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摘要 

    當政策、療程之施行與否取決於受試者是否通過某些特定標準時，研究

者可以使用斷點迴歸(Regression discontinuity design；RDD)對局部平均

處理效應(LATE)做不偏估計。在本篇論文中，我們將會回顧多維模糊斷點迴

歸(Multidimensional RDD)之概念與假設，在其中處置(Treatment)施行與否

取決於多個標準，而受試者也不盡然都遵從指示接受或不接受處置。本文第

一個貢獻為推廣 Lo (2017)及 Hsu、Kuan 與 Lo (2018)文中概念，並指出傳統

的估計方法未考慮資料中潛在的異質性，從而可能導致估計偏誤。此外，我

們指出兩個異質性的潛在來源：指標變數(Assignment variable、Running 

variable)邊際效果不同，以及接受處置的機率不同。由此我們針對多維模糊

斷點迴歸提出平均法(Average Method)以及交點法(Intersection Method)，

成功克服資料中的異質性。在模擬中，我們發現我們提出的方法相較於傳統

估計法確實能更準確地估計出處置效果，顯示我們的方法能夠在更普遍的環

境下進行估計。 

 

關鍵詞：異質性、局部平均處理效應(LATE)、局部多項式迴歸、斷點迴歸、

二階段最小平方法(2SLS)。 

JEL 分類：C21、C26、C90。 
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Abstract

Regression discontinuity design (RDD) is an easy, yet rigorous setting allowing researchers

to unbiasedly estimate local average treatment effect, particularly when the treatment is deter-

mined by whether subjects pass certain pre-specified thresholds or not. In this thesis, we shall

review basic concepts and assumptions of multidimensional fuzzy RDD, in which there are

multiple thresholds, and we do not require all subjects to follow the assignment rule. As the

first contribution, we generalize the idea in Lo (2017) and Hsu, Kuan, Lo (2018), pointing out

traditional estimation methods fail to take potential heterogeneity in the dataset into account

and hence induce biased estimates. In addition, we identify the two potential sources of het-

erogeneity: different marginal effect of running variables and different treatment probabilities.

With this in mind, we propose average method and intersection method for multidimensional

fuzzy RDD, overcoming potential heterogeneity in the dataset. In the simulation study, we find

out that our methods do produce a more accruate estimate than traditional methods, showing

that our methods can accomodate much more general settings than traditional ones can do.

Keywords: Heterogeneity, Local Average treatment effect, Local polynomial regression, Re-

gression discontinuity design (RDD), Two stage least square estimation (2SLS)

JEL classification: C21, C26, C90
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1 Introduction

After a new treatment has been introduced, it is common for policy makers or researchers to query

whether the treatment is indeed effective or not; if possible, one may even wish to estimate the

effect quantitatively. In fact, besides econometricians, many researchers in fields including medicine,

pedagogy, and even politics have dug into treatment effect estimation. Among numerous designs aiming

at this problem, regression discontinuity design (RDD) has gained much attention recently.

Originally proposed in Thistlethwaite and Campbell (1960), RDD is a facile way allowing for local

average treatment effect estimation when the assignment rule is known to the researchers. More

specifically, in an RDD, whether a subject is eligible for treatment depends on whether it passes some

pre-specified threshold or not. For example, students may require additional math classes if they

fail to pass an exam; patients, say, with high blood pressure or cholesterol may be diagonised with

certain disease and call for certain kinds of treatment. Despite its potential, however, it is not until

four decades after RDD has been introduced, Hahn, Todd, and Van der Klaauw (2001) formalize

the setting in the language of Rubin casual model (Rubin, 1974) that RDD begins to receive wide

attention1. Actually, RDD can be adopted in various fields including sociology (Hahn, Todd and Van

der Klaauw, 1999), politics (Eggers, Fowler, Hainmueller, Hall, and Snyder, 2015) and epidemiology

(Bor, Moscoe, Mutevedzi, Newell and Bärnighausen, 2014).

The main advantage of RDD is its facility. The basic idea of RDD is to exploit the continuity of the

interested outcome variable. One simply fits polynomials for sample points just above and just below

the threshold respectively; then attribute the difference of intercept at the cutoff to local treatment

effect at the threshold for those who follow the rule. In addition, when randomized experiments are not

available, RDD may serve as an alternative, especially in medical studies. As mentioned in Moscoe, Bor

and Bärnighausen (2015), if a treatment has been ubiquitously accepted as indispensable in medical

care, it would be hard to conduct randomized experiments. In this case, researchers can utilize data

from medical records to do inference. Even when randomized experiment is a possible solution, using

previously collected data saves time and cost.

Still another merit of RDD is its flexibility. Although treatment is assigned according whether the

observations pass certain cutoff or not, we do not require all subjects to follow the rule. Specifically,

if the assignment rule is enforced, then one faces a sharp RDD; otherwise one has to resort to a

fuzzy RDD, which in fact includes the former as a special case. Therefore, we shall focus on fuzzy

RDD, in which one may use whether the subject actually receives treatment or not as an instrument

to unbiasedly estimate the desired local average treatment effect for those who comply with the rule

1For a more detailed review of the history of RDD in the second half of the twentieth century, see Cook (2008).
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at the cutoff.

In pioneering Thistlewaite and Campbell (1960), as well as many researches following its methodol-

ogy, the treatment depends on solely one standard. In reality, however, there are also scenarios where

multiple standards are present; for example, see Jacob and Lefgren (2004). Many works have hence

considered RDD with multiple assignment variables and thresholds, or multidimensional RDD; see

Imbens and Zajonc (2011) or Wong, Steiner and Cook (2013). When there is only one standard, it is

natural to separate the observations according whether they pass the threshold or not; nonetheless, if

there are, say, two standards, one cannot be sure whether those with no, one, or two passed standards

have similar characteristics. Putting heterogeneous subjects in the same group näıvely would lead to

a biased estimate. Regrettably, as indicated in Lo (2017) and Hsu, Kuan and Lo (2018), most existing

estimation method fail to take heterogeneity in the dataset into consideration, thus producing a biased

estimate. In contrast, Lo (2017) and Hsu et al. (2018) use information contained in observations

carefully, proposing intersection method and average method for sharp RDD, both of which have the

flexibility to tackle with heterogeneity in the dataset.

This thesis aims to go beyond Lo (2017) and Hsu et al. (2018), generalizing their idea from sharp

RDD to fuzzy RDD. We indicate that the heterogeneity in the dataset may result from different

marginal effect of running variables and/or different treatment probabilities, with the latter

can only be detected in fuzzy RDD. To be specific, suppose students are required to attend additional

classes if they fail one of their reading or math exams or both, and we are interested in the effect

of those additional classes on these students’ score on another exam two months later. It may be

intuitive to place those fail one subject and those fail both in the same group since they are at least

more likely to attend additional classes. However, there is no guarantee that the average marginal

effect of original reading (or math) score on performance two months later is the same for both kinds

of students; what’s worse, if the additional classes are not compulsory, students failing one subject

may have a different attendance rate from those failing two subjects, thus creating heterogeneity in

students who are eligible for treatment and potential bias in traditional estimation methods.

To overcome such problem, we modify and genearalize the idea in Lo (2017) and Hsu et al. (2018)

to accommodate it in fuzzy RDD. Take the case where two standards are present for example, we treat

observations with no, one and two passed standards differently. By comparing subjects with different

number of passed standards respectively and average the results, we shall get an unbiased estimate

of local average treatment effect. We shall refer to this procedure average method. On the other

hand, to lessen computational burden, we can also drop observations which pass exactly one cutoff,

and then compare the remaining subjects to get another unbiased estimate. The latter procedure,

which we name intersection method, though easier to compute, but in most cases suffer from a

5
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larger standard deviation due to information loss.

According to our simulation studies, we find out that the aforementioned two sources of hetero-

geneity do result in less accurate estimate when using traditional estimation technique. In contrast,

intersection method and average method still acquire an unbiased estimate even if heterogeneity among

dataset exists. On the other hand, as Lo (2017) and Hsu et al. (2018) mainly consider local linear fit-

ting in their work, we explore whether local quadratic polynomial fitting can generate a more desirable

estimate. Still, quadratic fitting still gives unbiased estimate, meaning that one can use higher-order

polynomials to allow for more flexibility. Hopefully, this work can contribute to the emerging trend

of researches into multidimensional RDD, calling attention to scrutinizing observations cautiously and

using data at hand more wisely in order to accommodate more general settings.

The rest of this paper is arranged as follows: in section 2, we shall introduce the basic ideas and aims

in RDD. In section 3 and section 4, we will formalize one dimensional RDD and multidimensional RDD

respectively, presenting assumptions needed, as well as identifying the desired local average treatment

effect at the threshold and introducing estimation methods. We will verify our argument by simulation

in section 5. Finally, we will conclude our discussion in section 6.

2 Regression Discontinuity Design

Treatment effect estimation has always been of central importance not only in social science, but also

in many other fields like medicine or pedagogy. Doctors, for example, may be curious about whether

a new medical treatment is effective or not. Teachers may want to know whether a new teaching

program really help students in test performance. To estimate treatment effect, ideally, we would like

to conduct randomized experiments, in which individuals are randomly assigned being treated or not;

then a comparison between those treated (treatment group) and those not treated (control group) gives

the desired treatment effect. In reality, however, randomized experiments are not always feasible or

they are just too costly. For example, in medical applications, patients may be ineligible for treatment

because of random assignment, which sometimes is controversial.

