Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 海洋研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/10648
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor謝文陽(Wung-Yang Shieh)
dc.contributor.authorHung-Chun Laien
dc.contributor.author賴虹君zh_TW
dc.date.accessioned2021-05-20T21:46:41Z-
dc.date.available2020-08-02
dc.date.available2021-05-20T21:46:41Z-
dc.date.copyright2010-08-12
dc.date.issued2010
dc.date.submitted2010-08-05
dc.identifier.citationAcinas, S. G., Klepac-Ceraj, V., Hunt, D. E., Pharino, C., Ceraj, I., Distel, D. L., Polz, M. F., Fine-scale phylogenetic architecture of a complex bacterial community, Nature 430: 551-554 (2004)
Adav, S. S., Lee, D. J., Lai, J. Y., Potential cause of aerobic granular sludge breakdown at high organic loading rates, Applied Microbiology and Biotechnology 85: 753-762 (2010a)
Adav, S. S., Lee, D. J., Lai, J. Y., Microbial community of acetate utilizing denitrifiers in aerobic granules, Applied Microbiology and Biotechnology 85: 1601-1610 (2010b)
Alford, M. H., Redistribution of energy available for ocean mixing by long-range propagation of internal waves, Nature 423: 159-162 (2003)
Allen, A. P., Gillooly, J. F., Brown, J. H., Global biodiversity, biochemical kinetics, and the energetic-equivalence rule, Science 297: 1545-1548 (2002)
Aller, J. Y., Kemp, P. F., Are archaea inherently less diverse than bacteria in the same environments? FEMS Microbiol Ecol. 65: 74-87 (2008)
Alonso-Sáez, L., Balagué, V., Sà, E. L., Sánchez, O., González, J. M., Pinhassi, J., Massana, R., Pernthaler, J., Pedrós-Alió, C., Gasol, J. M., Seasonality in bacterial diversity in north-west Mediterranean coastal waters: assessment through clone libraries, fingerprinting and FISH, FEMS Microbiol Ecol. 60: 98-112 (2007)
Alonso-Sáez, L., Balagué, V., Sà, E. L., Sánchez, O., Gonzalez, J. M., Pinhassi, J., Massana, R., Pernthaler, J., Pedrós-Alió, C., Gasol, J. M., Seasonality in bacterial diversity in north-west Mediterranean coastal waters: assessment through clone libraries, fingerprinting, and FISH, FEMS Microbiol Ecol. 60: 98-112 (2007)
Andersson, A. F., Riemann, L., Bertilsson, S., Pyrosequencing reveals contrasting seasonal dynamics of taxa within Baltic Sea bacterioplankton communities, ISME J 4: 171-181 (2010)
Anesti, V., Vohra, J., Goonetilleka, S., McDonald, I. R., Sträubler, B., Stackebrandt, E., Molecular detection and isolation of facultatively methylotrophic bacteria, including Methylobacterium podarium sp. nov., from the human foot microflora, Environ. Microbiol. 6: 820-830 (2004)
Arrigo, K. R., Marine microorganisms and global nutrient cycles, Nature 437, 349-355 (2005)
Ayala-del-Río, H. L., Chain, P. S., Grzymski, J. J., Ponder, M. A., Ivanova, N., Bergholz, P. W., Di Bartolo, G., et al., The Genome Sequence of Psychrobacter arcticus 273-4, a Psychroactive Siberian Permafrost Bacterium, Reveals Mechanisms for Adaptation to Low-Temperature Growth, Appl. Environ. Microbiol. 76: 2304-2312 (2010)
Azam, A., Hodson, R. E., Size distribution and activity of marine microheterotrophs, Limnol. Oceanogr. 22: 492-501 (1977)
Azam, F., Fenchel, T., Field, J. G., Gray, J. S., Meyer-Reil, L. A., Thingstad, F., The ecological role of water-column microbes in the sea, Mar. Ecol. Prog. Ser. 10: 257-263 (1983)
Baldwin, A. J., Moss, J. A., Pakulski, J. D., Catala, P., Joux, F., Jeffrey, W. H., Microbial diversity in a Pacific Ocean transect from the Arctic to Antarctic circles, Aquat. Microb. Ecol. 41: 91-102 (2005)
Bano, N., Ruffin, S., Ransom, B., Hollibaugh, J. T., Phylogenetic Composition of Arctic Ocean Archaeal Assemblages and Comparison with Antarctic Assemblages, Appl. Environ. Microbiol. 70: 781-789 (2004)
Bartlett, D. H., Extremophilic vibrionaceae, In The biology of vibrios, ed. by Thompson, F. L., Austin, B., Swings, J., American Society for Microbiology Press, Washington D.C., pp. 156-171 (2006)
Béjà, O., Aravind, L., Koonin, E. V., Suzuki, M. T., Hadd, A., Nguyen, L. P., Jovanovich, S. B., Gates, C. M., Feldman, R. A., Spudich, J. L., Spudich, E. N., DeLong, E. F., Bacterial rhodopsin: evidence for a new type of phototrophy in the sea, Science 289: 1902-1906 (2000)
Bentley, R., Chasteen, T. G., Microbial methylation of metalloids: arsenic, antimony and bismuth, Microbiol. Mol. Biol. Rev. 66: 250-271 (2002)
Binladen, J., Gilbert, M. T., Bollback, J. P., Panitz, F., Bendixen, C., Nielsen, R., Willerslev, E., The use of coded PCR primers enables high-throughput sequencing of multiple homolog amplification products by 454 parallel sequencing, PLoS ONE 2: e197 (2007)
Borde, X., Guieysse, B., Delgado, O., Muñoz, R., Hatti-Kaul, R., Nugier-Chauvin, C., Patin, H., Mattiasson, B., Synergistic relationships in algal-bacterial microcosms for the treatment of aromatic pollutants, Bioresour Technol 86: 293-300 (2003)
Bosch, G., Skovran, E., Xia, Q., Wang, T., Taub, F., Miller, J. A., Lidstrom, M. E., Hackett, M., Comprehensive proteomics of Methylobacterium extorquens AM1 metabolism under single carbon and nonmethylotrophic conditions, Proteomics 8: 3494-3505 (2009)
Bozal, N., Montes, M. J., Tudela, E., Guinea, J., Characterization of several Psychrobacter strains isolated from Antarctic environments and description of Psychrobacter luti sp. nov. & Psychrobacter fozii sp. nov., Int. J. Syst. Evol. Microbiol. 53: 1093-1100 (2003)
Britschgi, T. B., Giovannoni, S. J., Phylogenetic analysis of a natural marine bacterioplankton population by rRNA gene cloning and sequencing, Appl. Environ. Microbiol. 57: 1313-1318 (1991)
Brodie, E. L., DeSantis, T. Z., Joyner, D. C., Baek, S. M., Larsen, J. T., Andersen, G. L., Hazen, T. C., Richardson, P. M., Herman, D. J., Tokunaga, T. K., Wan J. M., Firestone, M. K., Application of a High-Density Oligonucleotide Microarray Approach To Study Bacterial Population Dynamics during Uranium Reduction and Reoxidation, Appl. Environ. Microbiol. 72: 6288-6298 (2006)
Brown, M. V., Philip, G. K., Bunge, J. A., Smith, M. C., Bissett, A., Lauro, F. M., Fuhrman J. A., Donachie, S. P., Microbial community structure in the North Pacific ocean, ISME J 3: 1374-1386 (2009)
Cai, W. J., Dai, M., Wang, Y., Zhai, W., Huang, T., Chen, S., Zhang, F., Chen, Z., Wang, Z., The biogeochemistry of inorganic carbon and nutrients in the Pearl River estuary and the adjacent northern South China Sea, Continental Shelf Research 24: 1301-1319 (2004)
Casamayor, E. O., Massana, R., Benlloch, S., Øvreås, L., Díez, B., Goddard, V. J., Gasol, J. M., Joint, I., Rodríguez-Valera, F., Pedrós-Alió, C., Changes in archaeal, bacterial and eukaryal assemblages along a salinity gradient by comparison of genetic fingerprinting methods in a multipond solar saltern, Environ. Microbiol. 4: 338-348 (2002)
Castle, D., Kirchman, D. L., Composition of estuarine bacterial communities assessed by denaturing gradient gel electrophoresis and fluorescence in situ hybridization, Limnol. Oceanogr.: Methods 2: 303-314 (2004)
Chang, Y. T., Hsu, W. L., Tai, J. H., Tang T. Y., Chang, M. H., Chao, S. Y., Cold deep water in the South China Sea, Journal of Oceanography 66: 183-190 (2010)
Chen, C. C., Shiah, F. K., Chung, S. W., Liu, K. K., Winter phytoplankton blooms in the shallow mixed layer of the South China Sea enhanced by upwelling, Journal of Marine Systems 59: 97-110 (2006)
Chen, C. T. A., Wang, S. L., Chou, W. C., Sheu D. D., Carbonate chemistry and projected future changes in pH and CaCO3 saturation state of the South China Sea, Marine Chemistry 101: 277-305 (2006)
Chen, C. T. A., Wang, S. L., Wang, B. J., Nutrient budgets for the South China Sea basin, Marine Chemistry 75: 281-300 (2001)
Cho, J. C., Giovannoni, S. J., Cultivation and Growth Characteristics of a Diverse Group of Oligotrophic Marine Gammaproteobacteria, Appl. Environ. Microbiol. 70: 432-440 (2004)
Christoserdova, L., Chen, S. W., Lapidus, A., Lidstrom, M. L., Methylotrophy in Methylobacterium extorquens AM1 from a genomic point of view, J. Bacteriol. 185: 2980-2987 (2003)
Clement, B. G., Kehl, L. E., DeBord, K. L., Kitts, C. L., Terminal restriction fragment patterns (TRFPs), a rapid, PCR-based method for the comparison of complex bacterial communities, Journal of Microbiological Methods 31: 135-142 (1998)
Cole, J. R., Wang, Q., Cardenas, E., Fish, J., Chai, B., Farris, R. J., Kulam-Syed-Mohideen, A. S., McGarrell, D. M., Marsh, T., Garrity, G. M., Tiedje, J. M., The ribosomal database project: improved alignments and new tools for rRNA analysis, Nucleic Acids Res. 37: D141-145 (2008)
Colwell, R. R., Morita, R. Y., Reisolation and emendation of description of Vibrio marinus (Russell) Ford, J. Bacteriol. 88: 831-837 (1964)
Cono, V. L., Tamburini, C., Genovese, L., Spada, G. L., Denaro, R., Yakimov M. M., Cultivation-independent assessment of the bathypelagic archaeal diversity of Tyrrhenian Sea: Comparative study of rDNA and rRNA-derived libraries and influence of sample decompression, Deep-Sea Res. II 56: 768-773 (2009)
DeLong, E. F., Franks, D. G., Yayanos, A. A., Evolutionary relationships of cultivated psychrophilic and barophilic deep-sea bacteria, Appl. Environ. Microbiol. 63: 2105-2108 (1997)
DeLong, E. F., Preston, C. M., Mincer, T., Rich, V., Hallam, S. J., Frigaard, N. U., Martinez, A., Sullivan, M. B., Edwards, R., Rodriguez Brito, B., Chisholm, S. W., Karl, D. M., Community genomics among stratified microbial assemblages in the ocean's interior. Science 27: 496-503 (2006)
Duda, T. F., Lynch, J. F., Senior Member, IEEE, Irish, J. D., Beardsley, R. C., Ramp, S. R., Chiu, C. S., Tang, T. Y., Yang Y. J., Internal tide and nonlinear wave behavior in the continental slope in the northern South China Sea, IEEE J. Ocean. Eng. 29: 1105-1131 (2004)
Edgar, R. C., MUSCLE: multiple sequence alignment with high accuracy and high throughput, Nucleic Acids Res. 32: 1792-1797 (2004)
Edwards R. A., Rodriguez-Brito, B., Wegley, L., Haynes, M., Breitbart, M., Peterson, D. M., Saar, M. O., Alexander, S., Alexander, E. C., Rohwer, F., Using pyrosequencing to shed light on deep mine microbial ecology, BMC Genomics 7: 57-69 (2006)
Emery, W. J., Water types and water masses, In Encyclopedia of Ocean Sciences, ed. by J. H. Steele, S. A. Thorpe and K. K. Turekian, Academic Press, Inc., pp. 3179-3187 (2001)
Falkowski, P. G., Barber, R. T., Smetacek, V., Biogeochemical Controls and Feedbacks on Ocean Primary Production, Science 281: 200-206 (1998)
Falkowski, P. G., Fenchel T., Delong E. F., The Microbial Engines That Drive Earth's Biogeochemical Cycles, Science 320: 1034-1039 (2008)
Feingersch, R., Suzuki, M. T., Shmoish, M., Sharon, I., Sabehi, G., Partensky F., Béjà, O., Microbial community genomics in eastern Mediterranean Sea surface waters, ISME J 4: 78-87 (2010)
Fenchel, T., Marine Plankton Food Chains, Annual Review of Ecology and Systematics 19: 19-38 (1988)
Field, K. G., Gordon, D., Wright, T., Rappe, M., Urbach, E., Vergin, K., Giovannoni, S. J., Diversity and depth-specific distribution of SAR11 cluster rRNA genes from marine planktonic bacteria. Appl. Environ. Microbiol. 63: 63-70 (1997)
Fischera, J., Kappelmeyera, U., Kastnera, M., Schauerb, F., Heipieper, H. J., The degradation of bisphenol A by the newly isolated bacterium Cupriavidus basilensis JF1 can be enhanced by biostimulation with phenol, International Biodeterioration & Biodegradation 64: 324-330 (2010)
Frigaard, N. U., Martinez, A., Mincer, T. J., DeLong, E. F., Proteorhodopsin lateral gene transfer between marine planktonic Bacteria and Archaea, Nature 439: 847-850 (2006)
Fuhrman, J. A., Ammerman, J. W., Azam, A., Bacterioplankton in the coastal euphotic zone: distribution, activity and possible relationships with phytoplankton, Marine Biology 60: 201-207 (1980)
Fuhrman, J. A., Azam, F., Bacterioplankton Secondary Production Estimates for Coastal Waters of British Columbia, Antarctica, and California, Appl. Environ. Microbiol. 39: 1085-1095 (1980)
Fuhrman, J. A., Azam, F., Thymidine incorporation as a measure of heterotrophic bacterioplankton production in marine surface waters: evaluation and field results, Marine Biology 66: 109-120 (1982)
Fuhrman, J. A., Davis, A. A., Widespread Archaea and novel Bacteria from the deep sea as shown by 16S rRNA gene sequences, MEPS 150: 275-285 (1997)
Fuhrman, J. A., McCallum, K., Davis, A. A., Phylogenetic diversity of subsurface marine microbial communities from the Atlantic and Pacific Oceans, Appl. Environ. Microbiol. 59: 1294-1302 (1993)
Fuhrman, J. A., Steele, J. A., Hewson, I., Schwalbach, M. S., Brown, M. V., Green, J. L., Brown, J. H., A latitudinal diversity gradient in planktonic marine bacteria, Proc Natl Acad Sci USA 105: 7774-7778 (2008)
Galand, P. E., Potvin, M., Casamayor, E. O., Lovejoy, C., Hydrography shapes bacterial biogeography of the deep Arctic Ocean, ISME J 4: 564-576 (2010)
Galand, P. E., Casamayor, E. O., Kirchman, D. L., Potvin, M., Lovejoy, C., Unique archaeal assemblages in the Arctic Ocean unveiled by massively parallel tag sequencing, ISME J 3: 860-869 (2009a)
Galand, P. E., Lovejoy, C., Hamilton, A. K., Ingram, R. G., Pedneault, E., Carmack, E. C., Archaeal diversity and a gene for ammonia oxidation are coupled to oceanic circulation, Environ. Microbiol. 11: 971-980 (2009b)
Galand, P. E., Lovejoy, C., Pouliot, J., Vincent, W. F., Heterogeneous archaeal communities in the particle-rich environment of an arctic shelf ecosystem, Journal of Marine Systems 74: 774-782 (2008)
Gallagher, J. M., Carton, M. W., Eardly, D. F., Patching, J. W., Spatio-temporal variability and diversity of water column prokaryotic communities in the eastern North Atlantic, FEMS Microbiol Ecol. 47: 249-262 (2004)
García-Martínez, J., Rodríguez-Valera, F., Microdiversity of uncultured marine prokaryotes: the SAR11 cluster and the marine Archaea of Group I, Mol Ecol 9: 935-948 (2000)
Giovannoni, S. J., Rappé, M. S., Evolution, diversity, and molecular ecology of marine prokaryotes, In Microbial ecology of the oceans, ed. by Kirchmann, D. L., Wiley Series in Ecological and Applied Microbiology, pp. 47-84 (2000)
Giovannoni, S. J., Rappe, M. S., Vergin, K. L., Adair, N. L., 16S rRNA genes reveal stratified open ocean bacterioplankton populations related to the green non-sulfur bacteria, PNAS 93: 7979-7984 (1996)
Giovannoni, S. J., Stingl, U., Molecular diversity and ecology of microbial plankton, Nature 437: 343-348 (2005)
Giovannoni, S. J., Britschgi, T. B., Moyer, C. L., Field, K. G., Genetic diversity in Sargasso Sea bacterioplankton, Nature 345: 60-63 (1990)
Good, I. J., The population frequencies of species and the estimation of population parameters. Biometrika 40: 237-264 (1953)
Goris, J., De Vos, P., Coenye, T., Hoste, B., Janssens, D., Brim, H., Diels, L., Mergeay, M., Kersters, K., Vandamme, P., Classification of metal-resistant bacteria from industrial biotopes as Ralstonia campinensis sp. nov., Ralstonia metallidurans sp. nov. and Ralstonia basilensis Steinle et al., 1998 emend, Int. J. Syst. Evol. Microbiol. 51: 1773-1782 (2001)
Gram, L., Melchiorsen, J., Bruhn, J. B., Antibacterial activity of marine culturable bacteria collected from a global sampling of ocean surface waters and surface swabs of marine organisms, Mar. Biotechnol, in press. (DOI: 10.1007/s10126-009-9233-y)
Herndl, G. J., Reinthaler, T., Teira, E., Van Aken, H., Veth, C., Pernthaler, A., Pernthaler, J., Contribution of Archaea to Total Prokaryotic Production in the Deep Atlantic Ocean, Appl. Environ. Microbiol. 71: 2303-2309 (2005)
Higginson, M. J., Maxwell, J. R., Altabet, M. A., Nitrogen isotope and chlorine paleoproductivity records from the northern South China Sea: remote vs. local forcing of millennial- and orbital-scale variability, Marine Geology 201: 223-250 (2003)
Hobbie, J. E., Holm-Hansen, O., Packard, T. T., Pomeroy, L. R., Sheldon, R. W., Thomas, J. P., Wiebe, W. J., A study of the distribution and activity of microorganisms in ocean water, Limnol. Oceanogr. 17: 544-555 (1972)
Huber, J. A., Mark Welch, D. B., Morrison, H. G., Huse, S. M., Neal, P. R., Butterfield, D. A., Sogin, M. L., Microbial population structures in the deep marine biosphere, Science 318: 97-100 (2007)
Hughes-Martiny, J. B., Bohannan, B. J. M., Brown, J., Colwell, R., Fuhrman, J., Green, J., Horner-Devine, M., Kane, M., Krumins, J., Kuske, C., Morin, P., Naeem, S., Ovreas, L., Reysenbach, A., Smith, V., Staley, J., Microbial biogeography: putting microorganisms on the map, Nat Rev Microbiol 4: 102-112 (2006)
Hung, J. J., Wang S. M., Chen, Y. L., Biogeochemical controls on distributions and fluxes of dissolved and particulate organic carbon in the Northern South China Sea, Deep-Sea Res. II 54: 1486-1503 (2007)
Huse, S. M., Dethlefsen, L., Huber, J. A., Welch, D. M., Relman, D. A., Sogin, M. L., Exploring microbial diversity and taxonomy using SSU rRNA hypervariable tag sequencing, PLoS Genetics 4, e1000255 (2008)
Huse, S. M., Huber, J. A., Morrison, H. G., Sogin, M. L., Welch, D. M., Accuracy and quality of massively parallel DNA pyrosequencing, Genome Biol. 8, R143 (2007)
Ivars-Martínez, E., Martín-Cuadrado, A. B., D'Auria, G., Mira, A., Ferriera, S., Johnson, J., Friedman, R., Rodriguez-Valera, F., Comparative genomics of two ecotypes of the marine planktonic copiotroph Alteromonas macleodii suggests alternative lifestyles associated with different kinds of particulate organic matter, ISME J 2: 1194-1212 (2008)
Jarvie, T., Du, L., Knight, J., Shotgun sequencing and assembly of microbial genomes: comparing 454 and Sanger methods, Biochemica No. 4: 11-14 (2005)
Karner, M. B., DeLong, E. F., Karl, D. M., Archaeal dominance in the mesopelagic zone of the Pacific Ocean, Nature 409: 507-510 (2001)
Kato, Y., Asahara, M., Goto, K., Kasai, H., Yokota A., Methylobacterium persicinum sp. nov., Methylobacterium komagatae sp. nov., Methylobacterium brachiatum sp. nov., Methylobacterium tardum sp. nov. and Methylobacterium gregans sp. nov., isolated from freshwater, Int. J. Syst. Evol. Microbiol. 58, 1134-1141 (2008)
Kirchman, D. L., Cottrell, M. T., Lovejoy, C., The structure of bacterial communities in the western Arctic Ocean as revealed by pyrosequencing of 16S rRNA genes, Environ. Microbiol. 12: 1132-1143 (2010)
La Duc, M. T., Nicholson, W., Kern, R. Venkateswaran, K., Microbial characterization of the Mars Odyssey spacecraft and its encapsulation facility, Environ. Microbiol. 5: 977-985 (2003)
Lee Chen, Y. L., Chen, H. Y., Chung, C. W., Seasonal variability of coccolithophore abundance and assemblage in the northern South China Sea, Deep-Sea Res. II 54: 1617-1633 (2007)
Lee Chen, Y. L., Chen, H. Y., Karl, D. M., Takahashi, M., Nitrogen modulates phytoplankton growth in spring in the South China Sea, Continental Shelf Research 24: 527-541 (2004)
Lee, S. H., Fuhrman, J. A., Species composition shift of confined bacterioplankton studied at the level of community DNA, Mar. Ecol. Prog. Ser. 79: 195-201 (1991)
Liu, H., Chang, J., Tseng, C. M., Wen, L. S., Liu, K. K., Seasonal variability of picoplankton in the Northern South China Sea at the SEATS station, Deep-Sea Res. II 54: 1602-1616 (2007)
López-García, P., López-López, A., Moreira, D., Rodríguez-Valera, F., Diversity of free-living prokaryotes from a deep-sea site at the Antarctic Polar Front, FEMS Microbiol. Ecol. 36: 193-202 (2001a)
López-García, P., Moreira, D., López-López, A., Rodríguez-Valera, F., A novel haloarchaeal-related lineage is widely distributed in deep oceanic regions, Environ. Microbiol. 3: 72-78 (2001)
Lunder, T., Sørum, H., Holstad, G., Phenotypic and genotypic characterization of Vibrio viscosus sp. nov. and Vibrio wodanis sp. nov. isolated from Atrantic salmon (Salmo salar) with 'winter ulcer', Int. J. Syst. Bacteriol. 50: 427-450 (2000)
Ma, Y., Zeng, Y., Jiao, N., Shi, Y., Hong, N., Vertical distribution and phylogenetic composition of bacteria in the Eastern Tropical North Pacific Ocean, Microbiological Research 164: 624-633 (2009)
Madigan, M. T., Martinko, J. M., Dunlap, P. V., Clark, D. P., Brock Biology of Microorganisms 12/e (Pearson Prentice Hall, Inc., 2009)
Malmstrom, R. R., Straza, T. R. A., Cottrell, M. T., Kirchman, D. L., Diversity, abundance, and biomass production of bacterial groups in the western Arctic Ocean, Aquat. Microb. Ecol. 47: 45-55 (2007)
Man, D. L., Wang, W. W., Sabehi, G., Aravind, L., Post, A. F., Massana, R., Spudich, E. N., Spudich, J. L., Béjà, O., Diversification and spectral tuning in marine proteorhodopsins, EMBO J 22: 1725-1731 (2003)
Manter, D. K., Delgado, J. A., Holm, D. G., Stong, R. A., Pyrosequencing Reveals a Highly Diverse and Cultivar-Specific Bacterial Endophyte Community in Potato Roots, Microbial Ecology (the online version; doi: 10.1007/s00248-010-9658-x)
Margulies, M., Egholm, M., Altman, W. E., Attiya, S., Bader, J. S., et al., Genome sequencing in microfabricated high-density picolitre reactors, Nature 437: 376-380 (2005)
Martín-Cuadrado, A. B., López-Garcia, P., Alba, J. C., Moreira, D., Monticelli, L., Strittmatter, A., Gottschalk, G., Rodríguez-Valera, F., Metagenomics of the deep Mediterranean, a warm bathypelagic habitat, PLoS ONE 2: e914 (2007)
Martín-Cuadrado, A. B., Rodriguez-Valera, F., Moreira, D., Alba, J. C., Ivars-Martínez, E., Henn, M. R., Talla, E., López-García, P., Hindsight in the relative abundance, metabolic potential and genome dynamics of uncultivated marine archaea from comparative metagenomic analyses of bathypelagic plankton of different oceanic regions, ISME J 2: 865-886 (2008)
Massana, R., DeLong, E. F., Pedrós-Alió C., A Few Cosmopolitan Phylotypes Dominate Planktonic Archaeal Assemblages in Widely Different Oceanic Provinces, Appl. Environ. Microbiol. 66: 1777-1787 (2000)
Maszenan, A. M., Seviour, R. J., Patel, B. K. C., Rees, G. N., McDougall, B. M., Amaricoccus gen. nov., a gram-negative coccus occurring in regular packages and tetrads, isolated from activated sludge biomass, and descriptions of Amaricoccus veronensis sp. nov., Amaricoccus tamworthensis sp. nov., Amaricoccus macauensis sp. nov. and Amaricoccus kaplicensis sp. nov., Int J. Syst. Bacteriol. 47: 727-734 (1997)
McInerney, J. O., Mullarkey, M. M., Werneke, M. E., Powell, R., Phylogenetic analysis of group I marine archaeal rRNA sequences emphasizes the hidden diversity within the primary group Archaea, Proc. R. Soc. Lond. B 264: 1663-1669 (1997)
Methé, B. A., Nelson, K. E., Deming, J. W., Momen, B., Melamud, E., Zhang, X. et al., The psychrophilic lifestyle as revealed by the genome sequence of Colwellia psychrerythraea 34H through genomic and proteomic analyses, Proc Natl Acad Sci USA 102: 10913-10918 (2005)
Mincer, T. J., Church, M. J., Taylor, L. T., Preston, C. Karl D. M., DeLong, E. F., Quantitative distribution of presumptive archaeal and bacterial nitrifiers in Monterey Bay and the North Pacific Subtropical Gyre, Environ. Microbiol. 9: 1162-1175 (2007)
Mirdamadi, S., Rajabi, A., Khalilzadeh, P., Norozian, D., Isolation of bacteria able to metabolize high concentrations of formaldehyde, World J Microbiol Biotechnol 21: 1299-1301 (2005)
Moeseneder, M. M., Arrieta, J. M., Muyzer, G., Winter, C., Herndl, G. J., Optimization of Terminal-Restriction Fragment Length Polymorphism Analysis for Complex Marine Bacterioplankton Communities and Comparison with Denaturing Gradient Gel Electrophoresis, Appl. Environ. Microbiol. 65: 3518-3525 (1999)
Mullins, T. D, Britschgi, T. B, Krest, R. L, Giovannoni, S. J., Genetic comparisons reveal the same unknown bacterial lineages in Atlantic and Pacific bacterioplankton communities, Limnol. Oceanogr. 40: 148-158 (1995)
Muyzer, G., de Waal, E. C., Uitterlinden, A. G., Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA, Appl. Environ. Microbiol. 59: 695-700 (1993)
Nakamura, K., Ishida, H., Iizumi, T., Constitutive trichloroethylene degradation led by tac promoter chromosomally integrated upstream of phenol hydroxylase genes of Ralstonia sp. KN1 and its nucleotide sequence analysis, J. Biosci. Bioeng. 89: 47-54 (2000)
Nogi, Y., Kato, C., Horikoshi, K. Moritella japonica sp. nov., a novel barophilic bacterium isolated from a Japan Trench sediment, J. Gen. Appl. Microbiol. 44: 289-295 (1998)
Oh, H. M., Kwon, K. K., Kang, I., Kang, S. G., Lee, J. H., Kim, S. J., Cho, J. C., Complete Genome Sequence of 'Candidatus Puniceispirillum marinum' IMCC1322, a Representative of the SAR116 Clade in the Alphaproteobacteria, Journal of Bacteriology 192: 3240-3241 (2010)
Oostende, N. V., Vyverman, W., Harlay, J., De Bodt, C., Chou, L., Suykens, K., Borges, A. V., Piontek, J., Engel, A., Sabbe, K., Coccolithophore bloom dynamics shape bacterioplankton communities in the northern Bay of Biscay (The 12th internatonal symposium on microbial ecology (ISME 12), CAIRNS, AUSTRALIA, 17th-22nd AUGUST 2008)
Pace, N. R., A Molecular View of Microbial Diversity and the Biosphere, Science 276: 734-740 (1997)
Pham, V. D., Konstantinidis, K. T., Palden, T., DeLong, E. F., Phylogenetic analyses of ribosomal DNA-containing bacterioplankton genome fragments from a 4000 m vertical profile in the North Pacific Subtropical Gyre, Environ. Microbiol. 10: 2313-2330 (2008)
Pommier, T., Canbäck, B., Riemann, L., Boström, K. H., Simu, K., Lundberg, P., Tunlid, A., Hagström, Å., Global patterns of diversity and community structure in marine bacterioplankton, Mol Ecol 16: 867-880 (2007)
Qu, T., Mitsudera, H., Yamagata, T., Intrusion of the North Pacific waters into the South China Sea, Journal of Geophysical Research 105: 6415-6424 (2000)
Quince, C., Curtis, T. P., Sloan, W. T., The rational exploration of microbial diversity. ISME J 2: 997-1006 (2008)
Raguénès, G., Christen, R., Guezennec, J., Pignet, P., Barbier, G., Vibrio diabolicus sp. nov., a new polysaccharide-secreting organism isolated from a deep-sea hydrothermal vent polychaete annelid, Alvinella pompejana., Int. J. Syst. Bacteriol. 47: 989-995 (1997)
Ramp, S. R., Tang, T. Y., Duda, T. F., Lynch, J. F., Liu, A. K., Chiu, C. S., Bahr, F. L., Kim, H. R., Yang, Y. J., Internal solitons in the northeastern South China Sea Part I: sources and deep water propagation, IEEE J. Ocean. Eng. 29: 1157-1181 (2004)
Ravenschlag, K., Sahm, K., Pernthaler, J., Amann, R., High bacterial diversity in permanently cold marine sediments, Appl. Environ. Microbiol. 65: 3982-3989 (1999)
Roesch, L. F. W., Fulthorpe, R. R., Riva, A., Casella, G., Hadwin, A. K. M., Kent A. D., Daroub, S. H., Camargo, F. A. O., Farmerie, W. G., Triplett, E. W., Pyrosequencing enumerates and contrasts soil microbial diversity. ISME J 1: 283-290 (2007)
Roh, S. W., Kim, K. H., Nam, Y. D., Chang, H. W., Park E. J., Bae, J. W., Investigation of archaeal and bacterial diversity in fermented seafood using barcoded pyrosequencing, ISME J 4: 1-16 (2010)
Sabehi, G., Béjà, O., Suzuki, M. T., Preston, C. M., DeLong, E. F., Different SAR86 subgroups harbour divergent proteorhodopsins, Environ. Microbiol. 6: 903-910 (2004)
Sabehi, G., Massana, R., Bielawski, J. P., Rosenberg, M., Delong, E. F., Béjà, O. Novel proteorhodopsin variants from the Mediterranean and Red Seas, Environ. Microbiol. 5: 842-849 (2003)
Santelli, C. M., Orcutt, B. N., Banning, E., Bach, W., Moyer, C. L., Sogin, M. L., Staudigel, H., Edwards, K. J., Abundance and diversity of microbial life in ocean crust, Nature 453: 653-656 (2008)
Schauer, M., Balagué, V., Pedrós-Alió, C., Massana, R., Seasonal changes in the taxonomic composition of bacterioplankton in a coastal oligotrophic system, Aquat. Microb. Ecol. 31: 163-174 (2003)
Schauer, M., Balagué, V., Pedrós-Alió, C., Massana, R., Seasonal changes in the taxonomic composition of bacterioplankton in a coastal oligotrophic system, Aquat. Microb. Ecol. 31: 163-174 (2003)
Schauer, R., Bienhold, C., Ramette, A., Harder, J., Bacterial diversity and biogeography in deep-sea surface sediments of the South Atlantic Ocean, ISME J 4: 159-170 (2010)
Schloss, P. D., Handelsman, J., Introducing DOTUR, a computer program for defining operational taxonomic units and estimating species richness, Appl. Environ. Microbiol. 71: 1501-1506 (2005)
Schmidt, T. M., DeLong, E. F., Pace N. R., Analysis of a marine picoplankton community by 16S rRNA gene cloning and sequencing, J. Bacteriol. 173: 4371-4378 (1991)
Schuster, S. C., Miller, W., Ratan, A., Tomsho, L. P., Giardine, B., Kasson, L. R., Harris, R. S., Petersen, D. C., Zhao, F., Qi, J., Complete Khoisan and Bantu genomes from southern Africa, Nature 463: 943-947 (2010)
Schwalbach, M. S., Fuhrman, J. A., Wide-Ranging Abundances of Aerobic Anoxygenic Phototrophic Bacteria in the World Ocean Revealed by Epifluorescence Microscopy and Quantitative PCR, Limnol. Oceanogr. 50: 620-628 (2005)
Shiah, F. K., Liu, K. K., Tang, C. Y., The South East Asia Time-series Study (SEATS), US-JGOFS Newsletter: 8-9. (1999)
Sogin, M. L., Morrison, H. G., Huber, J. A., Welch, D. M., Huse, S. M., Neal, P. R., Arrieta, J. M.,Herndl, G. J., Microbial diversity in the deep sea and the underexplored 'rare biosphere', Proc. Natl. Acad. Sci. USA 103: 12115-12120 (2006)
Sorokin, D. Y., van Pelt, S., Tourova, T. P., Muyzer, G., Microbial isobutyronitrile utilization at haloalkaline conditions, Appl. Environ. Microbiol. 73: 5574-5579 (2007)
Stackebrandt, E., Goebel, B. M., Taxonomic note: a place for DNA–DNA reassociation and 16S rRNA sequence analysis in the present species definition in Bacteriology, Int. J. Syst. Bacteriol. 44: 846-849 (1994)
Strom, S. L., