η
∫

∂Ω |ϕbd|2dS,
(2.7)

where Cη = min{1
2 ,

1
4η }. By (2.6)-(2.7),

Eη [ϕ ]≥Cη

(∫
Ω
|∇ϕ |2dx+

∫
∂Ω

|ϕ |2dS
)
− 7

2η

∫
∂Ω

|ϕbd|2dS+m. (2.8)

Note that ϕbd ∈ L2(∂Ω). To complete the claim, we also need Friedrichs’ inequality.

∫
Ω
|ϕ |2dx ≤C2

(∫
Ω
|∇ϕ |2dx+

∫
∂Ω

|ϕ |2dS
)
, ∀ϕ ∈ H1(Ω), (2.9)

where C is a positive constant depending only on the space dimension n and the

measures of Ω and ∂Ω.

Let M > 0 and ϕ ∈ H1(Ω) satisfying |Eη [ϕ ]|< M. Then (2.8)-(2.9) immediately

give

∥ϕ∥H1(Ω) :=
(∫

Ω
|ϕ |2 + |∇ϕ |2dx

) 1
2

≤C(M),

for some constant C(M). This prove the claim.

In accordance with the definition of an infimum, there exists a minimizing se-

quence {ϕn}∞
n=1 ⊂ H1(Ω) such that

lim
n→∞

Eη [ϕn] = d := inf
ϕ∈H1(Ω)

Eη [ϕ ]. (2.10)

By (2.10) and coerciveness of Eη , we get sup
n∈N

∥ϕn∥H1(Ω) < ∞. Along with (2.8), we

may obtain sup
n∈N

∫
∂Ω |ϕn|2dS <∞. Consequently, there exists a subsequence of {ϕn}(for

19
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notation convenience, we still denote it by {ϕn}) such that ϕn ⇀ ϕ0 weakly in H1(Ω)

and ϕn ⇀ Γϕ0 weakly in L2(∂Ω) as n → ∞, where Γϕ0 is the trace of ϕ0 on ∂Ω. Note

that ϕn ⇀ ϕ0 weakly in H1(Ω) implies ∇ϕn ⇀ ∇ϕ0 weakly in L2(Ω). Then by the

standard theorem, we have

liminf
n→∞

∫
Ω
|∇ϕn|2dx ≥

∫
Ω
|∇ϕ0|2dx, (2.11)

liminf
n→∞

∫
∂Ω

|ϕn −ϕbd|2dS ≥
∫

∂Ω
|Γϕ0 −ϕbd|2dS, (2.12)

and

lim
n→∞

ϕn = ϕ0 a.e. in Ω. (2.13)

On the other hand, the Fatou’s lemma and (2.13) give

liminf
n→∞

∫
Ω

F(ϕn)dx ≥
∫

Ω
F(ϕ0)dx. (2.14)

Combining (2.10)-(2.12) and (2.14), we get

d = lim
n→∞

Eη [ϕn]≥ Eη [ϕ0]≥ d.

Therefore, the minimum d is achieved at ϕ0 ∈ H1(Ω).

If η = 0, then it becomes a Dirichlet problem. Thus by theorem 2 of [5], we get

the minimizer ϕ0 ∈ {u ∈ H1(Ω) : u−ϕbd ∈ H1
0 (Ω)}. �

To deal with the regularity of ϕ0, firstly, we let

f (ϕ) = q1c1(ϕ)−q2c2(ϕ).

20
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Since f is monotone increasing from −∞ to ∞ which we can see from (1.1)-(1.3) and

proposition 2.5, there exists a unique s such that f (s) = 0. Hence

∆ϕ = f (ϕ) = f (ϕ)− f (s) =


f (ϕ)− f (s)

ϕ−s (ϕ − s) if ϕ ̸= s,

d f (ϕ)
dϕ (ϕ − s) if ϕ = s,

This implies that ϕ0 is a weak solution of the equation

∆ϕ =


f (ϕ0)− f (s)

ϕ0−s (ϕ − s) if ϕ0 ̸= s,

d f (ϕ0)
dϕ (ϕ − s) if ϕ0 = s,

Here, we need some information to f (ϕ0)− f (s)
ϕ0−s .

Proposition 2.8. There exists M > 0 such that |d f (ϕ)
dϕ | < M for all ϕ ∈ R. In

particular, | f (ϕ1)− f (ϕ2)
ϕ1−ϕ2

|< M for all ϕ1,ϕ2 ∈ R.

Proof.
d f (ϕ)

dϕ
= q1

dc1

dϕ
−q2

dc2

dϕ

Using the same notation as proposition 2.5,

dc1
dϕ = M1

M

=
q1

c0c2
+

q1g22+q2g12
c0

+
q1g00

c2
+q1(g00g22−g02g20)+q2(g00g12−g02g10)

1
c0c1c2

+
g00
c1c2

+
g11
c0c2

+
g22
c0c1

+
g00g11−g01g10

c2
+

g00g22−g02g20
c1

+
g11g22−g12g21

c0
+detG

,

dc2
dϕ = M2

M

=
− q2

c0c1
− q1g21+q2g11

c0
− q2g00

c1
−q2(g00g11−g01g10)−q1(g00g21−g01g20)

1
c0c1c2

+
g00
c1c2

+
g11
c0c2

+
g22
c0c1

+
g00g11−g01g10

c2
+

g00g22−g02g20
c1

+
g11g22−g12g21

c0
+detG

.
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By (1.1)-(1.3), if ϕ → ∞, then c0, c2 → 0 and c1 → ∞. This implies that

dc1

dϕ
→ q1

g11
as ϕ → ∞,

dc2

dϕ
→ 0 as ϕ → ∞.

Similarly,
dc1

dϕ
→ 0 as ϕ →−∞,

dc2

dϕ
→ −q2

g22
as ϕ →−∞.

Since d f (ϕ)
dϕ is continuous to ϕ , there exists M > 0 such that |d f (ϕ)

dϕ |< M for all ϕ ∈R.

