Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 工程科學及海洋工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/1152
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor許文翰(Wen-Hann Sheu)
dc.contributor.authorWei-Hao Linen
dc.contributor.author林緯皓zh_TW
dc.date.accessioned2021-05-12T09:33:23Z-
dc.date.available2018-12-17
dc.date.available2021-05-12T09:33:23Z-
dc.date.copyright2018-08-07
dc.date.issued2018
dc.date.submitted2018-07-30
dc.identifier.citation[1] Liping Gao, Bo Zhang, and Dong Liang. Splitting finite difference methods on staggered grids for the three-dimensional time-dependent Maxwell’s equations. Commun. Comput. Phys, 4:405–432, 2008.
[2] Yanyan Huo, Tianqing Jia, Donghai Feng, Shian Zhang, Jukun Liu, Jia Pan, Kan Zhou, and Zhenrong Sun. Formation of high spatial frequency ripples in stainless steel irradiated by femtosecond laser pulses in water. Laser Physics, 23(5):056101, 2013.
[3] TIBTECH Innovations. Properties table of stainless steel, metals and other conductive materials. printed from http://www. tibtech. com/conductivity. php on Aug, 19:1, 2011.
[4] iphone 4 RF Exposure Information. https://www.apple.com-/legal/rfexposure/iphone3,1/en/.
[5] Kane Yee. Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media. IEEE Transactions on Antennas and Propagation, 14(3):302–307, 1966.
[6] Gerrit Mur. Absorbing boundary conditions for the finite-difference approximation of the time-domain electromagnetic-field equations. IEEE Transactions on Electromagnetic Compatibility, (4):377–382, 1981.
[7] Jean-Pierre Berenger. A perfectly matched layer for the absorption of electromagnetic waves. Journal of Computational Physics, 114(2):185–200, 1994.
[8] J-P Berenger. Perfectly matched layer for the FDTD solution of wave-structure interaction problems. IEEE Transactions on Antennas and Propagation, 44(1):110–117, 1996.
[9] J Alan Roden, Stephen D Gedney, et al. Convolutional PML (CPML): An efficient FDTD implementation of the CFS-PML for arbitrary media. Microwave and Optical Technology Letters, 27(5):334–338, 2000.
[10] Xiaolei Zhang, Jiayuan Fang, Kenneth K Mei, and Yaowu Liu. Calculations of the dispersive characteristics of microstrips by the time-domain finite difference method. IEEE Transactions on Microwave Theory and Techniques, 36(2):263–267, 1988.
[11] X Zhang and KK Mei. Time-domain finite difference approach for the calculation of microstrip open-circuit end effect. In Microwave Symposium Digest, 1988., IEEE MTT-S International, pages 363–366. IEEE, 1988.
[12] Zhang Xiaolei and Kenneth K Mei. Time-domain finite difference approach to the calculation of the frequency-dependent characteristics of microstrip discontinuities. IEEE Transactions on Microwave Theory and Techniques, 36(12):1775–1787, 1988.
[13] Dok Hee Choi and Wolfang JR Hoefer. The finite-difference-time-domain method and its application to eigenvalue problems. IEEE Transactions on Microwave Theory and Techniques, 34(12):1464–1470, 1986.
[14] David M Sheen, Sami M Ali, Mohamed D Abouzahra, and Jin Au Kong. Application of the three-dimensional finite-difference time-domain method to the analysis of planar microstrip circuits. IEEE Transactions on Microwave Theory and Techniques, 38(7):849–857, 1990.
[15] James G Maloney, Kurt L Shlager, and Glenn S Smith. A simple FDTD model for transient excitation of antennas by transmission lines. IEEE Transactions on Antennas and Propagation, 42(2):289–292, 1994.
[16] PJ Dimbylow. FDTD calculations of the whole-body averaged SAR in an anatomically realistic voxel model of the human body from 1 MHz to 1 GHz. Physics in Medicine & Biology, 42(3):479, 1997.
