請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/1185完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 管中閔 | |
| dc.contributor.author | Chen Lin | en |
| dc.contributor.author | 林真 | zh_TW |
| dc.date.accessioned | 2021-05-12T09:33:53Z | - |
| dc.date.available | 2018-07-26 | |
| dc.date.available | 2021-05-12T09:33:53Z | - |
| dc.date.copyright | 2018-07-26 | |
| dc.date.issued | 2018 | |
| dc.date.submitted | 2018-07-19 | |
| dc.identifier.citation | Almond, D., Doyle, J. J., Jr., Kowalski, A. E., & Williams, H. (2011) Estimating Marginal Returns to Medical Care: Evidence from At-risk Newborns. The Quarterly Journal of Economics, Vol 125, Issue 2, pp. 591-634.
Arai, Y. & Ichimura, H. (2015). Optimal Bandwidth Selection for the Fuzzy Regression Discontinuity Estimator. Economics Letters, Vol 141, pp. 103-106. Banks, J. & Mazzonna, F. (2012). The Effect of Education on Old Age Cognitive Abilities: Evidence from a Regression Discontinuity Design. The Economic Journal, Vol 122 (May), pp. 418-448. Bloom, H. S. (2012) Modern Regression Discontinuity Analysis, Journal of Research on Educational Effectiveness, Vol 5, Issue.1, pp. 43-82. Bor, J., Moscoe, E., Mutevedzi, P., Newell, M.-L., & Barnighausen, T. (2014). Regression Discontinuity Designs in Epidemiology: Causal Inference without Randomized Trials. Epidemiology, Vol 25, Issue 5, pp. 729-737. Calonico, S., Cattaneo, M. D., & Titiunik, R. (2014). Robust Nonparametric Confidence Intervals for Regression-Discontinuity Designs. Econometrica, Vol 82, No.6, pp. 2295-2326. Cattaneo, M. D., Frandsen, B. R., & Titiunik, R. (2015). Randomization Inference in the Regression Discontinuity Design: An Application to Party Advantages in the U.S. Senate. extit{Journal of Causal Inference}, Vol 3, Issue 1, pp. 1--24. Cattaneo, M. D., Keele, L., Titiunik, R.,& Vazquez-Bare, G. (2016). Interpreting regression discontinuity designs with multiple cutoffs. The Journal of Politics, Vol 78, No.4, pp. 1229-1248. Caughey, D., & Sekhon, J. S. (2011). Elections and the Regression Discontinuity Design: Lessons from Close U.S. House Races, 1942-2008. Political Analysis, Vol 19, pp. 385-408. Cellini, S. R., Ferreira, F.,& Rothstein, J. (2010) The Value of School Facility Investments: Evidence from a Dynamic Regression Discontinuity Design. The Quarterly Journal of Economics, Vol 125, Issue 1, pp. 215-261. Cleveland, W. S. & Devlin, S. J. (1988). Locally Weighted Regression: An Approach to Regression Analysis by Local Fitting. Journal of the American Statistical Association, Vol 83, Issue 403. pp. 596-610. Cook, T. D. (2008). 'Waiting for Life to Arrive': A history of the regression-discontinuity design in Psychology, Statistics and Economics. Journal of Econometrics, Vol 142, pp. 636-654. Crown, W. H., Henk, H. J., & Vanness, D. J. (2011). Some Cautions on the Use of Instrumental Variables Estimators in Outcomes Research: How Bias in Instrumental Variables Estimators Is Affected by Instrument Strength, Instrument Contamination, and Sample Size.Value in Health. Vol 14, Issue 8, pp. 1078-1084. Dhrymes, P. J., & Lleras-Muney, A. (2006). Estimation of models with grouped and ungrouped data by means of '2SLS'. Journal of Econometrics, Vol 133, Issue 1, pp. 1-29. Eggers, A. C., Fowler, A., Hainmueller, J., Hall, A. B., & Snyder, J. M., Jr. (2015). On the Validity of the Regression Discontinuity Design for Estimating Electoral Effects: New Evidence from Over 40,000 Close Races. American Journal of Political Science, Vol 59, No.1, pp. 259-274. Fan, J. Q., & Gijbels, I. (1995). Adaptive Order Polynomial Fitting: Bandwidth Robustification and Bias