By mean value theorem, | f (ϕ1)− f (ϕ2)
ϕ1−ϕ2

|< M for all ϕ ∈ R. �

By proposition 2.8, f (ϕ0)− f (s)
ϕ0−s is bounded. Applying theorem 3.14 of [15], we

obtain ϕ0 ∈C0,α(Ω) for some α > 0.

Consider ∆ϕ = f (ϕ0) again. If η > 0, then by proposition 2.8, for any x,y ∈ Ω,

| f (ϕ0(x))− f (ϕ0(y))|= | f (ϕ0(x))− f (ϕ0(y))
ϕ0(x)−ϕ0(y)

(ϕ0(x)−ϕ0(y))|< M|ϕ0(x)−ϕ0(y)|.

Hence ϕ0 ∈ C0,α(Ω) implies f ∈ C0,α(Ω). By the standard elliptic theorem (c.f.

Theorem 6.31 of [8]), there exists a unique solution Φ ∈C2,α(Ω). In particular,

∫
Ω
[∇Φ∇v+(q1c1(ϕ0)−q2c2(ϕ0))v]dx+

1
η

∫
∂Ω

(Φ−ϕbd)vdS = 0 (2.15)

for any v ∈ H1(Ω). If we subtract (2.5) by (2.15) and let v = ϕ0 −Φ, then

∫
Ω
|∇(ϕ0 −Φ)|2dx+

1
η

∫
∂Ω

(ϕ0 −Φ)2dS = 0

This implies ∇(ϕ0−Φ) = 0 in Ω and ϕ0 = Φ in trace sense on ∂Ω almost everywhere.
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Hence ϕ0 = Φ almost everywhere in Ω. Since ϕ0 ∈C0,α(Ω) and Φ ∈C2,α(Ω), ϕ0 = Φ

on Ω. This shows that ϕ0 ∈ C2,α(Ω). Applying the standard elliptic regularity

theorem (c.f. Theorem 6.17 of [8]), ϕ0 ∈C∞(Ω)∩C2,α(Ω). Similar argument can be

applied for η = 0 (c.f. Theorem 6.14 of [8]).

At last, we prove the uniqueness of the solution. Suppose ϕ1,ϕ2 ∈ C∞(Ω)∩

C2,α(Ω) are two distinct solutions of (1.6)-(1.7). Subtracting (1.6) for ϕ = ϕ2 by

(1.6) for ϕ = ϕ1, multiplying ϕ1−ϕ2 and then integrating it over Ω with integration

by parts and the fact (ϕ1 −ϕ2)+η ∂
∂ν (ϕ1 −ϕ2) = 0 on ∂Ω,

∫
Ω |∇(ϕ1 −ϕ2)|2dx+ 1

η
∫

∂Ω(ϕ1 −ϕ2)
2dS

+q1
∫

Ω(c1(ϕ1)− c1(ϕ2))(ϕ1 −ϕ2)dx

−q1
∫

Ω(c2(ϕ1)− c2(ϕ2))(ϕ1 −ϕ2)dx = 0.

By proposition 2.5,

q1

∫
Ω
(c1(ϕ1)− c1(ϕ2))(ϕ1 −ϕ2)dx−q2

∫
Ω
(c2(ϕ1)− c2(ϕ2))(ϕ1 −ϕ2)dx ≥ 0.

Therefore, ∫
Ω
|∇(ϕ1 −ϕ2)|2dx+

1
η

∫
∂Ω

(ϕ1 −ϕ2)
2dS ≤ 0,

which implies ϕ1 = ϕ2 in Ω.
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3 Limiting Behavior of ϕ and ci

In this section, we assume:

(A1) gi0
g00

= gi1
g01

= gi2
g02

= λi > 0, i = 1,2.

(A2) gi j = g̃i jΛ > 0, i, j = 0,1,2.

(A3) µi = µ̃iΛ+ µ̂i, µ̃i > 0, i = 0,1,2.

(A4) λiµ̃0 − µ̃i = 0, i = 1,2.

where g̃i j,, µ̃i, µ̂i are positive constants. Under this assumption,

G = g⃗⃗gT , where g⃗ =


g00

g01

g02

 .

Since, it is clear that G is nonnegative definite and

det

 g00 g01

g20 g21

≥ 0,

the existence and uniqueness of ϕ and ci, for i = 0,1,2, can be asserted. As a result,

we can further consider the limiting behavior. The theorem is as follows:

Theorem 3.1. Let Ω be a bounded open smooth domain in Rn and suppose that

(A1)− (A4) hold. Then

(i) (ci,Λ,ϕΛ)→ (c∗i ,ϕ∗) uniformly, for i = 0,1,2.

(ii) ϕΛ → ϕ∗ in C2,α(Ω).

where (c∗i ,ϕ∗) satisfies

g̃00c∗0 + g̃01c∗1 + g̃02c∗2 = µ̃0, (3.1)

λ1 logc∗0 − logc∗1 =−q1ϕ∗+µ1, (3.2)

λ2 logc∗0 − logc∗2 = q2ϕ∗+µ2, (3.3)

24



	  

doi:10.6342/NTU201801038

∆ϕ∗ = q1c∗1 −q2c∗2 in Ω, (3.4)

ϕ∗+η ∂ϕ∗

∂ν = ϕbd on ∂Ω. (3.5)

In particular, ϕΛ −ϕ∗ = O( 1
Λ) as Λ → ∞.

3.1 Uniform Boundness of ϕ and ci

To deal with the limiting behavior, we should understand the order of ϕ and ci, for

i = 0,1,2 with respect to Λ first. For any fixed Λ, according to (1.8), (1.9), we can

write

c1 = e−µ1eq1ϕ (c0)
λ1,

c2 = e−µ2e−q2ϕ (c0)
λ2.

(3.6)

Hence (1.6) becomes

∆ϕ = q1e−µ1eq1ϕ (c0)
λ1 −q2e−µ2e−q2ϕ (c0)

λ2 (3.7)

with the boundary condition (1.7).

Since ϕ is continuous on Ω which is compact, the maximum and minimum exist.

To obtain the upper bound and the lower bound of ϕ , we have two cases. One case

is that the extrema of ϕ happens in Ω. In this case, we deal with it by (3.7). The

other case is that the extrema of ϕ happens on ∂Ω. In this case, we deal with it by

the boundary condition. The following is the proposition.

Proposition 3.2. Let ϕ0 be the solution of (1.6) with boundary condition (1.7).

Then m∗ ≤ ϕ0 ≤ M∗, where

m∗ = min

{
min
∂Ω

ϕbd,min
Ω

1
q1 +q2

log
q2cλ2

0 e−µ2

q1cλ1
0 e−µ1

}
,
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M∗ = max

{
max
∂Ω

ϕbd,max
Ω

1
q1 +q2

log
q2(c0)

λ2e−µ2

q1(c0)λ1e−µ1

}
.

Proof. We only prove the lower bound part. The other part is similar. Since ϕ0 is

continuous in a compact set Ω, there exists x0 ∈ Ω such that ϕ0(x) ≥ ϕ0(x0) for all

x ∈ Ω. If x0 ∈ Ω, then

0 ≤ ∆ϕ0(x0) = q1e−µ1eq1ϕ0(x0)[c0(ϕ0(x0))]
λ1 −q2e−µ2e−q2ϕ0(x0)[c0(ϕ0(x0))]

λ2.

This implies

q2e−µ2e−q2ϕ0(x0)[c0(ϕ0(x0))]
λ2 ≤ q1e−µ1eq1ϕ0(x0)[c0(ϕ0(x0))]

λ1.

Hence,

ϕ0(x)≥ ϕ0(x0)≥
1

q1 +q2
log

q2[c0(ϕ0(x0))]
λ2e−µ2

q1[c0(ϕ0(x0))]λ1e−µ1
.

If x0 ∈ ∂Ω, then η ∂ϕ0
∂ν (x0)≤ 0. By (1.7), ϕ0(x)≥ ϕ0(x0)≥ ϕbd. Combining these two

results, we complete the proof. �

Applying proposition 3.2, we can show that ϕΛ, ci,Λ(ϕΛ) are uniformly bounded.

To prove this proposition, Observe that if c0,Λ(ϕΛ) is uniformly bounded, then so

are c1,Λ(ϕΛ), c2,Λ(ϕΛ) and ϕΛ by (3.6) and proposition 3.2. Hence, to obtain the

estimate, we consider (1.2) and replace c1,Λ, c2,Λ and ϕΛ by c0,Λ.

Proposition 3.3. Suppose that (A1)-(A4) holds, then ϕΛ, ci,Λ(ϕΛ) are uniformly

bounded in Λ. Moreover, ci,Λ(ϕΛ) is uniformly bounded and away from 0 to Λ for

i = 0,1,2.

Proof. According to proposition 3.2, there are four cases:
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(i) min
∂Ω

ϕbd ≤ ϕΛ ≤ max
∂Ω

ϕbd.

(ii) min
∂Ω

ϕbd ≤ ϕΛ ≤ max
Ω

1
q1+q2

log q2(c0,Λ)
λ2e−µ2

q1(c0,Λ)
λ1e−µ1

.

(iii) min
Ω

1
q1+q2

log q2(c0,Λ)
λ2e−µ2

q1(c0,Λ)
λ1e−µ1

≤ ϕΛ ≤ max
∂Ω

ϕbd.

(iv) min
Ω

1
q1+q2

log q2(c0,Λ)
λ2e−µ2

q1(c0,Λ)
λ1e−µ1

≤ ϕΛ ≤ max
Ω

1
q1+q2

log q2(c0,Λ)
λ2e−µ2

q1(c0,Λ)
λ1e−µ1

.

Claim: c0,Λ has a uniform upper bound.

If c0,Λ ≥ 1, then logc0,Λ ≥ 0, and hence by (1.1), g00c0,Λ ≤ µ0. This implies

c0,Λ ≤ max{1, µ̃0Λ+µ̂0
g̃00Λ } which is uniformly bounded to Λ. Hence there exists cM such

that c0,Λ ≤ cM for all Λ sufficient large.

Claim: c0,Λ has a uniform lower bound which is larger than 0.

By (1.2) and (3.6),

λ1 logc0,Λ−λ1µ̂0+Λ(g̃10c0,Λ+ g̃11(c0,Λ)
λ1e−µ1eq1ϕΛ + g̃12(c0,Λ)

λ2e−µ2e−q2ϕΛ − µ̃1) = 0.

Using the inequality x ≥ log(1+ x) for x >−1, then

λ1(c0,Λ−1)−λ1µ̂0+Λ[g̃10c0,Λ+ g̃11(c0,Λ)
λ1e−µ1eq1M∗

+ g̃12(c0,Λ)
λ2e−µ2e−q2m∗

− µ̃1]≥ 0.

(3.8)

For case(i), since (3.8) holds for any point in Ω, if min
Ω

c0,Λ < 1, then

λ1((min
Ω

c0,Λ)
λm −1)−λ1µ̂0

+Λ[g̃10(min
Ω

c0,Λ)
λm + g̃11(min

Ω
c0,Λ)

λme−µ1eq1M∗
+ g̃12(min

Ω
c0,Λ)

λme−µ2e−q2m∗ − µ̃1]≥ 0,
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where λm = min{1,λ1,λ2}. Hence c0,Λ ≥ ( µ̃1Λ+µ̂0λ1+λ1
AΛ+λ1

)
1

λm , where

A = g̃10 + g̃11e−µ1eq1M∗
+ g̃12e−µ2e−q2m∗

.

This implies c0,Λ ≥ min{1,( µ̃1Λ+µ̂0λ1+λ1
AΛ+λ1

)
1

λm } which is uniformly bounded to Λ. As a

result, there exists cm > 0 which is independent of Λ such that c0,Λ ≥ cm.

For case (iv), without loss of generality, we may assume λ2 ≥ λ1. Since

m∗ = min
Ω

1
q1 +q2

log
q2(c0,Λ)

λ2e−µ2

q1(c0,Λ)λ1e−µ1
=

1
q1 +q2

log
q2(min

Ω
c0,Λ)

λ2−λ1e−µ2

q1e−µ1
,

and

M∗ = max
Ω

1
q1 +q2

log
q2(c0,Λ)

λ2e−µ2

q1(c0,Λ)λ1e−µ1
≤ 1

q1 +q2
log

q2(cM)λ2−λ1e−µ2

q1e−µ1
,

we have by (3.8),

λ1c0,Λ +Λ[g̃10c0,Λ + g̃11(c0,Λ)
λ1e−µ1(q2e−µ2

q1e−µ1
)

q1
q1+q2 (cM)

q1
q1+q2

(λ2−λ1)

+g̃12(c0,Λ)
λ2e−µ2(q2e−µ2

q1e−µ1
)

−q2
q1+q2 (min

Ω
c0,Λ)

−q2
q1+q2

(λ2−λ1)]≥ µ̃1Λ+ µ̂0λ1 +λ1.

If min
Ω

c0,Λ < 1, then

λ1(min
Ω

c0,Λ)
λn +Λ(g̃10(min

Ω
c0,Λ)

λn + g̃11(min
Ω

c0,Λ)
λne−µ1(q2e−µ2

q1e−µ1
)

q1
q1+q2 (cM)

−q2
q1+q2

(λ2−λ1)

+g̃12(min
Ω

c0,Λ)
λne−µ2(q2e−µ2

q1e−µ1
)

−q2
q1+q2 )≥ µ̃1Λ+ µ̂0λ1 +λ1,

where λn = min{1,λ1,
q1λ2+q2λ1

q1+q2
} Hence c0,Λ ≥ min{1,( µ̃1Λ+µ̂0λ1+λ1

BΛ+λ1
)

1
λn }, where

B = g̃10 + g̃11e−µ1(
q2e−µ2

q1e−µ1
)

q1
q1+q2 (cM)

−q2
q1+q2

(λ2−λ1)+ g̃12e−µ2(
q2e−µ2

q1e−µ1
)

−q2
q1+q2 .
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This implies that there exists cm such that c0,Λ ≥ cm.

The arguments are similar for case (ii) and (iii) and we complete the claim.

Since c0,Λ is uniformly bounded, then so are c1,Λ, c2,Λ and ϕΛ by (3.6) and

proposition 3.2.

�

Since what we are interested are not only ci,Λ(ϕΛ) but also ci,Λ(ϕ∗), we need the

following proposition.

Proposition 3.4. Suppose that (A1)-(A4) holds, then ci,Λ(ϕ) is uniformly bounded

and away from 0 to Λ for i = 0,1,2, provided ϕ(x) is bounded.

Proof. The proof is the same as proposition 3.3 case (i). �

Remark 3.1. Since ci,Λ(ϕ) is uniformly bounded and away from 0, for i = 0,1,2,

provided ϕ(x) is bounded. By proposition 2.5 and (A1)− (A2),

dc1,Λ

dϕ
=

M1

M
=

1
c0,Λc2,Λ

+ q1g22
c0,Λ

+ q1g00
c2,Λ

1
c0,Λc1,Λc2,Λ

+ g00
c1,Λc2,Λ

+ g11
c0,Λc2,Λ

+ g22
c0,Λc1,Λ

=
c1,Λ +q1g22c1,Λc2,Λ +q1g00c0,Λc1,Λ

1+g00c0,Λ +g11c1,Λ +g22c1,Λ

=

c1,Λ
Λ +q1g̃22c1,Λc2,Λ +q1g̃00c0,Λc1,Λ

1
Λ + g̃00c0,Λ + g̃11c1,Λ + g̃22c1,Λ

,

which is uniformly bounded and away from 0. The same argument can be applied to

dc2,Λ
dϕ .

Now, we can start to prove theorem 3.1. In the beginning, we use (1.6)-(1.7) and

(3.4)-(3.5) to prove that ϕΛ → ϕ∗ uniformly as Λ → ∞. Next, we can divide (1.1)

by Λ and subtract it by (3.1). Consequently, applying (3.6), we can show c0,Λ → c∗0
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uniformly provided ϕΛ → ϕ∗ uniformly as Λ → ∞. This implies ci,Λ → c∗i uniformly

also, for i = 1,2. Finally, we show

[ fΛ(ϕΛ)− f ∗(ϕ∗)]α;Ω → 0 as Λ → ∞,

where fΛ = q1c1,Λ −q2c2,Λ and f ∗ = q1c∗1 −q2c∗2. Therefore, by the standard elliptic

theorem and the uniform convergence results, ϕΛ → ϕ∗ in C2,α(Ω).

3.2 Proof of Theorem 3.1

Proof. Claim: ϕΛ → ϕ∗ uniformly.

Subtracting (1.6) by (3.4),

∆(ϕΛ −ϕ∗) = q1(c1,Λ(ϕΛ)− c∗1(ϕ
∗))−q2(c2,Λ(ϕΛ)− c∗2(ϕ

∗))

Let

A1 = c1,Λ(ϕΛ)− c1,Λ(ϕ∗), A2 = c1,Λ(ϕ∗)− c∗1(ϕ
∗),

B1 = c2,Λ(ϕΛ)− c2,Λ(ϕ∗), B2 = c2,Λ(ϕ∗)− c∗2(ϕ
∗).

Then

∆(ϕΛ −ϕ∗) = q1(A1 +A2)−q2(B1 +B2).

For A1, applying mean value theorem,

A1 =
dc1,Λ
dϕ

(ϕs1)(ϕΛ −ϕ∗),

where ϕs1 ∈ (ϕΛ,ϕ∗). By remark 3.1, dc1,Λ
dϕ is positive and uniformly bounded away

from 0.
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For A2, dividing (1.1) by Λ and subtracting it by (3.1),

g̃00(c0,Λ(ϕ∗)− c∗0(ϕ
∗))+ g̃01(c1,Λ(ϕ∗)− c∗1(ϕ

∗))+ g̃02(c2,Λ(ϕ∗)− c∗2(ϕ
∗)) =

µ̂0−logc0,Λ(ϕ∗)
Λ .

By (3.6),

g̃00(c0,Λ(ϕ∗)− c∗0(ϕ
∗))+ g̃01e−µ1eq1ϕ∗

((c0,Λ(ϕ∗))λ1 − (c∗0(ϕ
∗))λ1)

+g̃02e−µ2e−q2ϕ∗
((c0,Λ(ϕ∗))λ2 − (c∗0(ϕ

∗))λ2) =
µ̂0−logc0,Λ(ϕ∗)

Λ .

This implies that

A(c0,Λ(ϕ∗)− c∗0(ϕ
∗)) =

µ̂0 − logc0,Λ(ϕ∗)

Λ
,

where

A= g̃00+ g̃01e−µ1eq1ϕ∗ (c0,Λ(ϕ∗))λ1 − (c∗0(ϕ
∗))λ1

c0,Λ(ϕ∗)− c∗0(ϕ∗)
+ g̃02e−µ2e−q2ϕ∗ (c0,Λ(ϕ∗))λ2 − (c∗0(ϕ

∗))λ2

c0,Λ(ϕ∗)− c∗0(ϕ∗)
.

Since the right hand side tends to 0 uniformly as Λ tends to infinity by proposition

3.4 and A ≥ g̃00, A2 → 0 as Λ → ∞. Moreover, since the right hand side is of O( 1
Λ)

as Λ → ∞, A2 is of O( 1
Λ) as Λ → ∞.

The same argument can be applied to B1 ,B2. That is,

B1 =
dc2,Λ
dϕ

(ϕs2)(ϕΛ −ϕ∗),

where dc2,Λ
dϕ (ϕs2) is negative and bounded away from 0, ϕs2 ∈ (ϕΛ,ϕ∗). B2 is of O( 1

Λ)

as Λ → ∞.
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If max
Ω

(ϕΛ−ϕ∗)2 = (ϕΛ−ϕ∗)2(xΛ), where xΛ ∈ ∂Ω, then we have ∂ (ϕΛ−ϕ∗)2

∂ν (xΛ)≥

0. Since (ϕΛ − ϕ∗)(xΛ) + η ∂ (ϕΛ−ϕ∗)
∂ν (xΛ) = 0, (ϕΛ − ϕ∗)2(xΛ) +

η
2

∂ (ϕΛ−ϕ∗)2

∂ν (xΛ) = 0.

This implies ϕΛ = ϕ∗.

If max
Ω

(ϕΛ −ϕ∗)2 = (ϕΛ −ϕ∗)2(xΛ), where xΛ ∈ Ω, then

0 ≥ ∆(ϕΛ −ϕ∗)2(xΛ)≥ 2∆(ϕΛ −ϕ∗)(xΛ)(ϕΛ −ϕ∗)(xΛ)

= 2(q1(A1 +A2)−q2(B1 +B2))(ϕΛ −ϕ∗)(xΛ).

This implies that

(q1
dc1,Λ

dϕ (ϕs1)−q2
dc2,Λ

dϕ (ϕs2))max
Ω

(ϕΛ −ϕ∗)2 = (q1
dc1,Λ

dϕ (ϕs1)−q2
dc2,Λ

dϕ (ϕs2))(ϕΛ −ϕ∗)2(xΛ)

= (q1A1 −q2B1)(ϕΛ −ϕ∗)(xΛ)≤ (−q1A2 +q2B2)(ϕΛ −ϕ∗)(xΛ)

≤ (−q1A2 +q2B2)(sup
Ω

|ϕΛ|+ sup
Ω

|ϕ∗|) = O( 1
Λ) as Λ → ∞.

Since q1
dc1,Λ

dϕ (ϕs1)− q2
dc2,Λ

dϕ (ϕs2) is positive and bounded away from 0, we complete

the proof.

Claim: ci,Λ(ϕΛ)→ c∗i (ϕ∗) uniformly, for i = 0,1,2.

Dividing (1.1) by Λ and subtracting it by (3.1),

g̃00(c0,Λ(ϕΛ)− c∗0(ϕ
∗))+ g̃01e−µ1((c0,Λ(ϕΛ))

λ1eq1ϕΛ − (c∗0(ϕ
∗))λ1eq1ϕ∗

)

+g̃02e−µ2((c0,Λ(ϕΛ))
λ2e−q2ϕΛ − (c∗0(ϕ

∗))λ2e−q2ϕ∗
) =

µ̂0−logc0,Λ(ϕΛ)
Λ .
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This implies that

g̃00(c0,Λ(ϕΛ)− c∗0(ϕ
∗))+ g̃01e−µ1eq1ϕ∗

((c0,Λ(ϕΛ))
λ1 − (c∗0(ϕ

∗))λ1)

+g̃02e−µ2e−q2ϕ∗
((c0,Λ(ϕΛ))

λ2 − (c∗0(ϕ
∗))λ2)

=
µ̂0−logc0,Λ(ϕΛ)

Λ + g̃01e−µ1(c0,Λ(ϕΛ))
λ1(eq1ϕ∗ − eq1ϕΛ)+ g̃02e−µ2(c0,Λ(ϕΛ))

λ2(e−q2ϕ∗ − e−q2ϕΛ).

Hence,

C(c0,Λ(ϕΛ)− c∗0(ϕ
∗)) =

µ̂0−logc0,Λ(ϕΛ)
Λ + g̃01e−µ1(c0,Λ(ϕΛ))

λ1(eq1ϕ∗ − eq1ϕΛ)

+g̃02e−µ2(c0,Λ(ϕΛ))
λ2(e−q2ϕ∗ − e−q2ϕΛ),

where

C = g̃00+ g̃01e−µ1eq1ϕ∗ (c0,Λ(ϕΛ))
λ1 − (c∗0(ϕ

∗))λ1

c0,Λ(ϕΛ)− c∗0(ϕ∗)
+ g̃02e−µ2e−q2ϕ∗ (c0,Λ(ϕΛ))

λ2 − (c∗0(ϕ
∗))λ2

c0,Λ(ϕΛ)− c∗0(ϕ∗)
.

Since ϕΛ → ϕ∗ uniformly, the right hand side of the equation tends to 0 as Λ tends

to infinity. Observe that C ≥ g̃00, and hence c0,Λ(ϕΛ)→ c∗0(ϕ
∗) uniformly as Λ → ∞.

Note that if c0,Λ(ϕΛ) = c∗0(ϕ
∗), then it is nothing to prove.

By (3.6) and mean value theorem,

|c1,Λ(ϕΛ)− c∗1(ϕ
∗)|= |eµ1−q1ϕΛ[c0,Λ(ϕΛ)]

λ1 − eµ1−q1ϕ∗
[c∗0(ϕ

∗)]λ1|

≤ |eµ1−q1ϕΛ[c0,Λ(ϕΛ)]
λ1 − eµ1−q1ϕΛ[c∗0(ϕ

∗)]λ1|+ |eµ1−q1ϕΛ[c∗0(ϕ
∗)]λ1 − eµ1−q1ϕ∗

[c∗0(ϕ
∗)]λ1|

≤C(|c0,Λ(ϕΛ)− c∗0(ϕ
∗)|+ |ϕΛ −ϕ∗|)

which tends to 0 as Λ → ∞, for some constant C. The same argument can be applied

to c2,Λ(ϕΛ). Therefore, ci,Λ(ϕΛ)→ c∗i (ϕ∗) uniformly as Λ → ∞.

Claim: dc1,Λ
dϕ (ϕ)→ dc∗1

dϕ (ϕ) uniformly provided ϕ(x) is bounded.
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Differentiating the first three equations of (1.10) and (1.11) with respect to ϕ , then

by Cramer’s rule,
dc1,Λ
dϕ

=
N1,Λ

NΛ
,

dc∗1
dϕ

=
N∗

1
N∗ ,

where

NΛ = Λdet


1

c0,ΛΛ + g̃00 g̃01 g̃02

λ1
c0,Λ

−1
c1,Λ

0

λ2
c0,Λ

0 −1
c2,Λ

 ,

N1,Λ = Λdet


1

c0,ΛΛ + g̃00 0 g̃02

λ1
c0,Λ

−q1 0

λ2
c0,Λ

q2
−1
c2,Λ

 ,

N∗ = det


g̃00 g̃01 g̃02

λ1
c∗0

−1
c∗1

0

λ2
c∗0

0 −1
c∗2

 ,

N∗
1 = det


g̃00 0 g̃02

λ1
c∗0

−q1 0

λ2
c∗0

q2
−1
c∗2

 .

By proposition 3.4, NΛ is bounded and away from 0. In particular, since c0,Λ

is uniformly bounded and away from 0, 1
c0,ΛΛ → 0 as Λ → ∞. Moreover, by the

same argument as the previous claim, ci,Λ(ϕ)→ c∗i (ϕ) uniformly as Λ → ∞. Hence,

(NΛ,N1,Λ)→ (N∗,N∗
1 ) uniformly as Λ → ∞. This implies the claim. The same argu-

ment can be used to prove dc2,Λ
dϕ (ϕ)→ dc∗2

dϕ (ϕ) uniformly as Λ → ∞.

Claim: ϕΛ → ϕ∗ in C2,α(Ω).
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Let fΛ = q1c1,Λ −q2c2,Λ and f ∗ = q1c∗1 −q2c∗2. Then


∆(ϕΛ −ϕ∗) = fΛ(ϕΛ)− f ∗(ϕ∗) in Ω,

(ϕΛ −ϕ∗)+ ∂ (ϕΛ−ϕ∗)
∂ν = 0 on ∂Ω.

By the standard elliptic theorem (c.f. Theorem 6.30 of [8]),

|ϕΛ −ϕ∗|2,α;Ω ≤C(|ϕΛ −ϕ∗|0;Ω + | fΛ(ϕΛ)− f ∗(ϕ∗)|0,α;Ω).

Since ϕΛ → ϕ∗ and fΛ → f ∗ uniformly as Λ → ∞, it suffices to show

[ fΛ(ϕΛ)− f ∗(ϕ∗)]α;Ω → 0 as Λ → ∞.

Since d f ∗
dϕ (ϕ) is continuous on a compact set which contains the image of ϕΛ(x) and

ϕ∗(x) (c.f. Proposition 3.4), given ε > 0, there exists δ > 0 such that if |ϕ1−ϕ2|< δ ,

then |d f ∗
dϕ (ϕ1)− d f ∗

dϕ (ϕ2)|< ε .

For |ϕ∗(x)−ϕ∗(y)| ≥ δ
2 and given x,y ∈ Ω,

| fΛ(ϕΛ(x))− f ∗(ϕ∗(x))− [ fΛ(ϕΛ(y))− f ∗(ϕ∗(y))]|

≤ 2
δ | fΛ(ϕΛ(x))− f ∗(ϕ∗(x))− [ fΛ(ϕΛ(y))− f ∗(ϕ∗(y))]||ϕ∗(x)−ϕ∗(y)|

≤ 2
δ | fΛ(ϕΛ(x))− f ∗(ϕ∗(x))− [ fΛ(ϕΛ(y))− f ∗(ϕ∗(y))]|[ϕ∗]α;Ω|x− y|α .

This implies that

sup
x ̸=y

1
|x−y|α | fΛ(ϕΛ(x))− f ∗(ϕ∗(x))− [ fΛ(ϕΛ(y))− f ∗(ϕ∗(y))]|

≤ sup
x ̸=y

2
δ | fΛ(ϕΛ(x))− f ∗(ϕ∗(x))− [ fΛ(ϕΛ(y))− f ∗(ϕ∗(y))]|[ϕ∗]α;Ω.
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Since the right hand side is a continuous function on Ω×Ω, it attains its maximum

at (xΛ,yΛ). Hence,

sup
x ̸=y

1
|x−y|α | fΛ(ϕΛ(x))− f ∗(ϕ∗(x))− [ fΛ(ϕΛ(y))− f ∗(ϕ∗(y))]|

≤ 2
δ | fΛ(ϕΛ(xΛ))− f ∗(ϕ∗(xΛ))− [ fΛ(ϕΛ(yΛ))− f ∗(ϕ∗(yΛ))]|[ϕ∗]α;Ω.

Since fΛ(ϕΛ)→ f ∗(ϕ∗) uniformly as Λ → ∞, the right hand side tends to 0 as Λ → ∞.

For |ϕ∗(x)−ϕ∗(y)|< δ
2 and given x,y ∈ Ω, by mean value theorem,

| fΛ(ϕΛ(x))− f ∗(ϕ∗(x))− ( fΛ(ϕΛ(y))− f ∗(ϕ∗(y)))|

= |d fΛ
dϕ (ϕs,Λ)(ϕΛ(x)−ϕΛ(y))− d f ∗

dϕ (ϕ∗
s )(ϕ∗(x)−ϕ∗(y))|

where ϕs,Λ ∈ (ϕΛ(x),ϕΛ(y)) and ϕ∗
s ∈ (ϕ∗(x),ϕ∗(y)). Let

A = d fΛ
dϕ (ϕs,Λ)(ϕΛ(x)−ϕΛ(y)−ϕ∗(x)+ϕ∗(y)),

B = (d fΛ
dϕ (ϕs,Λ)− d f ∗

dϕ (ϕ∗
s ))(ϕ∗(x)−ϕ∗(y)).

Then

| fΛ(ϕΛ(x))− f ∗(ϕ∗(x))− ( fΛ(ϕΛ(y))− f ∗(ϕ∗(y)))| ≤ |A|+ |B|.

For A, since d fΛ
dϕ (ϕs,Λ) is uniformly bounded (c.f. Remark 3.1), there exists a

constant C > 0 such that

|A| ≤C[ϕΛ −ϕ∗]α;Ω|x− y|α .

which tends to 0 as Λ → ∞ by theorem 3.14 of [15].

For B, since d fΛ
dϕ (ϕs,Λ)→ d f ∗

dϕ (ϕs,Λ) uniformly as Λ → ∞ by the previous claim, for
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Λ large enough,

|B| ≤ (|d f ∗
dϕ (ϕs,Λ)− d fΛ

dϕ (ϕs,Λ)|+ |d f ∗
dϕ (ϕs,Λ)− d f ∗

dϕ (ϕ∗
s )|)|ϕ∗(x)−ϕ∗(y)|

≤ (ε + |d f ∗
dϕ (ϕs,Λ)− d f ∗

dϕ (ϕ∗
s )|[ϕ∗]α;Ω|x− y|α .

Since ϕΛ → ϕ∗ uniformly as Λ → ∞ and |ϕ∗(x)− ϕ∗(y)| < δ
2 , for Λ large enough,

|ϕs,Λ −ϕ∗
s |< δ . Hence,

|B| ≤ 2ε[ϕ∗]α;Ω|x− y|α .

Letting ε → 0, we get sup
x ̸=y

|B|
|x−y|α → 0. This complete the claim. �

4 Generalization of G

In this section, we generalize the condition that G is nonnegative definite. The main

difference is from theorem 2.3 and proposition 2.5 which can be replaced by the

following proposition and theorem. The rest of the proofs are all the same as before.

For the proposition, we consider c0, c1, and c2 as three variables and apply

Lagrange multiplier to find the condition such that M > 0 (c.f. proposition 2.5).

Proposition 4.1. Given G = (gi j) and µi, for i = 0,1,2, suppose that

(B1) det

 g00 g01

g10 g11

 ,det

 g00 g02

g20 g22

 ,det

 g00 g01

g20 g21

≥ 0,

(B2) E
c0

1c0
2
+ F

c0
1
+ H

c0
2
+ J > 0,

then we have dc1
dϕ > 0 and dc2

dϕ < 0, where

c0
1 =

−(AE+q2H)+
√

(AE+q2H)2+4q2AH(a0−q2E)
2q2AH ,

c0
2 =

−(BE+q1F)+
√

(BE+q1F)2+4q1BF(a0−q1E)
2q1BF .
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for some a0 satisfying

logc0
1 + logc0

2 +Ac0
1 +Bc0

2 =C.

Here,

A = q2g11 +q1g21 − (q2g10+q1g20)g01
g00+1 ,

B = q2g12 +q1g22 − (q2g10+q1g20)g02
g00+1 ,

C = q2µ1 +q1µ2 − (q2g10 +q1g20)(µ0 +1),

E = 1
cM

0
+g00,

F = g22
cM

0
+g00g22 −g02g20,

H = g11
cM

0
+g00g11 −g01g10,

J = g11g22−g12g21
cM

0
+detG,

where cM
0 is the upper bound of c0.

Proof. The same as proposition 2.5, by (B1), M1 > 0 and M2 < 0. Hence we only

have to show M > 0. Firstly, by (1.1),

logc0 +g00c0 ≤ µ0.

Since logc0 + g00c0 is monotone increasing to c0, there exists cM
0 > 0 such that

c0 ≤ cM
0 , where

logcM
0 +g00cM

0 = µ0.

Hence by (B1),

M =
1

c0c1c2
+

g00

c1c2
+

g11

c0c2
+

g22

c0c1
+

g00g11 −g01g10

c2

≥ E
c1c2

+ F
c1
+ H

c2
+ J.
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Note that under the assumption (B1), E, F , H are all nonnegative.

On the other hand, using the fact that log(1+ x)≤ x for x >−1 and by (1.1), then

c0 −1+g00c0 +g01c1 +g02c2 ≥ µ0.

Hence

c0 ≥
µ0 +1−g01c1 −g02c2

g00 +1
. (4.1)

Multiplying (1.2) by q2 and (1.3) by q1 and adding them together, then

q2 logc1 +q1 logc2 +(q2g10 +q1g20)c0 +(q2g11 +q1g21)c1 +(q2g12 +q1g22)c2

= q2µ1 +q1µ2.

(4.2)

Substituting (4.1) into (4.2), then one may check

q2 logc1 +q1 logc2 +Ac1 +Bc2 ≤C.

Note that A, B are nonnegative under the assumption (B1). Hence

M ≥ min
(c1,c2)∈Γ1

E
c1c2

+
F
c1

+
H
c2

+ J ≥ min
(c1,c2)∈Γ2

E
c1c2

+
F
c1

+
H
c2

+ J,

where

Γ1 = {(y,z) : (x,y,z) satisfies (1.1) and (4.2) for some x > 0}

⊆ {(y,z) : q2 logy+q1 logz+Ay+Bz ≤C},

Γ2 = {(y,z) : q2 logy+q1 logz+Ay+Bz =C.}

Observe that the minimum must be attained in a bounded domain since if c1 → ∞,
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then c2 → 0 and vice versa. This makes E
c1c2

+ F
c1
+ H

c2
+ J goes to infinity. Applying

Lagrange multiplier, then

E
c2

1c2
+ F

c2
1
= λ (q2

c1
+A),

E
c1c2

2
+ H

c2
2
= λ (q1

c2
+B).

This implies

(E +Fc2)(q1 +Bc2) = (E +Hc1)(q2 +Ac1).

Let a = (E +Fc2)(q1 +Bc2) = (E +Hc1)(q2 +Ac1). Then

c1 =
−(AE+q2H)+

√
(AE+q2H)2+4q2AH(a−q2E)

2q2AH ,

c2 =
−(BE+q1F)+

√
(BE+q1F)2+4q1BF(a−q1E)

2q1BF .

Denote c1 = c1(a) and c2 = c2(a). Then

q2 logc1(a)+q1 logc2(a)+Ac1(a)+Bc2(a) =C.

One may check that q2 logc1(a)+q1 logc2(a)+Ac1(a)+Bc2(a) is monotone increas-

ing to a. Hence, there exists a unique a0 such that

q2 logc0
1 +q1 logc0

2 +Ac0
1 +Bc0

2 =C.

This implies

M ≥ min
c1,c2∈Γ2

E
c1c2

+
F
c1

+
H
c2

+ J =
E

c0
1c0

2
+

F
c0

1
+

H
c0

2
+ J > 0,

since the minimum must be attained in a bounded domain and this is the unique
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solution of Lagrange multiplier. �

The proof of the next theorem is almost the same as the existence part of al-

gebraic equations. The main difference is that we have more information to the

monotonicity. Therefore, we can make sure the solution is unique when applying

intermediate value theorem.

Theorem 4.2. Under the hypothesis of proposition 4.1, and if

det

 g11 g12

g21 g22

≥ 0,

then ci is unique for given ϕ . That is, ci is a function of ϕ , for i = 0,1,2.

Proof. For any fixed ϕ , by (1.2),

c2 =
1

g12
(q1ϕ +µ1 − logc1 −g10c0 −g11c1).

Substituting it into (1.3),

log( 1
g12

(q1ϕ +µ1 − logc1 −g10c0 −g11c1))+g20c0 +g21c1

+g22
g12

(q1ϕ +µ1 − logc1 −g10c0 −g11c1) =−q2ϕ +µ2.

Since g11g22−g12g21 is nonnegative, the left hand side is monotone decreasing to c1.

Hence for given c0, there exists a unique cs
1 such that

log( 1
g12

(q1ϕ +µ1 − logcs
1 −g10c0 −g11cs

1))+g20c0 +g21cs
1

+g22
g12

(q1ϕ +µ1 − logcs
1 −g10c0 −g11cs

1) =−q2ϕ +µ2.

That is, c1 is a function of c0, and hence so is c2. Note that the existence of cs
1

41



	  

doi:10.6342/NTU201801038

follows from theorem 2.2. Differentiating the system (1.1)-(1.3) with respect to c0,

1
c0

+g00 +g01c′1 +g02c′2 = 0, (4.3)

c′1
c1

+g10 +g11c′1 +g12c′2 = 0, (4.4)

c′2
c2

+g20 +g21c′1 +g22c′2 = 0. (4.5)

Applying Cramer’s rule to (4.4) and (4.5),

c′1 =
D1

D
, c′2 =

D2

D
,

where

D = det

 1
c1
+g11 g12

g21
1
c2
+g22

 ,

D1 = det

 −g10 g12

−g20
1
c2
+g22

 ,

D2 = det

 1
c1
+g11 −g10

g21 −g20

 .

Substituting c′1 and c′2 into (4.3),

1
D
(D(

1
c0

+g00)+g01D1 +g02D2) =
M
D

> 0.

Here, M is the same as the one in proposition 3.3. This implies that logc0+g00c0+

g01c1(c0)+ g02c2(c0) is monotone increasing to c0. Hence there exists a unique cs
0
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such that

logcs
0 +g00cs

0 +g01c1(cs
0)+g02c2(cs

0) = µ0

and we complete the proof. Note that the existence of cs
0 follows from theorem

2.2. �

We have known that G = (gi j) is nonnegative definite if and only if gii ≥ 0 for

i = 0,1,2, detG ≥ 0 and

det

 g00 g01

g10 g11

 ,det

 g00 g02

g20 g22

 ,det

 g11 g12

g21 g22

≥ 0.

In our generalized condition, we do not ask detG ≥ 0. For example, consider

G =


1 1 2

1 2 2

2 2 3

 .

If µ0 →−∞, then CM
0 → 0. This implies J → ∞ and hence (B2) holds for µ0 small

enough. Thus, ci, for i = 0,1,2, can be written as a function of ϕ in this G.

5 Conclusion Remark

Li’s model is a well-known model for electrolyte solutions. In this work, we introduce

the PB_ns model which is derived from the steady-state of the Poisson-Nernst-

Planck system with steric effects. Under the assumption (A1)− (A4), PB_ns model

can be reduced to Li’s model by passing Λ to infinity. This shows that PB_ns

equations is a more general model.
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