When randomized experiments cannot be done, researchers turn to quasi-experiment designs. In

quasi-experiment designs, samples are assigned to be treated not by randomness, but by arbitrariness

of researchers. For instance, to evaluate whether a new teaching program is effective or not, researchers

may consider implementing it in one class as treatment group and taking another class as control group.

Unlike randomized experiments, students are not always divided into different classes randomly. In

other words, there may be other underlying factors affecting the outcome. For example, students in

the treatment group are originally doing better on tests than those in the control group. In such case,

6
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even if students in the treatment group acheive better scores on exams, it may be hard to attribute

their better performance to the new program.

Generally speaking, in a quasi-experiment design, if there exists underlying factors affecting the

outcome between groups, or selection bias exists, the two groups would not be comparable, thus leading

to a biased result. There have been numerous methods proposed to overcome selection bias according

to the treatment assignment rule or features of the data, such as difference in differences or propensity

score matching, just to name a few. If the treatment assignment rule is some thresholds based on a

set of observable factors, then regression discontinuity design (RDD) may serve as an alternative

method to correctly identify the treatment effect.

RDD is first introduced by Thistlethwaite and Campbell (1960) to evaluate a scholarship program.

In an RDD, whether the individual is eligible to treatment is (partly) determined by pre-specified

thresholds. Individuals have higher tendency to receive treatment if they pass these thresholds2.

According to the number of thresholds, we can define the dimension of RDD. If the treatment depends

on solely one measure, then the RDD is of one dimension. Otherwise it is a multidimensional RDD.

In this work, we shall focus on the latter more general case. In fact, as we will explain further,

multidimensional RDD resembles much its one dimensional counterpart.

In reality, however, unless the assignment is enforced by law or regulation, there is no guarantee

that every subject would follow the assignment rule. Depending on whether treatment assignment rule

is perfectly followed, RDD can be categorized in two types. The first is called sharp RDD, in which

all individuals passing the threshold receive treatment, while those failing to pass do not. The other

is fuzzy RDD, in which there may be some individuals somehow do not follow the assignment rule.

In most empirical studies, we do not observe perfect compliance of the assignment rule, hence we face

a fuzzy RDD. Moreover, as sharp RDD can be seen as a special case of fuzzy RDD, we would put our

emphasis on fuzzy RDD.

The main idea of RDD is that observations just around the threshold are nearly the same, ex-

cept their treatment status. In other words, the two groups are comparable, without selection bias.

Therefore, with proper continuity assumption, we may estimate the outcome just below and above the

threshold, and then attribute the difference between the two estimates to the treatment. In this way,

we may analyze the average treatment effect at the threshold.

However, as mentioned before, in fuzzy RDD we allow for some samples not compling assignment

rule. We may group the individuals according to whether they follow the rule or not. Suppose the

individual follows the rule, that is, he receives treatment if he passes the threshold, and does not

2Conceptually, our discussion may also be applied to the opposite scenerio. That is, individuals receive treatment if
they fail to pass the thresholds. For convenience and coherence, we will assume the former case.

7
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receive treatment if he does not pass the threshold, then he is called a complier. In contrast, suppose

the individual does not get treated if he passes the threshold and gets treated if not passing, he is

named a defier. There may be some individuals always receiving treatment no matter he passes the

threshold or not, who we shall call an always-taker; the last kind of individual, who never receive

treatment even if he passes the threshold, is named a never-taker. We may summarize the four kind

of individuals in table 1.

Table 1: Classification of individuals.

If pass the threshold If not pass the threshold
Complier O X
Always-taker O O
Never-taker X X
Defier X O

a O means treated, while X means not treated.
b Note we assume the treatment assignment rule as giving the treatment when
the individual pass the threshold.

As always-taker and never-taker exhibit the same behavior no matter they pass the threshold or

not, actually we cannot identify the treatment effect for them. Conceptually, we cannot observe, or

even approximate their outcome if they are in the opposite treatment status since there is no such

information. On the other hand, empirically it is very rare to have defiers, who is deliberately against

the assignment rule. Therefore, we will impose the condition that there are no defiers (No-defier

condition). What we are trying to estimate, as a result, is the average treatment effect for the

compliers. To round up the above discussion, we try to estimate local average treatment effect

for the compliers at the threshold.

In the following section, we shall formalize RDD and illustrate how to estimate the desired param-

eter. First we will start by discussing the case where only one standard is present (one dimensional

RDD), and then move on to the more complex cases.

3 1-dim Fuzzy RDD

3.1 Problem Formulation

In (fuzzy) RDD, treatment assignment depends on a pre-specified criterion. A sample point has

higher probability to get treated if its observable covariate x (running variable, or assignment variable)

exceeds a known threshold value. Such threshold may be determined by regulations or a rule of thumb.

Without loss of generality, we set this threshold value to 0 in this paper unless otherwise specified.

Researchers can also observe interested outcome variable y, and whether or not the sample point

8
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actually receives treatment, documented in a binary variable w. For instance, in Almond, Doyle,

Kowalski and Williams (2011), the authors quantitatively estimate the effect of intensive care on very-

low-birth weight newborns. In this case, the outcome variable y is one-year mortality of the newborn

(or medical expenses), and the running variable x is the weight of the newborn with known threshold

of very-low-birth-weight infant, 1500 gram.

In the language of Rubin casual model (Rubin, 1974), we may write the data generating process

as follows:

yi = yi(1)wi + yi(0)(1− wi) = yi(0) + wi(yi(1)− yi(0)), (3.1)

where yi(1) and yi(0) gives the status of outcome with and without treatment, respectively; wi is

the indicator of treatment status. On the other hand, the treatment status wi is (at least partially)

determined by the covariate x, we introduce another variable indicating whether x exceeds the threshold

value or not. Namely, zi = 1(xi ≥ 0).3 If zi = 1, we say that this individual is assigned to the treatment

group; otherwise, it is assigned to the control group. Then wi is determined through the following

mechanism:

wi = wi(1)zi + wi(0)(1− zi) = wi(0) + zi(wi(1)− wi(0)), (3.2)

where wi(1) and wi(0) are binary variables indicating the treatment status when the subject is assigned

to the treatment group and the control group, respectively.

As mentioned before, in a fuzzy RDD, we do not require all individuals to follow the treatment as-

signment rule. There may exist some sample points in treatment group but does not receive treatment;

there also may exist other observations in control group which indeed receive treatment. What we

really want to find out is the local average treatment effect for those who truly follows the assignment

rule, or the compliers. According to whether the samples follow the assignment or not, they can be

divided into the four groups in table 1. Using the notation in the last paragraph, they can be defined

as follows:

Definition 3.1 (Classfication of individiduals).

Observations can be categorized into only one of the following four groups depending on whether

they follow the assignment rule or not.

1. Complier: wi(0) = 0, wi(1) = 1

2. Always-taker: wi(0) = 1, wi(1) = 1

3. Never-taker: wi(0) = 0, wi(1) = 0

3Note we have assumed that subjects have higher tendency to get treated if they pass the threshold. If one assumes
the opposite case, then one should define zi = 1(xi ≤ 0)

9
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4. Defier: wi(0) = 1, wi(1) = 0

In other words, compliers are those who follow the assignment rule perfectly. Always-takers and

never-takers always receive or do not receive treatment whichever group they fall in. For identification,

we usually assume no-defier assumption:

Assumption 3.1 (No-defier Assumption). wi(.) is a non-decreasing function.

In fuzzy RDD, we allow the presence of always-takers and never-takers. What we only need is

different treatment probabilities of the two groups, at least for those observations near the threshold,

or those whose covariate x satisfying |x| < ε, where ε is a small positive number. Specifically, we make

the following assumption:

Assumption 3.2 (Different treatment probabilities).

0 ≤ lim
ε→0

E(wi|zi = 0, |xi| = ε) < lim
ε→0

E(wi|zi = 1, |xi| = ε) ≤ 1.

That is, the probability of receiving treatment just above the threshold is different from that for

just below the threshold. The covariate x has partial, but not necessarily full, impact on receiving

treatment. It is also worth noting that with Assumption 3.1, Assumption 3.2 is equivalent to the

existence of compliers.

In the special case that E(wi|zi = 1) = 1 and E(wi|zi = 0) = 0, whether or not an individual

receives treatment totally depends on which group it lies in. In other words, every observation follows

the assignment rule perfectly, or more simply, all observations are compliers. In this case, fuzzy RDD

reduces to sharp RDD. In many empirical studies, if a treatment is compulsory by law, there should

be nearly no ambiguity of receiving the treatment or not, therefore a sharp RDD can be applied.

3.2 Identification

Intuitively, sample points with running variable just below and just above the threshold should be

nearly the same except their treatment status. To make treatment group and control group comparable,

no other factors except the treatment should affect the outcome. This condition can be characterized

by the following assumption:

Assumption 3.3 (Continuity Assumption).

E(yi(1)|xi), E(yi(0)|xi), E(wi(1)|xi) and E(wi(0)|xi) should be continuous at xi = 0.

In other words, at least around the threshold, by the continuity assumption on yi, the discontinuity

10
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observed can be well ascribed to the treatment. With this assumption, even if we do not have sample

points exactly at the threshold, we can use sample points whose covarite is near the threshold to

estimate the outcome at the cutoff. This assumption would hold if the samples do not have perfect

control over x, hence the group they fall in. For example, consider physiological measurements like

blood pressure or heart rate. Alternatively, test scores, in most cases, cannot be fully controled by

subjects as well. On the other hand, the continuity assumption on wi ensures that the proportion of

compliers, always-takers and never-takers does not vary tremendously at the threshold.

However, in fuzzy RDD, not all subjects are compliers, to correctly identify the treatment effect for

the compliers at the cutoff, we have to adjust limε→0E(yi|zi = 1, |xi| = ε)−limε→0E(yi|zi = 0, |xi| = ε)

by dividing the proportion of compliers, which can be estimated by the difference of proportions of

samples treated just below and above the threshold, E(wi|zi = 1, |xi| = ε) − E(wi||zi = 0, |xi| = ε),

where ε is a small amount. We may summarize the above argument in the following theorem in Hahn

(2001):

Theorem 3.1 (Identification). The local average treatment effect of the compliers at the threshold

(τFRD) can be identified as follows:

τFRD =
limε→0E(yi|zi = 1, |xi| = ε)− limε→0E(yi|zi = 0, |xi| = ε)

limε→0E(wi|zi = 1, |xi| = ε)− limε→0E(wi|zi = 0, |xi| = ε)
(3.3)

Proof. First observe that E(yi|zi = 1, |xi| = ε) = E(yi(1)wi + yi(0)(1− wi)|zi = 1, |xi| = ε)

= E(yi(1)wi(1) + yi(0)(1− wi(1))|zi = 1, |xi| = ε).

Therefore, by continuity assumption,

limε→0E(yi|zi = 1, |xi| = ε) = E(yi(1)wi(1) + yi(0)(1− wi(1))|xi = 0).

Similary, limε→0E(yi|zi = 0, |xi| = ε) = E(yi(1)wi(0) + yi(0)(1− wi(0))|xi = 0).

Hence, the numerator of τFRD can be simplified as:

E((yi(1)− yi(0))(wi(1)− wi(0))|xi = 0) = E(yi(1)− yi(0)|xi = 0, Complier)P(Complier at xi = 0).

On the other hand, by the no-defier assumption,

limε→0E(wi|zi = 1, |xi| = ε) = limε→0E(wi(1)|zi = 1, |xi| = ε)

= limε→0E(wi(1)|xi = 0) = P(Always Taker at xi = 0) + P(Complier at xi = 0).

Similarly, limε→0E(wi|zi = 0, |xi| = ε)

= limε→0E(wi(0)|xi = 0) = P(Always Taker at xi = 0).

This shows that the denominator of τFRD is P(Complier at xi = 0).

Finally, a slight algebra gives that

τFRD = E(yi(1) − yi(0)|xi = 0, Complier), or the local average treatment effect for the compliers at

the threshold.

11
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3.3 Estimation Strategy

Further inspection into equation (3.2) shows that τFRD consists of four components, with two,

limε→0E(yi|zi = 1, |xi| = ε) and limε→0E(yi|zi = 0, |xi| = ε), in the numerator and the other two,

limε→0E(wi|zi = 1, |xi| = ε) and limε→0E(wi|zi = 0, |xi| = ε), in the denominator. To estimate

τFRD, it is straightforward and tempting to estimate each component in the formula separately. As

mentioned in Hahn, Todd, and Van der Klaauw (2001), we can estimate limε→0E(yi|zi = 1, |xi| = ε)

by doing the following (local) linear regrssion:

min
β0,β1

∑
i:0≤xi≤h

(yi − β0 − β1xi)2κ(
xi
h

),

where h is a chosen bandwidth, and then take β0 to be the estimate. Here κ(.) is a kernel function

which the econometricians can freely choose. Note that we have to choose a bandwidth h, or keep

only the sample points around the cutoff, since we want to estimate the average outcome and the

proportion of treatment receiver for those individuals near the threshold. Other components in (3.2)

can be estimated by similar methods.

However, as we do a total of four estimations, the estimate of τFRD would suffer from a huge amount

of sampling variation. To overcome such difficulties, first one can observe that since zi is binary, the

denominator and numerator of (3.3) can be estimated by γ1 and δ1 in the following two regression

models respectively:

wi = γ0 + γ1zi + γ2xi + γ3xizi + ξi, (3.4)

yi = δ0 + δ1zi + δ2xi + δ3xizi + νi, (3.5)

where ξi and νi are error terms. In fact, in (3.4) and (3.5), we shall only consider sample points with

|xi| < h to more precisely capture the local effect around the threshold. Also note that we allow

the average marginal effect of xi to be different for those subjects above the threshold and below by

incorporating xizi. Hahn et al. (2001) first notice the numerical equivalence between τFRD = δ1/γ1

and the following two stage least square estimation (2SLS), with the first stage being (3.4), and the

second stage being:

yi = β0 + αwi + β1xi + β2xizi + εi. (3.6)

One can observe that after inserting estimated wi from (3.4) into (3.6), one have:

yi = β0 + αwi + β1xi + β2xizi + εi

= β0 + α(γ0 + γ1zi + γ2xi + γ3xizi) + β1xi + β2xizi + εi.

12
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Finally, comparison of coefficients with (3.5) gives δ1 = αγ1, or α = δ1/γ1 = τFRD.

To sum up the above discussion, we do the following (local) instrumental regression:

min
α,β0,β1,β2

∑
i:−h≤xi≤h

(yi − αwi − β0 − β1xi − β2xizi)2κ(
xi
h

), (3.7)

with zi being the instrument of wi. The estimated coefficient of wi (α) is then equivalent to the 2SLS

estimator above, which gives the desired τFRD.

It is also worth noting that in sharp RDD, (3.7) reduces to an ordinary linear regression since the

instrumental variable zi of wi is exactly itself in this particular case. One may also explain this result

by examining the 2SLS procedure. In the first stage (3.4), as wi = zi, the best fit (γ0, γ1, γ2, γ3) =

(0, 1, 0, 0), and hence the first stage is in fact trivial. Graphically, (3.7) is essentially to fit two different

lines for those observations above and below the threshold respectively, which we illustrate by figure 1

below.

Figure 1: An illustration of one dimensional sharp RDD. We use two different lines to fit data below
and above the threshold respectively.

By using 2SLS, which is incorporated in most statistical software, the standard error of the estimate

τFRD can be easily attained. However, one should be aware that the standard error would still be high

if the denominator of the estimate, namely limε→0E(wi|zi = 1, |xi| = ε)− limε→0E(wi|zi = 0, |xi| = ε),

is small. Numerically, this corresponds to the case with weak instruments, or small γ1 in the first stage

(3.4). Intuitively, the small difference in treated proportion in treatment group and control group

means that the two groups are only slightly different, making it harder to estimate the treatment

effect.

13
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In fact, if one wish, one may also use higher order polynomial to fit the data. However, one should

always be aware that higher order polynomial is not a guarantee for better estimate as the estimated

coefficient and model would be highly unstable due to overfitting. As Gelman and Imbens (2017)

pointed out, the estimate would be easily affected by the degree of the globally-fitted polynomial. In

contrast, locally-fitted polynomial provides a relatively more stable estimate. Empirically, one may use

the famous Akaike information criterion (AIC) to determine the order of fitted polynomial; namely,

AIC = N ln(SSR/N) + 2p, (3.8)

where N is the number of sample points used, SSR stands for residual sum of squares, and p is

the number of estimated parameters in the model. Particularly, in one-dimensional fuzzy RDD, p =

2(d+ 1), where d is the degree of the fitting polynomial.

Since our main goal is to estimate the local treatment effect at the threshold, observations far

away from the threshold may mess our estimation up. Therefore, it is better to choose a bandwidth h

around the threshold and keep only the sample points in this band. As for existing bandwidth selection

procedure, Imbens and Lemieux (2008) considers cross-validation. On the other hand, Imbens and

Kalyanaraman (2012) proposes another method to directly estimate the optimal bandwidth. Basically,

they tried to choose a bandwidth which minimizes the asymptotic mean squared error of the estimates.

Calonico, Cattaneo and Titiunik (2014, CCT) argue that most methods for choosing bandwidth would

actually produce a biased estimate and proposed a robust method to correct such bias. In this work,

we mainly follow CCT to choose bandwidth.

4 Multidimensional Fuzzy RDD

In the former framework, we only allow a single running variable x. That is, whether or not an

individual receives treatment depends solely on a single factor. In reality, however, there may be cases

involving more factors. For example, a patient is diagnosed with hypertension if his systolic pressure or

diastolic pressure exceed 140 and 90 mm-Hg, respectively. In Jacob and Lefgren (2004), the authors

investigate a policy implemented in Chicago starting from 1996, in which students are required to

attend summer school if their math or reading test score are below a certain cutoff.

Although the methods introduced later in this paper can be easily generalized to an arbitrary

number of factors, for simplicity, we shall discuss the case where only two factors are present.

14
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4.1 Problem Formulation and assumptions

Recall DGP (3.1) and (3.2). That is,

yi = yi(1)wi + yi(0)(1− wi) = yi(0) + wi(yi(1)− yi(0))

wi = wi(1)zi + wi(0)(1− zi) = wi(0) + zi(wi(1)− wi(0))

This time, however, treatment status wi is related to two (or more) factors, documented in the vector

of running variables X. Individuals may have a higher probability receiving treatment if X1 and

X2 both exceed certain cutoff (and-rule) or either one of them pass some threshold (or-rule). More

specifically, we set both the threshold for X1 and X2 to 0 in this work unless otherwise specified; then

for an and-rule, we define zi, the binary variable indicating whether the subject falls in the treatment

group or not, as zi = 1(X1i > 0)1(X2i > 0) = min{1(X1i > 0),1(X2i > 0)}. For an or-rule, we

define zi = max{1(X1i > 0),1(X2i > 0)}. When zi = 1, we say the sample lies in the treatment area;

otherwise it lies in the control area.

In fact, both kinds of rule do not make much difference when dimension of the covariate vector X

equals to two as the negation of an and-rule leads to an or-rule. In other words, if (zi, X1i, X2i) follows

an or-rule, then (1 − zi,−X1i,−X2i follows an and-rule in the sense that 1 − zi = 1 −max{1(X1i >

0),1(X2i > 0)} = min{1(X1i ≤ 0),1(X2i ≤ 0)} = min{1(−X1i ≥ 0),1(−X2i ≥ 0)}. Therefore, in

this work, unless otherwise specified, we assume that the assignment follows an and-rule. That

is, the observation has a higher tendency to be treated if both X1 and X2 are greater than 0, or X

lies in the first quadrant of the coordinate plane with X1 and X2 being the two axes.

For convenience, we say the observation lies in the first quadrant (of the plane spanned by X1i

and X2i) if the covariate vector X of observation i satisfies X1i > 0 and X2i > 0. In similar ways,

we can define what observations lie in the second, the third, or the fourth quadrants mean. One can

observe that if we adopt an and-rule, then the treatment group is composed of subjects in the first

quadrant, while the control group comprises subjects from all other quadrants4.

To estimate the local treatment effect for the compliers at the threshold, or at (0,0), we again need

the following assumptions:

Assumption 4.1 (No-defier Assumption). wi(.) is a non-decreasing function.

Assumption 4.2 (Different treatment probabilities).

0 ≤ lim
ε→0

E(wi|zi = 0, |xi| = ε) < lim
ε→0

E(wi|zi = 1, |xi| = ε) ≤ 1.

4If we consider or-rule, then the control group is composed of subjects in the third quadrant, while subjects from all
the other quadrants lie in the treatment group.
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Assumption 4.3 (Continuity Assumption).

E(yi(1)|Xi), E(yi(0)|Xi), E(wi(1)|Xi) and E(wi(0)|Xi) should be continuous at Xi = (0, 0).

As one can see, these assumptions are just analogues of their counterparts in one dimensional case.

In fact, the identification formula of the treatment effect stays the same in high-dimensional case, as

summarized in the following theorem:

Theorem 4.1 (Identification). The local average treatment effect of the compliers at the threshold

can be identified as follows:

τFRD =
limε→0E(yi|zi = 1, |Xi| = ε)− limε→0E(yi|zi = 0, |Xi| = ε)

limε→0E(wi|zi = 1, |Xi| = ε)− limε→0E(wi|zi = 0, |Xi| = ε)
.

Recall that in the proof of one-dimensional case, we actually do not use any properties that only holds

in one dimension. Thus the proof for this theorem is exactly the same as Theorem 3.1.

In one dimensional RDD, it is natural to separate the observations into two groups according to

whether their running variables pass the threshold or not. In two dimensional case, following and-rule,

we label those sample points in the second, the third, the fourth quadrant as control group. Implicitly,

we have assumed samples in the control group have the same probability of receiving treatment, as

well as the same marginal effect of x1 and x2 in the three quadrants. Nevertheless, empirically this

may not be the case. For example, although only those whose systolic and diastolic blood pressure

are over 140/90 mm-Hg are diagnosed with hypertension, individuals with only one passed standard

may have a higher tendency receiving treatment than those who are healthy. The latter two kinds of

individuals are both categorized into control group by definition, but obviously there are heterogeneity

between them. As we shall see in the simulation, näıvely neglecting the heterogeneity in the control

group would often lead to a biased estimate.

4.2 Estimation Method

There are numerous methods to estimate treatment effect at the threshold according to previous

studies. They can be briefly summarized into the following two categories.

(A) Dimension Reduction

To estimate τFRD, one may consider compressing the information from multidimensional vector X

into one dimension by taking a norm of it. For example, Reardon and Robinson (2012) consider `2
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norm and introduce the following variable:

di = zi

√
X2

1i +X2
2i − (1− zi)

√
X2

1i +X2
2i = (2zi − 1)

√
X2

1i +X2
2i.

In other words, if the sample falls into the treatment area, we attach a positive distance; otherwise, a

negative distance is used. In this way, we may estimate a one-dimensional RDD model with outcome

still being yi, but running variable di with threshold 0. Generally, one may consider other norms such

as `1 norm or maximum norm (`∞ norm). In such cases, the running variable di = (2zi−1)‖Xi‖ should

be introduced, where ‖ · ‖ is the norm one wishes to use. This method can be similarly generalized to

higher dimensional case.

On the other hand, Wong, Steiner and Cook (2013) consider taking di = min{X1i, X2i}, which they

named “centering approach”. In the same paper, Wong, Steiner and Cook also introduce “univariate

method”, in which one simply focus on a single running variable, neglecting the other. Specifically, one

discard observations withX1i < 0, or observations in the second and the thrid quadrant. The remaining

observations then are decided to be treated or not solely according to X2. Therefore, one dimensional

RDD estimation strategies addressed in the previous section can be adopted with running variable

being X2. Similarly, one can consider only the observations in the first and the second quadrant; in

other words, one neglects those with X2i < 0.

Nevertheless, we have to stress that by using dimension reduction method, we may falsely simplify

the relation between X1i and X2i. For instance, if one wish to use `2 norm to compress the running

vector Xi, then one basically has to (implicitly) assume equal treatment effect, equal marginal effect of

(X1i, X2i), as well as equal treatment probability for sample points with the same ‖Xi‖2 in treatment

group and control group respectively. Otherwise, misspecification would lead to a biased estimate.

(B) Local polynomial fitting

Instead of compressing existing information, Imbens and Zajonc (2011) consider directly fitting

polynomials near the threshold. Specifically, they estimate the following regression models.

min
α,β

∑
i:Xi∈H

(yi − αwi − β0 − β1X1i − β2X2i − β3ziX1i − β4ziX2i)
2κ(

X1i

h1
)κ(

X2i

h2
), (4.1)

with zi being the instrument of wi, β = (β0, β1, β2, β3, β4) for brevity, κ(.) a kernel function free to

choose, and H a chosen bandwidth around the threshold according to the data (we will discuss the

selection procedure later). The estimated coefficient α̂ is then the desired τFRD. Graphically, similar to

one dimensional case, they fit two different planes to treatment group and control group respectively.
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As this method uses the whole sample in estimation, we shall refer to it as union method (Lo,

2017) in the rest of this paper. However, as suggested before, since union method implicitly assumes

homogeneous effect of running variables among the control group by locally fitting a single polynomial.

If heterogeneity among the control group exists, then as shown in Lo (2017), Hsu et al. (2018), and

our simulation later, union method would produce a biased estimate.

To correctly estimate τFRD when heterogeneity is present, Lo and Hsu, Kuan and Lo note that since

the bias of union method originates from neglecting the difference of sample points in the second, third,

and fourth quadrants, one can simply tackle two quadrants, instead of four, at a time. Specifically,

following their idea of dealing with sharp RDD, we may genearalize their method to fuzzy design by

implementing the following three instrumental least square regression:

min
α1,β

∑
i:Xi∈H,X2i>0

(yi − α1wi − β0 − β1X1i − β2X2i − β3ziX1i − β4ziX2i)
2κ(

X1i

h1
)κ(

X2i

h2
), (4.2)

min
α2,β

∑
i:Xi∈H,X1iX2i>0

(yi − α2wi − β0 − β1X1i − β2X2i − β3ziX1i − β4ziX2i)
2κ(

X1i

h1
)κ(

X2i

h2
), (4.3)

min
α3,β

∑
i:Xi∈H,X1i>0

(yi − α3wi − β0 − β1X1i − β2X2i − β3ziX1i − β4ziX2i)
2κ(

X1i

h1
)κ(

X2i

h2
), (4.4)

with zi being the instrument of wi in all three regressions. Finally, we take τ̂FRD = (α̂1 + α̂2 + α̂3)/3.

One can observe that in (4.2), (4.3), (4.4), we regress with sample points in the first and the second, the

first and the third, and finally the first and the fourth quadrants, respectively. Each of the regression

gives an unbiased estimation of τFRD (namely α̂i), and hence the unbiasedness of τ̂FRD.

Lo (2017) and Hsu et al. (2018) name the above estimation procedure average method. In

this procedure, one uses all observations near the threshold to estimate τFRD. However, as three

instrumental regressions are required, there is considerable computational burden. As a modification,

Lo again addresses that as our main goal is to estimate the average treatment effect at the threshold

(0, 0), one may consider only the observations in the first and the third quadrant since the two sets

intersect at (0, 0). Following his advice, we can do only regression (4.3), and take τ̂FRD = α̂2. This

simplified procedure is named intersection method in Lo’s work. As illustrated in figure 2, the

only difference between union and intersection method is the scope where sample points are used in

estimation.

It has been shown in Lo (2017) and Hsu et al. (2018) that for sharp RDD, intersection method

and average method perform better over union method (and other dimension reduction methods) if

heterogeneity among control group exists, in the sense that the former gives a unbiased estimate, while

the latter does not. As for the comparison of the former two methods, although intersection method
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(a) Union Method (b) Intersection Method

Figure 2: Difference in sample points used in both methods. Only the observations in the shaded area
are taken into the regression. Note that here we adopt an `1 bandwidth.

makes less computation burben, it neglects the observations from the second and the fourth quadrants.

This information loss leads to a higher standard error and mean square error (MSE) of the estimate

compared to that acquired by average method.

Nevertheless, Lo (2017) and Hsu et al. (2018) only consider sharp design with local linear fitting.

As we will further elaborate in the simulation section, for fuzzy RDD, there are actually two sources

of bias of union method. The first one, also appearing in sharp design, is heterogeneity of effects

of running variables among the control group. To be specific, the (average) marginal effect of X1i

and X2i for sample points in different quadrants in the control group may not be equal. Union method

fits only one polynomial to the whole control group, lacking the flexibility to tackle heterogeneity,

hence its poor performance. On the other hand, intersection and average method fits each quadrant

separately, allowing a wider class of setting. In particular, the case when heterogeneity of marginal

effects is absent is also tractable by the latter two methods.

The other one, which only can be detected in fuzzy design, is the difference of treatment

probability in the control group. Even if X1i and X2i have the same marginal effect on observations in

differnt quadrants in the control group, different probabilities of exposure to treatment still contribute

to heterogeneity. If the difference of probability of getting treated among quadrants in the control

group is large, then the bias originated from misspecification would be amplified. It is also noteworthy

that such difference would disappear in sharp design simply because all subjects in the control group

are prohibited from being treated by definition.
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On the other hand, just as one dimensional case, one may also consider fitting higher order polyno-

mial locally instead of fitting linear ones. More specifically, say, if we want to fit quadratic polynomials,

then we simply replace the linear loss functions in (4.1) to (4.4) with the following quadratic loss func-

tion:

(yi − αwi − β0 − β1X1i − β2X2i − β3ziX1i − β4ziX2i

− β5X2
1i − β6X1iX2i − β7X2

2i − β8ziX2
1i − β9ziX1iX2i − β10ziX2

2i)
2κ(

X1i

h1
)κ(

X2i

h2
);

in other words, we include quadratic terms in regressions. As one may have observed, mere proceeding

from linear fitting to quadratic fitting dramatically raises the number of coefficients to be estimated.

When there is only one running variable, raising the order of fitted polynomial simply means including

higher order term of that running variable. For higher dimensional case, however, not only do we have

to include higher order terms of the running variables, but also have to consider the interaction terms,

which leads to a much more complex fitting procedure.

As for determining the order of fitting polynomial, aforementioned criterions such as AIC, defined

in (3.7), can also be applied here. That is,

AIC = N ln(SSR/N) + 2p. (3.7)

Specifically, the number of parameters in the model p = (d+ 1)(d+ 2) for the case where two running

variables are present and the degree of fitted polynomial equals d.5 Eventually, the fitted model with

the least AIC would be prefered.

In the simulation section, we shall go beyond Lo (2017) and Hsu et al. (2018), exploring whether the

predominance of average method and intersection method persists in fuzzy RDD. On the other hand,

we will also extend the estimation procedure by fitting quadratic polynomials instead of the linear

ones. Before we move on to simulation, however, we shall conclude this section by briefly discussing

the bandwidth selection procedures. Unfortunately, there is little research in choosing bandwidth for

RDD in multidimensional case. Therefore we have to resort to dimension reduction methods. We

call the adopted method separation method. We simply perform two one-dimensional bandwidth

selection procedures, one for X1i, the other for X2i. In each process, we choose bandwidth with respect

to one running variable, pretending that the other one does not exist. After getting h1, h2 for X1i and

X2i, we keep only the sample points with |X1i| < h1 and |X2i| < h2. This process gives a rectangular

bandwidth.

In fact, originally we have tried another method named norm method. Similar to dimension

5More generally, if there are n running variables and the degree of fitted polynomial is d, then p = 2Cd+n
n
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reduction method for RDD, we first standardize each argument in the covariate vector by dividing

every component by its standard error. In other words, we introduce the standardized covariate vector

Xsi = (X1i/s1, X2i/s2). By doing this, the bandwidth selection procedure would not be disturbed by

the scale of X1i and X2i. Next we compress Xsi by its norm, attaching a positive value if Xsi falls into

the treatment area, negative value otherwise. More specifically, we introduce dsi = (2zi − 1)‖Xsi‖.

Note that since standard error is positive, Xi falls into the treatment area if and only if Xsi does.

Finally, we choose the bandwidth h using one dimensional approach (in our work, CCT), and take only

the observations such that dsi ≤ h into regressions. However, we have tried `1, `2, and `∞ norm, and

none of them gives credible estimate. We therefore mainly choose bandwidth according to separation

method in the previous paragraph.

5 Simulation

5.1 Setup

To allow for different treatment probability as well as heterogeneous effect of Xi in the control

groups, we consider the following four DGPs:

DGP 1: yi = 5 +X1i +X2i + v1i(5 +X1i + 0.5X2i) + v2i(5 + 2X1i + 2X2i) + v3i(5 + 3X1i + 4X2i) + εi

DGP 2: yi = 5 + 5wi +X1i + wiX1i +X2i + 0.5wiX2i + εi

DGP 3: yi = 5 + 5wi +X1i + wiX1i + 0.3w1iX1i +X2i + 0.5wiX2i + 0.3w2iX2i + εi.

DGP 4: yi = 5 + 5wi +X1i + wiX1i + 0.3w1iX1i +X2i + 0.5wiX2i + 0.3w2iX2i

+X2
1i + 3X2

2i + wiX
2
1i + wiX

2
2i + εi.

We generate 500 samples with size 5000 for each DGP.

Xi = (X1i, X2i) are i.i.d. multivariate normal vectors following the distribution:

(X1i, X2i)
iid
∼ N

ϕ(0.4) · s1

ϕ(0.4) · s2

 ,
s21 0

0 s22

 ,

where ϕ is the quantile function of standard normal variables. Note that instead of setting the mean of

X1i, X2i to be 0 (symmetric around the threshold), we adopt an asymmetric design, with respectively

40% of observations passing the threshold for each running variable. We do this because typically,

subjects are not symmetrically distributed around the threshold; most of the time, observations in

need of treatment is minority (compared to the whole population). Moreover, we follow Lo (2017)
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and consider (s1, s2) being (1, 1), (3, 3), (10, 10), (3, 1), (10, 1), (10, 3). On the other hand, εi are i.i.d.

standard normal random variables.

In DGP 1, we try to explore whether different marginal effect of X1i and X2i in the control group

really makes a difference. The three variables v1i, v2i, v3i are defined as follows:

v1i =1(ui ≤ Φ(a)) · 1(X1i < 0 and X2i < 0)

v2i =1(ui ≤ Φ(a)) · 1(X1iX2i < 0)

v3i =1(ui ≤ Φ(b)) · 1(X1i ≥ 0 and X2i ≥ 0),

where ui
iid
∼ N(0, 1) and Φ(.) is the cumulative distribution function of standard normal variable. By

v1i, v2i, v3i, we set the treatment probability in the control group and the treatment group to be a

and b respectively; however, the treatment effect in the third quadrant is 5 +X1i + 0.5X2i, while the

effect is 5 + 2X1i + 2X2i in the second and the fourth quadrant. In the simulation, we have considered

(a, b) = (0, 0.7), (0.15, 0.85), (0.3, 1), (0, 0.9), (0.05, 0.95), (0.1, 1). Moreover, in this DGP, we define the

binary variable wi indicating whether the subject receives treatment or not to be wi = v1i + v2i + v3i.

By DGP 2, we inspect the impact of different treatment probability in the control group. The

treatment effect is the same for all subjects, which is 5 + X1i + 0.5X2i. However, wi is defined as

follows:

wi =1(ui ≤ Φ(a)) · 1(X1i < 0 and X2i < 0) + 1(ui ≤ Φ(b)) · 1(X1i ≥ 0 and X2i < 0)

+1(ui ≤ Φ(b)) · 1(X1i < 0 and X2i ≥ 0) + 1(ui ≤ Φ(c)) · 1(X1i ≥ 0 and X2i ≥ 0),

where again ui
iid
∼ N(0, 1). In this way, the treatment probability in the third quadrant, a, would be

different from that in the second and the fourth quadrant, b, thus introducing heterogeneity in the

control group.

For DGP 3 and DGP 4, we examine the cases where both forces of heterogeneity in the control

group are present. The three variables wi, w1i, w2i are of key importance in inducing different treatment

effect and different treatment probability among the control group. They are defined as follows:

wi =1{ui ≤ Φ(a)} · 1{X1i < 0 or X2i < 0}+ 1{ui ≤ Φ(b)} · 1{X1i ≥ 0 and X2i ≥ 0}

w1i =1{ui ≤ Φ(a)} · 1{X1i < 0}+ 1{ui ≤ Φ(b)} · 1{X1i ≥ 0}

w2i =1{ui ≤ Φ(a)} · 1{X2i < 0}+ 1{ui ≤ Φ(b)} · 1{X2i ≥ 0},

where ui
iid
∼ N(0, 1) and Φ(.) is the cumulative distribution function of standard normal variable. By
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wi we have created different treatment probability between observations in the first quadrant (namely

a) and the others (b). In the simulation, we consider (a, b) to be (0.15,0.85) or (0.05,0.95) to investigate

whether the scale of the difference in treatment probability plays a role in estimation. The assignment

rule is further complexified by w1i and w2i, which introduce difference around the y-axis and x-axis,

respectively. In short, the distribution of (wi, w1i, w2i) in each quadrant can be summarized in figure

3, which leads to the treatment effect assignment schedule of DGP 3 in figure 46. Note that the only

difference of DGP 3 and DGP 4 is the presence of quadratic terms. for both DGPs, the desired local

treatment effect at the threshold (0, 0) equals 5 (the coefficient of wi).

For all the four DGPs, the desired local treatment effect at the threshold (0, 0) equals 5. For the

first two DGPs, we have used linear polynomials to do fitting, while for the latter two DGPs, we

have considered locally fitting linear and quadratic polynomials, respectively. We also do a quadratic

fitting to DGP 3 to observe the effect of redundant regressors. For bandwidth selection we follow

CCT. As aforementioned, since CCT is originally designed for one-dimensional RDD, we have used

separation method to adopt it in two-dimensional case. After the bandwidth is chosen, we conduct an

instrumental regression with triangular kernel, which is κ(x) = (1− |x|)1(|x| ≤ 1).

Figure 3: Distribution of (Wi,W1i,W2i) in the four quadrants for DGP 3 and DGP 4. The proportion
in the parenthesis is the probability for each result.

6For brevity, corresponding figure for DGP 4 is postponed to the appendix.
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Figure 4: Distribution of treatment effect assignment in the four quadrants for DGP 3. The proportion
in the parenthesis is the probability for each result. Note there is an underlying trend of 5 +X1i +X2i

for all the observations.

5.2 Results

For each choice of (s1, s2) and (a, b, c), we report the mean, the standard error and the mean square

error (MSE) of estimate of union, intersection, and average method7. Moreover, we report the number

of observations left in the bandwidth (out of total size 5000).

As the main result, we observe that intersection and average method provide a fairly unbiased

estimate, whereas union method is less accurate. The bias is further exaggerated as (s1, s2) become

larger. On the other hand, the standard deviation of estimates by intersection method and average

method estimation is slightly bigger than that of union method. This happens due to less remained

sample points in intersection method and the more complex estimation process for average method.

An inspection into the result of DGP 1 shows that different marginal effects of X1i and X2i do

contribute to the bias in union method. The parameter controlling the scale of heterogeneity in DGP

1 is a. When a is small, even if the treatment effect is largely different for subjects lying in different

quadrants, the effect of heterogeneity remains insignificant since not many observations in the control

group actually receive treatment. As one may observe from table 2 to table 7, union method produces

the largest bias when (a, b) = (0.3, 1) (Table 4). On the other hand, in the extreme case a = 0 (Table

2 and 5), actually there is no heterogeneity in the control group since nobody gets treated. In this

case, union method still produces a favorable result.

On the other hand, we observe that the overall standard deviation gets larger as b − a shrinks.

This happens since b − a, the difference in treatment probability, is the denominator of τFRD. One

may imagine that as b − a approachs 0, the estimate would be highly unstable. Numerically, this

7Other dimension reduction methods have been shown to produce a biased result even for sharp RDD in Lo; we
therefore focus on the comparison of these three methods.
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corresponds to the case where the instrumental variable is weak. From a differenct perspective, b− a

is the proportion of compliers at (0, 0). Small b− a means there are less compliers, hence the difficulty

of estimating the local treatment effect for them.

DGP 2 shows that the impact of different treatment probability. We observe that even if the

treatment effect is the same among the control group, difference in treatment probability does affect

the accuracy of union method. Here the parameter controlling the heterogeneity is b − a. Holding a,

c− b fixed, one can see that the bias of union method rises as b− a gets larger as in Table 8 to 10; on

the contrary, intersection and average method produces a much more accurate estimate.

Interestingly, when (a, b, c) = (0.15, 0.75, 0.85), not only union method, but also average method

performs poorly (Table 11). This happens since c − b is small. Recall that in average method,

we do three local IV regressions respectively. However, as the difference between the first and the

second quadrant, as well as the difference between the first and the fourth quadrant is not prominent,

the estimator coming from regressions concerning those quadrants (namely α̂1 and α̂3 in (4.2) and

(4.4)) would be highly unstable, thus the poor performance of average method. In contrast, since the

difference of treatment probability between observations in the first and the third quadrant, c − a, is

large enough, intersection method still produces a favorable result in this case.

Out of 5000 sample points, around 20% to 42% remain in the bandwidth. The proportion is highly

related to the order of fitted polynomial. For instance, when we try to fit data generated from DGP 3

with quadratic polynomials, there are approximately 1.6 times observations left compared to when we

fit with linear polynomials. The number of left observations is relatively stable. On the other hand, we

have also documented the mean and standard error of the standardized chosen bandwidth (that is, the

chosen bandwidth hj divided by the standard deviation of the corresponding running variable Xji, or

Xji/sj). The result depends basically on the order of polynomial used to fit. If one uses higher order

polynomial, then the standardized chosen bandwidth would be larger. It is also worth noting that if

s1 > s2, then the standardized chosen bandwidth for X1i (h1/s1) is smaller than h2/s2 on average.

For brevity, we report the result of chosen bandwidths for DGP 3, (a, b) = (0.15, 0.85), with linear

fitting and quadratic fitting respectively.

DGP 3 and DGP 4 gives the result when both forces of heterogeneity are present. The overall

trend for DGP 3 and DGP 4 remains the same when b− a rises from 0.7 to 0.9. Moreover, the bias of

union method becomes even larger as b − a grows up. This is due to the fact that b − a characterize

the difference in treatment probability in the control group. If b− a gets larger, then the difference in

treatment effect and probability inflates, amplifing the heterogeneity in the control group. This again

establishs the fact that intersection and average method can tackle the heterogeneity in the control

group, hence its much better performance.
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For DGP 3, we have tried both linear and quadratic fitting. One can observe that bias of union

method slightly reduces (but the estimate itself is still biased) when one uses quadratic fitting. On the

other hand, the estimate of intersection and average method remains more accurate, but has a higher

standard deviation, which is a result of redundant explanatory variables, namely the quadratic terms.

Lastly, for the comparison of average method and intersection method, one can observe that in

most cases, the standard deviation of estimates from intersection method is larger than that from

average method. This may be a consequence of neglecting sample points in the second and the fourth

quadrants in intersection method.

6 Conclusion

In this thesis, we review the basic concept and assumptions needed for multidimensional fuzzy

RDD. Moreover, we show the identification formula is still valid when multiple running variables and

thresholds are present. Most importantly, we generalize the idea mentioned in Lo (2017) and Hsu et al.

(2018), proposing intersection method and average method for multidimensional fuzzy RDD, both of

which gives unbiased estimate even if heterogeneity exists in control group. An implication of this is one

should treat observations and data more cautiously and stay aware of potential heterogeneous structure

in the dataset. With more flexibility in estimation procedure, average method and intersection method

are still robust under a wide variety of scenarios compared with traditional methods. Moreover, we

observe that one need not stick to local linear fitting when tackling RDD problem. If one wish, one

may utilize local polynomial fitting to allow for more flexibility.

On the other hand, we note that heterogeneity among control group or treatment group in fuzzy

RDD generally comes from two sources. The first is different marginal effect of running variables in

different quadrants, while the other is different treatment probability. Both sources are important in

empirical studies. For example, in medical studies concerning two or more indicators for one single

disease, the willingness or urgency to receive treatment may be different for those with only one passed

standard or multiple passed standards, leading to different treatment probability.

Considering the facility to do regressions nowadays, we highly recommend future researchers to

adopt average method despite the slightly additional computational burden it induces. As the newly

modified methods have a much more cautious and clever use of information at hand, we would be

willing to see RDD utilized in a wide variety of fields, with the ability to deal with problems under

much more general settings than ever before.
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Appendix

Figure 5: Distribution of treatment assignment in the four quadrants for DGP 4. The proportion in
the parenthesis is the probability for each result. Note there is an underlying trend of 5 +X1i +X2i +
X2

1i + 3X2
2i for all the observations.
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Table 2: Simulation Result: DGP 1 with local linear fitting and (a, b) = (0, 0.7)

(s1, s2) (1,1) (3,3) (10,10) (3,1) (10,1) (10,3)
Union Mean 4.979 4.916 4.920 4.966 4.948 4.944

s.d. 0.374 0.566 1.351 0.433 0.752 0.868
MSE 0.140 0.326 1.827 0.188 0.567 0.755

Intersection Mean 4.969 4.914 4.927 4.997 4.966 4.958
s.d. 0.464 0.622 1.386 0.521 0.831 0.916
MSE 0.215 0.393 1.923 0.271 0.690 0.838

Average Mean 4.972 4.907 4.918 4.975 4.947 4.946
s.d. 0.408 0.590 1.348 0.466 0.790 0.886
MSE 0.167 0.356 1.820 0.217 0.626 0.787

SampleRemained Mean 1008.432 938.550 927.824 929.170 754.286 871.280
s.d. 195.490 189.484 182.848 186.881 145.631 164.932

a Sample remained gives the number of observations left in the bandwidth, or observations with |X1i| ≤ h1

and |X2i| ≤ h2.

Table 3: Simulation Result: DGP 1 with local linear fitting and (a, b) = (0.15, 0.85)

(s1, s2) (1,1) (3,3) (10,10) (3,1) (10,1) (10,3)
Union Mean 4.960 4.913 4.836 4.969 4.891 4.914

s.d. 0.314 0.417 1.009 0.366 0.543 0.661
MSE 0.100 0.181 1.044 0.135 0.306 0.444

Intersection Mean 4.991 4.951 4.983 4.999 4.951 4.999
s.d. 0.390 0.506 1.053 0.470 0.603 0.714
MSE 0.152 0.258 1.106 0.221 0.365 0.509

Average Mean 4.973 4.956 4.973 4.996 4.945 4.994
s.d. 0.350 0.448 1.017 0.399 0.580 0.677
MSE 0.123 0.202 1.033 0.159 0.338 0.457

Sample Mean 1288.162 1254.992 1228.268 1228.382 1038.226 1153.720
remained s.d. 275.506 261.905 247.481 257.727 238.677 221.687

a Notations are defined as in table 2.

Table 4: Simulation Result: DGP 1 with local linear fitting and (a, b) = (0.3, 1)

(s1, s2) (1,1) (3,3) (10,10) (3,1) (10,1) (10,3)
Union Mean 4.959 4.918 4.754 4.958 4.928 4.870

s.d. 0.302 0.301 0.315 0.309 0.363 0.334
MSE 0.093 0.097 0.160 0.097 0.137 0.128

Intersection Mean 4.982 5.008 5.009 5.007 5.061 5.019
s.d. 0.396 0.410 0.462 0.413 0.475 0.439
MSE 0.156 0.168 0.213 0.170 0.229 0.193

Average Mean 4.985 4.999 5.000 5.007 5.034 5.021
s.d. 0.339 0.349 0.374 0.360 0.413 0.391
MSE 0.115 0.121 0.140 0.129 0.171 0.153

Sample Mean 1279.150 1219.946 1210.248 1206.294 989.886 1158.996
remained s.d. 252.224 222.004 234.789 244.770 211.477 231.304

a Notations are defined as in table 2.
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Table 5: Simulation Result: DGP 1 with local linear fitting and (a, b) = (0, 0.9)

(s1, s2) (1,1) (3,3) (10,10) (3,1) (10,1) (10,3)
Union Mean 5.020 4.992 4.948 5.016 5.001 4.928

s.d. 0.287 0.342 0.684 0.297 0.432 0.459
MSE 0.082 0.117 0.470 0.088 0.187 0.215

Intersection Mean 5.021 4.978 4.934 5.012 5.008 4.945
s.d. 0.367 0.417 0.712 0.370 0.500 0.521
MSE 0.135 0.174 0.511 0.137 0.250 0.274

Average Mean 5.020 4.981 4.943 5.023 5.010 4.935
s.d. 0.310 0.371 0.693 0.322 0.460 0.474
MSE 0.096 0.138 0.483 0.104 0.211 0.228

Sample Mean 1013.306 940.402 936.252 933.782 751.420 863.276
remained s.d. 190.187 186.075 179.178 187.837 142.953 166.353

a Notations are defined as in table 2.

Table 6: Simulation Result: DGP 1 with local linear fitting and (a, b) = (0.05, 0.95)

(s1, s2) (1,1) (3,3) (10,10) (3,1) (10,1) (10,3)
Union Mean 4.998 4.994 4.930 5.002 4.984 4.972

s.d. 0.222 0.247 0.517 0.246 0.350 0.329
MSE 0.049 0.061 0.272 0.060 0.122 0.109

Intersection Mean 5.005 4.988 4.965 5.001 4.995 5.002
s.d. 0.291 0.313 0.554 0.316 0.409 0.392
MSE 0.085 0.098 0.307 0.100 0.167 0.153

Average Mean 4.998 5.000 4.964 5.001 5.000 4.994
s.d. 0.245 0.273 0.533 0.272 0.379 0.357
MSE 0.060 0.075 0.285 0.074 0.143 0.127

Sample Mean 1320.746 1313.286 1290.748 1295.264 1094.296 1218.886
remained s.d. 278.426 265.220 273.797 269.576 265.182 262.032

a Notations are defined as in table 2.

Table 7: Simulation Result: DGP 1 with local linear fitting and (a, b) = (0.1, 1)

(s1, s2) (1,1) (3,3) (10,10) (3,1) (10,1) (10,3)
Union Mean 4.995 4.983 4.925 4.991 4.977 4.965

s.d. 0.224 0.228 0.240 0.226 0.257 0.231
MSE 0.050 0.052 0.063 0.051 0.066 0.054

Intersection Mean 5.007 5.003 4.997 5.001 5.007 4.997
s.d. 0.299 0.301 0.334 0.298 0.340 0.327
MSE 0.090 0.090 0.111 0.089 0.115 0.107

Average Mean 5.004 5.006 4.993 5.001 5.015 5.002
s.d. 0.253 0.252 0.275 0.249 0.295 0.273
MSE 0.064 0.063 0.076 0.062 0.087 0.074

Sample Mean 1296.000 1300.386 1222.216 1269.518 1057.524 1194.468
remained s.d. 261.402 257.657 237.635 263.374 244.688 256.852

a Notations are defined as in table 2.
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Table 8: Simulation Result: DGP 2 with local linear fitting and (a, b, c) = (0.15, 0.65, 1).

(s1, s2) (1,1) (3,3) (10,10) (3,1) (10,1) (10,3)
Union Mean 4.919 4.862 4.541 4.900 4.763 4.742

s.d. 0.448 0.465 0.502 0.473 0.526 0.508
MSE 0.207 0.235 0.462 0.233 0.333 0.325

Intersection Mean 4.979 5.000 4.988 4.991 5.034 5.030
s.d. 0.314 0.339 0.361 0.325 0.387 0.345
MSE 0.099 0.114 0.130 0.105 0.151 0.120

Average Mean 4.932 4.989 4.959 4.982 5.018 5.055
s.d. 0.607 0.623 0.634 0.599 0.852 0.635
MSE 0.372 0.387 0.402 0.358 0.725 0.406

Sample Mean 1308.878 1295.656 1312.146 1260.562 1091.402 1188.868
remained s.d. 251.654 256.881 271.324 253.404 228.196 212.593

a Notations are defined as in table 2.

Table 9: Simulation Result: DGP 2 with local linear fitting and (a, b, c) = (0.15, 0.5, 0.85).

(s1, s2) (1,1) (3,3) (10,10) (3,1) (10,1) (10,3)
Union Mean 4.949 4.877 4.636 4.902 4.734 4.675

s.d. 0.546 0.561 0.711 0.510 0.778 0.823
MSE 0.300 0.329 0.638 0.269 0.675 0.782

Intersection Mean 5.000 4.981 4.998 5.004 4.997 4.981
s.d. 0.410 0.399 0.478 0.401 0.484 0.476
MSE 0.168 0.159 0.228 0.160 0.234 0.227

Average Mean 4.974 4.995 4.930 4.991 4.926 4.865
s.d. 0.700 1.049 1.108 0.698 1.471 1.547
MSE 0.489 1.097 1.229 0.486 2.165 2.407

Sample Mean 1330.712 1293.502 1312.912 1296.510 1096.954 1205.984
remained s.d. 270.761 246.957 246.545 260.741 229.062 246.276

a Notations are defined as in table 2.

Table 10: Simulation Result: DGP 2 with local linear fitting and (a, b, c) = (0.15, 0.75, 1).

(s1, s2) (1,1) (3,3) (10,10) (3,1) (10,1) (10,3)
Union Mean 4.921 4.833 4.402 4.848 4.628 4.554

s.d. 0.598 0.578 0.597 0.565 0.629 0.626
MSE 0.363 0.361 0.714 0.342 0.533 0.590

Intersection Mean 4.996 5.012 5.035 4.991 5.009 4.999
s.d. 0.311 0.317 0.357 0.311 0.360 0.336
MSE 0.096 0.101 0.129 0.096 0.129 0.112

Average Mean 4.976 4.943 4.983 4.982 4.974 5.008
s.d. 0.881 2.508 0.975 0.879 1.116 1.220
MSE 0.775 6.279 0.948 0.771 1.243 1.485

Sample Mean 1321.252 1292.352 1276.594 1275.728 1098.172 1204.600
remained s.d. 262.817 269.084 249.843 238.720 211.862 232.426

a Notations are defined as in table 2.
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Table 11: Simulation Result: DGP 2 with local linear fitting and (a, b, c) = (0.15, 0.75, 0.85).

(s1, s2) (1,1) (3,3) (10,10) (3,1) (10,1) (10,3)
Union Mean 4.604 2.145 3.375 4.454 4.129 3.829

s.d. 6.690 53.472 4.889 2.825 5.490 4.865
MSE 44.823 2861.702 26.492 8.264 30.837 24.996

Intersection Mean 4.959 5.003 4.987 4.971 5.009 5.036
s.d. 0.405 0.375 0.508 0.400 0.484 0.482
MSE 0.166 0.141 0.258 0.161 0.234 0.233

Average Mean 5.511 6.006 6.328 7.635 2.230 4.221
s.d. 24.891 12.091 24.007 43.818 48.126 19.166
MSE 618.560 146.912 576.945 1923.097 2319.149 367.194

Sample Mean 1314.552 1269.826 1280.038 1273.130 1111.452 1191.682
remained s.d. 276.747 244.002 257.313 258.333 232.654 219.924

a Notations are defined as in table 2.

Table 12: Simulation Result: DGP 3 with local linear fitting and (a, b) = (0.15, 0.85)

(s1, s2) (1,1) (3,3) (10,10) (3,1) (10,1) (10,3)
Union Mean 4.940 4.809 4.345 4.867 4.691 4.566

s.d. 0.309 0.322 0.462 0.304 0.378 0.444
MSE 0.099 0.140 0.642 0.110 0.238 0.385

Intersection Mean 5.001 5.013 5.031 4.997 4.973 4.984
s.d. 0.388 0.424 0.565 0.422 0.506 0.527
MSE 0.151 0.180 0.319 0.177 0.256 0.277

Average Mean 5.011 5.014 5.009 4.995 4.980 4.982
s.d. 0.342 0.351 0.458 0.342 0.417 0.445
MSE 0.117 0.123 0.209 0.117 0.174 0.198

Sample Mean 1358.054 1337.854 1313.052 1318.334 1128.498 1251.860
remained s.d. 276.613 267.152 251.026 267.817 244.652 252.005

a Notations are defined as in table 2.

Table 13: Simulation Result: DGP 3 with local linear fitting and (a, b) = (0.05, 0.95)

(s1, s2) (1,1) (3,3) (10,10) (3,1) (10,1) (10,3)
Union Mean 4.931 4.805 4.350 4.860 4.668 4.583

s.d. 0.215 0.223 0.281 0.236 0.267 0.257
MSE 0.051 0.087 0.501 0.075 0.181 0.240

Intersection Mean 4.999 5.006 5.004 4.988 4.986 4.998
s.d. 0.286 0.296 0.338 0.297 0.354 0.322
MSE 0.082 0.087 0.114 0.088 0.125 0.104

Average Mean 4.994 5.004 5.004 4.991 4.996 4.999
s.d. 0.242 0.241 0.274 0.263 0.288 0.270
MSE 0.058 0.058 0.075 0.069 0.083 0.073

Sample Mean 1394.576 1356.994 1365.906 1370.580 1199.980 1314.644
remained s.d. 287.258 282.219 275.110 285.922 269.809 285.504

a Notations are defined as in table 2.
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Table 14: Simulation Result: DGP 3 with local quadratic fitting and (a, b) = (0.15, 0.85)

(s1, s2) (1,1) (3,3) (10,10) (3,1) (10,1) (10,3)
Union Mean 4.958 4.850 4.540 4.928 4.716 4.677

s.d. 0.405 0.433 0.702 0.419 0.595 0.556
MSE 0.166 0.209 0.704 0.180 0.434 0.413

Intersection Mean 5.010 4.999 4.954 5.009 4.928 4.996
s.d. 0.568 0.583 0.825 0.556 0.779 0.749
MSE 0.322 0.339 0.682 0.309 0.611 0.561

Average Mean 4.994 4.986 4.952 5.019 4.913 4.942
s.d. 0.457 0.495 0.708 0.483 0.651 0.627
MSE 0.208 0.245 0.503 0.233 0.431 0.396

Sample Mean 2137.120 2157.456 2092.726 2094.126 1865.108 2030.348
remained s.d. 333.688 340.271 319.357 316.692 310.207 304.928

a Notations are defined as in table 2.

Table 15: Simulation Result: DGP 3 with local quadratic fitting and (a, b) = (0.05, 0.95)

(s1, s2) (1,1) (3,3) (10,10) (3,1) (10,1) (10,3)
Union Mean 4.952 4.883 4.573 4.921 4.804 4.748

s.d. 0.320 0.318 0.379 0.307 0.346 0.368
MSE 0.105 0.114 0.326 0.100 0.158 0.198

Intersection Mean 4.993 5.013 4.984 4.999 5.000 5.016
s.d. 0.430 0.429 0.483 0.403 0.457 0.479
MSE 0.185 0.184 0.233 0.162 0.208 0.230

Average Mean 4.995 5.012 4.983 5.012 5.006 5.013
s.d. 0.357 0.359 0.401 0.356 0.385 0.386
MSE 0.127 0.129 0.161 0.127 0.148 0.149

Sample Mean 2180.940 2141.522 2161.770 2135.266 1956.940 2088.624
remained s.d. 342.482 341.904 338.409 336.649 343.685 363.869

a Notations are defined as in table 2.

Table 16: Simulation Result: DGP 4 with local quadratic fitting and (a, b) = (0.15, 0.85)

(s1, s2) (1,1) (3,3) (10,10) (3,1) (10,1) (10,3)
Union Mean 4.946 4.866 4.471 4.896 4.793 4.595

s.d. 0.436 0.499 2.258 0.489 0.910 1.428
MSE 0.193 0.267 5.366 0.250 0.869 2.198

Intersection Mean 5.000 5.014 4.851 4.999 4.938 4.809
s.d. 0.586 0.594 2.821 0.629 1.164 1.703
MSE 0.343 0.352 7.967 0.395 1.356 2.930

Average Mean 4.995 4.996 4.794 4.982 5.052 4.824
s.d. 0.497 0.549 2.583 0.556 2.852 1.537
MSE 0.247 0.301 6.699 0.309 8.118 2.388

Sample Mean 2121.978 2127.972 2151.772 2040.560 1435.292 2008.346
remained s.d. 302.254 319.279 334.883 342.769 279.412 339.184

a Notations are defined as in table 2.
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Table 17: Simulation Result: DGP 4 with local quadratic fitting and (a, b) = (0.05, 0.95)

(s1, s2) (1,1) (3,3) (10,10) (3,1) (10,1) (10,3)
Union Mean 4.967 4.868 4.579 4.925 4.817 4.721

s.d. 0.312 0.356 1.126 0.340 0.546 0.758
MSE 0.098 0.144 1.443 0.121 0.331 0.651

Intersection Mean 5.011 4.976 4.969 5.015 4.963 4.948
s.d. 0.407 0.450 1.341 0.458 0.660 0.897
MSE 0.166 0.203 1.795 0.210 0.436 0.806

Average Mean 5.012 4.984 4.978 4.995 4.962 4.964
s.d. 0.366 0.383 1.237 0.380 0.580 0.781
MSE 0.134 0.147 1.527 0.144 0.337 0.610

Sample Mean 2163.108 2158.510 2128.030 2009.734 1519.178 2070.430
remained s.d. 354.902 349.850 361.360 337.632 340.813 341.996

a Notations are defined as in table 2.

Table 18: Statistics of standardized chosen bandwidth: DGP 3 with local linear fitting and (a, b) =
(0.15, 0.85)

(s1, s2) (1,1) (3,3) (10,10) (3,1) (10,1) (10,3)
h1ratio Mean 0.736 0.734 0.718 0.711 0.600 0.678

s.d. 0.121 0.124 0.113 0.123 0.114 0.119
h2ratio Mean 0.736 0.727 0.725 0.736 0.728 0.727

s.d. 0.126 0.122 0.119 0.133 0.113 0.120
a h1ratio is defined as the bandwidth chosen for X1 (h1) divided by s1, or h1/s1.
h2ratio is defined similarly.

Table 19: Statistics of standardized chosen bandwidth: DGP 3 with local quadratic fitting and (a, b) =
(0.15, 0.85)

(s1, s2) (1,1) (3,3) (10,10) (3,1) (10,1) (10,3)
h1ratio Mean 0.994 0.986 0.985 0.957 0.867 0.946

s.d. 0.155 0.154 0.153 0.142 0.151 0.153
h2ratio Mean 0.998 0.984 0.998 1.006 0.992 0.990

s.d. 0.149 0.158 0.151 0.158 0.152 0.158
a h1ratio is defined as the bandwidth chosen for X1 (h1) divided by s1, or h1/s1.
h2ratio is defined similarly.
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