Reduction. Journal of Computational and Graphical Statistics, Vol 4, No.3, pp. 213-227. Frolich, M. (2007) Nonparametric IV estimation of local average treatment effects with covariates. Journal of Econometrics, Vol 139, pp. 35-75. Gelman, A., & Imbens, G. (2017). Why high-order polynomials should not be used in regression discontinuity designs. Journal of Business & Economic Statistics, DOI: 10.1080/07350015.2017.1366909. Gelman, A., & Zelizer, A. (2015). Evidence on the deleterious impact of sustained use of polynomial regression on causal inference. Research & Politics, DOI: 10.1177/2053168015569830 Hahn, J. Y., Todd, P., & Van der Klaauw, W. (1999). Evaluating the Effect of an Antidiscrimination Law Using a Regression-Discontinuity Design. NBER Working Paper No.7131. Hahn, J. Y., Todd, P., & Van der Klaauw, W. (2001). Identification and Estimation of Treatment Effects with a Regression-Discontinuity Design. Econometrica, Vol 69, No.1, pp. 201-209. Hsu, Y. C., Kuan, C. M., & Lo, G. T. Y. (2018). Estimating Treatment Effects in Regression Discontinuity Designs with Multiple Assignment Variables. Working paper. Imbens, G., & Zajonc, T. (2011). Regression Discontinuity Design with Multiple Forcing Variables. Report, Harvard University. Jacob, B. A., & Lefgren, L. (2004). Remedial Education and Student Achievement: A Regression-Discontinuity Analysis. Review of Economics and Statistics. Vol 86, Issue 1. pp. 226-244. Lee, D. S., & Card, D. (2008). Regression discontinuity inference with specification error. Journal of Econometrics. Vol 142, pp.655-674. Lee, D. S., & Lemieux, T. (2010). Regression Discontinuity Designs in Economics. Journal of Economic Literature, Vol 48, pp. 281-355. Lo, G. T. Y. (2017). Estimating Treatment Effects in Regression Discontinuity Designs with Multiple Assignment Variables. Master Thesis, NTHU. Moscoe, E., Bor, J., & Barnighausen, T. (2015). Regression discontinuity designs are underutilized in medicine, epidemiology, and public health: a review of current and best practice. Journal of Clinical Epidemiology, Vol 68, pp. 132-143. Murnane, R. J., & Papay, J. P. (2011). Extending the regression-discontinuity approach to multiple assignment variables. Journal of Econometrics, Vol 161, Issue 2, pp. 203-207. Reardon, S. F., & Robinson, J. P. (2010). Regression discontinuity designs with multiple rating-score variables. Journal of Research on Educational Effectiveness, Vol 5, Issue 1, pp. 83-104. Rubin, D. B. (1974). Estimating causal effects of treatments in randomized and nonrandomized studies. Journal of Educational Psychology, 66(5), pp. 688-701. Sekhon, J. S., & Titiunik, R. (2017). On Interpreting The Regression Discontinuity Design as a Local Experiment. Advances in Econometrics, Vol 38, pp. 1-28. Thistlethwaite, D. L., & Campbell, D. T. (1960). Regression-discontinuity analysis: An alternative to the ex post facto experiment. Journal of Educational Psychology, 51(6), pp. 309-317. Van der Klaauw, W. (2002). Estimating The Effect of Financial Aid Offer on College Enrollment: A Regression-Discontinuity Approach. International Economic Review, Vol 43, No.4, pp. 1249-1287. Wong, V. C., Steiner, P. M., & Cook, T. D. (2013). Analyzing Regression-Discontinuity Designs With Multiple Assignment Variables: A Comparative Study of Four Estimation Methods. Journal of Educational and Behavioral Statistics, Vol 38, Issue 2, pp. 10-141. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/handle/123456789/1185 | - |
| dc.description.abstract | 當政策、療程之施行與否取決於受試者是否通過某些特定標準時,研究者可以使用斷點迴歸(Regression discontinuity design;RDD)對局部平均處理效應(LATE)做不偏估計。在本篇論文中,我們將會回顧多維模糊斷點迴歸(Multidimensional RDD)之概念與假設,在其中處置(Treatment)施行與否取決於多個標準,而受試者也不盡然都遵從指示接受或不接受處置。本文第一個貢獻為推廣Lo (2017)及Hsu、Kuan與Lo (2018)文中概念,並指出傳統的估計方法未考慮資料中潛在的異質性,從而可能導致估計偏誤。此外,我們指出兩個異質性的潛在來源:指標變數(Assignment variable、Running variable)邊際效果不同,以及接受處置的機率不同。由此我們針對多維模糊斷點迴歸提出平均法(Average Method)以及交點法(Intersection Method),成功克服資料中的異質性。在模擬中,我們發現我們提出的方法相較於傳統估計法確實能更準確地估計出處置效果,顯示我們的方法能夠在更普遍的環境下進行估計。 | zh_TW |
| dc.description.abstract | Regression discontinuity design (RDD) is an easy, yet rigorous setting allowing researchers to unbiasedly estimate local average treatment effect, particularly when the treatment is determined by whether subjects pass certain pre-specified thresholds or not. In this thesis, we shall review basic concepts and assumptions of multidimensional fuzzy RDD, in which there are multiple thresholds, and we do not require all subjects to follow the assignment rule. As the first contribution, we generalize the idea in Lo (2017) and Hsu, Kuan, Lo (2018), pointing out traditional estimation methods fail to take potential heterogeneity in the dataset into account and hence induce biased estimates. In addition, we identify the two potential sources of heterogeneity: different marginal effect of running variables and different treatment probabilities. With this in mind, we propose average method and intersection method for multidimensional fuzzy RDD, overcoming potential heterogeneity in the dataset. In the simulation study, we find out that our methods do produce a more accruate estimate than traditional methods, showing that our methods can accomodate much more general settings than traditional ones can do. | en |
| dc.description.provenance | Made available in DSpace on 2021-05-12T09:33:53Z (GMT). No. of bitstreams: 1 ntu-107-R05323002-1.pdf: 2045019 bytes, checksum: 6510f4bb2966a737e5dd993ca8b7ffd0 (MD5) Previous issue date: 2018 | en |
| dc.description.tableofcontents | 1. Introduction ...4
2. Regression Discontinuity Design ...6 3. 1-dim Fuzzy RDD ...8 3-1 Problem Formulation ...8 3-2 Identification ...10 3-3 Estimation Strategy ...12 4. Multidimensional Fuzzy RDD ...14 4-1 Problem Formulation and assumptions ...15 4-2 Estimation Method ...16 5. Simulation ...21 5-1 Setup ...21 5-2 Results ...24 6. Conclusion ...26 Reference ...27 Appendix ...30 | |
| dc.language.iso | en | |
| dc.subject | 斷點迴歸 | zh_TW |
| dc.subject | 局部多項式迴歸 | zh_TW |
| dc.subject | 局部平均處理效應(LATE) | zh_TW |
| dc.subject | 異質性 | zh_TW |
| dc.subject | 二階段最小平方法(2SLS) | zh_TW |
| dc.subject | Heterogeneity | en |
| dc.subject | Local polynomial regression | en |
| dc.subject | Regression discontinuity design (RDD) | en |
| dc.subject | Two stage least square estimation (2SLS) | en |
| dc.subject | Local Average treatment effect | en |
| dc.title | 多維模糊斷點迴歸設計下的新估計方法 | zh_TW |
| dc.title | New Estimation Method for Multidimensional Fuzzy Regression Discontinuity Design | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 106-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 許育進,楊子霆,江淳芳 | |
| dc.subject.keyword | 異質性,局部平均處理效應(LATE),局部多項式迴歸,斷點迴歸,二階段最小平方法(2SLS), | zh_TW |
| dc.subject.keyword | Heterogeneity,Local Average treatment effect,Local polynomial regression,Regression discontinuity design (RDD),Two stage least square estimation (2SLS), | en |
| dc.relation.page | 36 | |
| dc.identifier.doi | 10.6342/NTU201801706 | |
| dc.rights.note | 同意授權(全球公開) | |
| dc.date.accepted | 2018-07-19 | |
| dc.contributor.author-college | 社會科學院 | zh_TW |
| dc.contributor.author-dept | 經濟學研究所 | zh_TW |
| 顯示於系所單位: | 經濟學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-107-1.pdf | 2 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