[17] 吳宗霖, 鄭博仁, 黃竣南, 張孝甄, 林彥輝, et al. 行動電話及基地臺電磁波對人體健康之影響程度評估及其防範措施. 2001.
[18] Mohammad Tariqul Islam, Mohammad Rashed Iqbal Faruque, and Norbahiah Misran. Design analysis of ferrite sheet attachment for SAR reduction in human head. Progress In Electromagnetics Research, 98:191–205, 2009.
[19] Tony W. H, Sheu, YC Wang, and JH Li. Development of a 3D staggered FDTD scheme for solving Maxwell’s equations in Drude medium. Computers & Mathematics with Applications, 71(6):1198–1226, 2016.
[20] Bernardo Cockburn, Fengyan Li, and Chi-Wang Shu. Locally divergence-free discontinuous Galerkin methods for the Maxwell equations. Journal of Computational Physics, 194(2):588–610, 2004.
[21] N Anderson and AM Arthurs. Helicity and variational principles for Maxwell’s equations. International Journal of Electronics, 54(6):861–864, 1983.
[22] JS Kole, MT Figge, and Hans De Raedt. Higher-order unconditionally stable algorithms to solve the time-dependent Maxwell equations. Physical Review E, 65(6):066705, 2002.
[23] Stephen D Gedney. An anisotropic perfectly matched layer-absorbing medium for the truncation of FDTD lattices. IEEE Transactions on Antennas and Propagation, 44(12):1630–1639, 1996.
[24] Saul Abarbanel, D Gottlieb, and Jan S Hesthaven. Non-linear PML equations for time dependent electromagnetics in three dimensions. Journal of Scientific Computing, 28(2):125–137, 2006.
[25] Mustafa Kuzuoglu and Raj Mittra. Frequency dependence of the constitutive parameters of causal perfectly matched anisotropic absorbers. IEEE Microwave and Guided Wave Letters, 6(12):447–449, 1996.
[26] Raymond Luebbers, Forrest P Hunsberger, Karl S Kunz, Ronald B Standler, and Michael Schneider. A frequency-dependent finite-difference time-domain formulation for dispersive materials. IEEE Transactions on Electromagnetic Compatibility, 32(3):222–227, 1990.
[27] Philip J Morrison. The Maxwell-Vlasov equations as a continuous Hamiltonian system. Physics Letters A, 80(5-6):383–386, 1980.
[28] Jerrold E Marsden and Alan Weinstein. The Hamiltonian structure of the Maxwell- Vlasov equations. Physica D: Nonlinear Phenomena, 4(3):394–406, 1982.
[29] XW Lu and R Schmid. Symplectic algorithms for Maxwell’s equations. In Proceedings of the International Conference on New Applications of Multisymplectic Field Theories, pages 10–12, 1999.
[30] Zhi-Xiang Huang and Xian-Liang Wu. Symplectic partitioned Runge-Kutta scheme for Maxwell’s equations. International Journal of Quantum Chemistry, 106(4):839– 842, 2006.
[31] Ikuo Saitoh, Yoshio Suzuki, and Norio Takahashi. The symplectic finite difference time domain method. IEEE Transactions on Magnetics, 37(5):3251–3254, 2001.
[32] Tony W. H, Sheu and R. K Lin. An incompressible Navier-Stokes model implemented on nonstaggered grids. Numerical Heat Transfer: Part B: Fundamentals, 44(3):277–394, 2003.
[33] P. H Chiu, Tony W. H, Sheu, and R. K Lin. Development of a Dispersion Relation- Preserving Upwinding Scheme for Incompressible Navier-Stokes Equations on Non- Staggered Grids. Numerical Heat Transfer, Part B: Fundamentals, 48(6):543–569, 2005.
[34] Dejan Krstić, Darko Zigar, Dejan Petković, Dušan Sokolović, Boris Đinđić, Nenad Cvetković, Jovica Jovanović, and Nataša Đinđić. Predicting the biological effects of mobile phone radiation absorbed energy linked to the MRI-obtained structure. Archives of Industrial Hygiene and Toxicology, 64(1):159–168, 2013.
[35] Allen Taflove and Susan C Hagness. Computational electrodynamics: the finitedifference time-domain method. Artech house, 2005.
[36] A Yasin Citkaya and S Selim Seker. FEM modeling of SAR distribution and temperature increase in human brain from RF exposure. International Journal of Communication Systems, 25(11):1450–1464, 2012.
[37] iPhone4 circuit diagram. ttp://win.archimedesys.it/Share/forum/4ant.jpg.
[38] Phantom head model of human. http://grabcad.com.
[39] MR Iqbal-Faruque, N Aisyah-Husni, Md Ikbal-Hossain, M Tariqul-Islam, and Norbahiah Misran. Effects of mobile phone radiation onto human head with variation of holding cheek and tilt positions. Journal of Applied Research and Technology, 12(5):871–876, 2014.
[40] Akimasa Hirata and Osamu Fujiwara. The correlation between mass-averaged SAR and temperature elevation in the human head model exposed to RF near-fields from 1 to 6 GHz. Physics in Medicine & Biology, 54(23):7227, 2009.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/handle/123456789/1152-
dc.description.abstract本論文是在非交錯網格上發展一三維時域有限差分法(FDTD),以求解馬克斯威爾方程。本文的方法是在時域內,在滿足高斯定律(即電場和磁場零散度條件) 的架構下求解法拉第定律和安培定律。本文所提出的數值方法能在時間上和空間上保有相當好的理論收斂斜率,且能有效地減少實解相速度與數值相速度之間的誤差,而得以顯著地降低了因時域有限差分所造成的數值色散誤差以及各向異性誤差。本研究證實了所提出的數值方法在具辛結構與色散關係上皆具有良好的保持性,尤其在針對經長時間馬克斯威爾方程的數值模擬後,其效果尤為顯著。
本文進而將此數值方法針對人體頭部進行預測及數值分析其暴露在手機輻射(RF) 下之特定比吸收率(Specific Absorbtion Rate) 的電磁場與SAR場的在頭部各器官組織的分布情形。人體在使用手機進行通話時,通常將手機聽筒貼置在左耳或右耳上,使得頭部將與手機直接貼觸,直接接受由手機天線發射出的低強度射頻電磁場(RF-EMF) 曝曬。然而,電磁曝曬的強度,將與手機種類以及手機輻射功率和作用頻段相關聯。本文選用複雜幾何之Apple iPhone4-like 模型,並與複雜幾何頭部組織進行電磁曝曬分析模擬,使用顯式非交錯(或稱並列) 網格方法進行模擬計算。此方法相當適合使用多圖形處理單元(GPUs) 平行計算,透過增加更多圖形處理單元減少計算時間,以換取計算空間之網格密度。 由於馬克斯威爾方程組屬於完全可積之方程,因此,我們採用具辛結構之Runge-Kutta方法來逼近時間導數項,並且保持馬克斯威爾方程組能量守恆的性質;同時透過最小化數值色散關係式與色散關係式之間的差,以減少數值色散誤差。結果顯示,所模擬行動電話的數值結果與實驗測量值相當接近,顯示本文所使用之數值方法,可以準確的預測出低頻射頻場對人腦的影響。
zh_TW
dc.description.abstractAn explicit finite-difference scheme for solving the three-dimensional Maxwell’s equations in non-staggered grids is presented in time domain. Our aim is to solve the Faraday’s law and Ampère’s law in time domain under the constraint of Gauss’law.
The numerical method presented in this paper can maintain a fairly good theoretical convergence slope in time and in space. It can effectively reduce the error between the actual solution phase velocity and the numerical phase velocity by dispersion relation analysis. with the concept of phase velocity preserving, this numerical method can significantly reduce the numerical dispersion error and anisotropy error. This study confirms that the proposed numerical method can retain on symplectic structure and dispersion relationship.
Exposure to mobile (or cell) phone radiation will be numerically investigated in human head by solving the Maxwell’s equation. Our aim is to get the distribution of the electrical field in the calculation of Specific Absorption Rate (SAR). Cell phone handset is normally placed over left/ right ear. Exposure to low-intensity Radio Frequency–Electro/Magnetic Fields (RF-EMF) from cell phone is therefore a well localized issue. Moreover, the accompanied electrical field takes its highest magnitude in brain regions closest to cell phone antenna. The degree of exposure depends on the type of cell phone being used. As a result, Apple iPhone4 and a phantom head are chosen in this three-dimensional simulation of Maxwell’s equations. For performing a computationally effective simulation of Maxwell’s equations, calculation of Maxwell’s solution will be performed in non-staggered (or collocated) grids using the explicit finite difference scheme. As the result of the employed explicit discretization scheme in non-staggered grids, this simulation can be suitably executed in parallel on Graphic Process Units (GPUs), thereby reducing a dramatic amount of computing time. Maxwell’s equations belong to a class of completely integrable equations. Symplectic Runge-Kutta temporal scheme is therefore adopted to approximate time derivative terms so as to be able to preserve the embedded Hamiltonians and invariants embedded in Maxwell’s equations. In addition, the introduced numerical dispersion error is reduced by minimizing the difference between of numerical and exact dispersion relation equations. As a result, the emitted low-frequency radio frequency fields can be accurately predicted.
en
dc.description.provenanceMade available in DSpace on 2021-05-12T09:33:23Z (GMT). No. of bitstreams: 1
ntu-107-R05525099-1.pdf: 14593665 bytes, checksum: 8bea0d4c270318a71892bbb5d9912d6b (MD5)
Previous issue date: 2018
en
dc.description.tableofcontents摘要. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v
Abstract . . . . . . . . .. . . . . . . . . . . . . . . . . . vii
目錄. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x
圖目錄. . . . .. . .. . . . . . . . . . . . . . . . . . . . . xii
表目錄. . . . . .. . .. . . . . . . . . . . . . . . . . . . . . 1
Chapter 1 序論. . .. . . . . .. . . . . . . . . . . . . .. . . . 2
1.1 前言. . . . . . . . . .. . . . . . ... . . . . . . .. . . . . 2
1.2 文獻回顧. . . . . . . . . . ... . . ... . . . . . ... . . . . 4
1.3 研究動機. . . . . . . . . . .. . . . . . .. . . . . ... .. .. 6
1.4 研究目標. . . . . . . . . ... .. .. .. .. .. .. .. .. .. .. .. 7
1.5 論文大綱. . . . . . . . . . . ... .. .. .. .. .. .. .. .. . . 8
Chapter 2 馬克斯威爾方程組. . . . . . . . . . . . . . ... .. . .. 9
2.1 法拉第/安培/高斯方程組及其推導. . . . . . . . . . . . . . . 9
2.2 法拉第/安培方程組之數學特性. . . . . . . . . . . . . . . . 10
2.3 色散介質. . . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. ... 12
2.4 卷積完美匹配吸收層. . . . . . . . . . . . . . . . . . . . . 13
Chapter 3 數值方法. . . . . . ... .. .. .. .. .. .. .. .. .. .. . 19
3.1 非交錯網格系統下之FDTD 離散方法. . . . . . . . . . . . . . 19
3.2 具辛結構之PRK 時間離散方法. . . . . . . . . . . . . . . . . . 21
3.3 空間離散方程之推導. . . . . . . . . . . . . . . . . . . .. . 23
Chapter 4 具色散關係式保持特性之離散方法及其分析. . . . . . .. 28
4.1 三維空間離散方程之分析. . . . . .. . . . . . . . . . . . . 28
4.1.1 積分域之影響. . . . . . . . .. . . . . .. .. . . . . . . . 30
4.1.2 Cr 數之影響. . . . . . . . . . . . . .. .. .. . . . . . . . 31
4.1.3 角度變化下之係數分佈. . .. . . . . ... .. .. . . . . . . . 31
4.2 數值分析之結果與討論. . . .. . . . . ... .. .. .. . . . . . 32
Chapter 5 數值方法之驗證. . . . . . . . . . .. . . . . . . . . . 36
5.1 實解驗證. . . . . . . .. . . . . . . . . . . . . . . . . . . 36
5.2 驗證結果與討論. . . . . . . . .. . . . . . . . . . . . . . . 38
Chapter 6 人體電磁比吸收率之分析. . . . . . . . . . . . . . . . . 39
6.1 實際物理問題之描述. . . . . . . . . . . . . . . . . . . . . 39
6.2 三維複雜幾何的散射體建模. . . . . . . . . . . . . . . . . . . 41
6.3 波源的設置. . . . . . . . . .. . . . . . .. . . . . . . . . . 44
6.3.1 硬波源(hard-sourced) . . . .. . . . . .. . . .. . . . . . . 44
6.3.2 軟波源(soft-sourced) . . .. . . . . . . . .. . . .. . . . . 44
6.4 波源的種類. . . . . . .. . . . . . . . . .. . . . . . . . . . 45
6.4.1 時諧場源(harmonic-sourced) . . . . . . . . . . . .. . . . 45
6.4.2 脈衝源(implused-sourced) . . . . . . .. . . . . . . . . . . 45
6.5 模擬計算流程圖. . . . . . . . . . . . . . . . . . . . . . . . 47
6.6 Apple iPhone4-like phone . . . . .. . . . . . . . . . . . . 49
6.7 316L 不鏽鋼金屬邊框天線. . . . . . . . . . . . .. . . . . . 50
6.8 電源項之選取與其參考電路. . . . . . . . .. . .. . . . . . . 52
6.9 模擬頭部模型. . . . . . . . . . . . . . . . . . . . . . . . 53
6.10 大腦. . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
6.11 特定比吸收率(SAR) . . . . . . . .. . . .. . . . . . . . . 55
Chapter 7 模擬實際問題之結果與分析. . . . . . . . . . . . . . . . 56
7.1 316L 邊框-訊號天線部之輻射情形分析. . .. . . . .. . . . . 56
7.2 電磁輻射效應於頭部組織內之模擬結果. . . . . . .. . . . . . . . 58
7.3 人體頭部骨骼的電磁輻射防護性. . . .. . . . . .. . . . . . 67
7.4 大腦/腦幹與小腦的電場強度分布之模擬結果. . . . .. . . . . . . 75
Chapter 8 結論. . . . . . . . . . . . . . . . . . . . . . . . 77
8.1 本文之貢獻. . . . . . . . . . . . . . . . . . .. . . . . . . 77
8.2 未來工作與展望. . . . . . . . . . . . . . . . . . . . . . . . 79
圖目錄
Fig 2.1 CPML 吸收邊界之示意. . . . . . . . . . . . . .. . . . . . 18
Fig 2.2 求解電磁波傳遞問題的方程及計算空間之示意圖。. . . . . . .. 18
Fig 3.1 交錯式之Yee 網格系統。. . . . . . . . . . . . . .. . . . 26
Fig 3.2 本文所採用之非交錯式網格系統。. . . .. . . . . . .. . . 26
Fig 3.3 非交錯網格內部節點之示意圖及編號。. . . .. . . . . . 26
Fig 3.4 座標系示意圖. . . . . . . . . . . . . . . . . . . . 27
Fig 4.1 平面波在三維情況下傳遞時,定義出天頂角(Zenith angle),方位角(Azimuth angle) ϕ. . . . . . . . . . . . . . . . . . . . . . .34
Fig 4.2 固定Cr 為0:2 時,在不同積分範圍下之色散關係之實解與數值解的比較. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
Fig 4.3 固定積分範圍,在不同Cr 值情況下之色散關係之實解與數值解的比較. . . . . . . . . . . . . .. . . . . . . . . .3 . . . . . .5
Fig 6.1 吾人所討論之實際問題描述。. . .. . . . . . . . . . . . . 40
Fig 6.2 計算空間中節點P 與三角面三點ABC 之關係圖。.. .. . . . . . 41
Fig 6.3 真實手機的各個部件。. . .. . . . .. . . . . . . .. . . 42
Fig 6.4 計算空間中,手機各個部件的建模。. . . .. .. . . .. . . 43
Fig 6.5 高斯脈衝函數之時域波型。. . . .. . . . . . . . . . 46
Fig 6.6 程式計算之流程圖。. . . . . . . . . . . . . . . . 48
Fig 6.7 iPhone4 316L 不鏽鋼邊框之模型。. . . . . .. . . . . 51
Fig 6.8 iPhone4 UMTS/GSM 頻段之參考電路圖。. .. . .. . . . . 52
Fig 6.9 人體頭部之結構圖。. . . . . . . . . . . . . . . . . . 54
Fig 7.1 Apple iPhone4-like 的316L 不鏽鋼金屬外框天線輻射部的結構,于T=100Δt 到T=500Δt 在五個不同時間點的電場傳播情形. . . . . . 57
Fig 7.2 頭部組織內手機輻射之電場強度分布之模擬結果. . .. . . 59
Fig 7.3 大腦及腦幹組織之電場強度分布情形。. . .. . . . . . . 60
Fig 7.4 小腦組織之電場強度分布情形。. . . . . . . .. .. . . . . 61
Fig 7.5 顱骨之電場強度分布情形。. . . . . . . .. .. . . . . . 62
Fig 7.6 肌肉組織之電場強度分布情形。. . . . . . .. . . . . . 63
Fig 7.7 皮膚組織之電場強度分布情形。. . . . .. .. . . . . . . . 64
Fig 7.8 由左耳到右耳,所考慮之人體組織層的截面尺寸、導電率大小
以及電場強度分布. . . . . . . . . . . . . . . . . . . . . . . . 65
Fig 7.9 人體組織最大SAR 發生處在總模擬時間為5000Δt 的電場大小
值|E|. . . . . . . . . . . . . . . . . . . . . . . . .. . . . . 66
Fig 7.10 移去顱骨後,頭部組織內手機輻射之電場強度分布之模擬結果. 68
Fig 7.11 移去顱骨後,大腦及腦幹組織之電場強度分布情形. . . . . . 69
Fig 7.12 移去顱骨後,小腦組織之電場強度分布情形.. . . . . . . . 70
Fig 7.13 移去顱骨後,肌肉組織之電場強度分布情形. . . . . . . . . 71
Fig 7.14 移去顱骨後,皮膚組織之電場強度分布情形. .. . . . . . . 72
Fig 7.15 移去顱骨後,由左耳到右耳,所考慮之人體組織層的截面尺寸、導電率大小以及電場強度分布. . . . . . . . . . . . . . . . . . . . . . 73
Fig 7.16 大腦內,SAR 最大值發生位置,在5000Δt 的時間範圍內,將原本的模擬結果和移除顱骨後的模擬結果進行比較。. . . . . . . . . .7 . . . .4
Fig 7.17 小腦內,SAR 最大值發生位置,在5000Δt 的時間範圍內,將原本的模擬結果和移除顱骨後的模擬結果進行比較。. . . . . . . . .. . . . . 74
Fig 7.18 大腦及腦幹組織於各單位格點於計算時間為5000Δt,比較有無顱骨時的電場強度|E| 之分布結果。. . . . . . . . . . . . . . . . .7 . .5
Fig 7.19 小腦組織於各單位格點於計算時間為5000Δt,比較有無顱骨時的電場強度|E| 之分布結果。. . . . . . . . . . . . . . . . . . . . . 76
Fig 8.1 在log 尺度下,頭部組織SAR 分布之模擬結果。. . . . . . 78
表目錄
Table 4.1 經長時間(即T 為30(s)) 計算後,在Cr =0.2 及Cr = 0.05 情況下計算誤差以及所需CPU TIME (s) 之比較。. . . . . . . . . . . . . .. .33
Table 4.2 取不同天頂角(Zenith angle)配合不同方位角(Azimuth angle)ϕ 時,可得到一維情況下的係數. . . . . . . . . . . . . . . . . . . . 33
Table 4.3 在三維情況下,本文所提出的FDTD 數值方法與Yee 方法的穩定性範圍比較。. . .. . . . . . . . . . . . . . . . . . . . . . . . . . . 33
Table 5.1 比較本文所使用的PRK-DRP FDTD 與ADI-FDTD [1] 在h = 0.01 情況下計算電場E 與磁場H 的最大誤差和時間收斂斜率。. . . . . .. . . . .37
Table 5.2 本文所使用的PRK-DRP FDTD 當t = 1,並選取CFL number=0.2 時,計算電場E 與磁場H 的最大誤差和空間收斂斜率。. . . . .. . . . . 37
Table 6.1 Apple iPhone4-like phone 所參考的材料性質. . . . . . 49
Table 6.2 316L 不鏽鋼的電磁材料特性.[2, 3] . .. . . . . . . . . . 50
Table 6.3 本研究所使用的人體器官材料特性。. . . . . . . . . . . 53
Table 7.1 Apple iPhone4 (model A1332) 產品的真實量測值[4]. . . 57
Table 7.2 頭部各器官組織其電場強度、能量比、該器官組織內部最大電場強度以及該器官組織的於頭部之體積比 . . . .. . . . . . . . . . 58
Table 7.3 在5000Δt 計算時間內,不同器官組織的SAR 模擬結果. . . 65
Table 7.4 不同器官組織的SARpeak、SAR1g 和SAR10g 模擬結果。. . . .65
Table 7.5 移去顱骨後,頭部各器官組織其電場強度、能量比、該器官組織內部最大電場強度以及該器官組織的於頭部之體積比. . . . . . . . . . 67
dc.language.isozh-TW
dc.title以時域有限差分方法求解三維馬克斯威爾方程組,探討手機于頭部之電磁波之比吸收率之分布zh_TW
dc.titleCalculation of Mobile Phone Induced Specific Absorption Rate Prediction in Phantom Head by a 3D FDTD code for Maxwell’s equationsen
dc.typeThesis
dc.date.schoolyear106-2
dc.description.degree碩士
dc.contributor.oralexamcommittee張宏鈞(hung-chun Chang),李佳翰(jia-han Li)
dc.subject.keyword馬克斯威爾方程,時域有限差分法,非交錯網格,人體特定比吸收率(SAR),實解與數值相速度,手機射頻電磁場分析,數值色散關係式,zh_TW
dc.subject.keywordMaxwell′s equations,non-staggered grids,Finite difference time domain methods,Non-staggered grid,Specific absorption rate,dispersion relation equation,Exact and numerical phase velocities,Mobile radio frequency electromagnetic field analysis,Numerical dispersion relation equations.,en
dc.relation.page84
dc.identifier.doi10.6342/NTU201802077
dc.rights.note同意授權(全球公開)
dc.date.accepted2018-07-31
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept工程科學及海洋工程學研究所zh_TW
顯示於系所單位:工程科學及海洋工程學系

文件中的檔案:
檔案 大小格式 
ntu-107-1.pdf14.25 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved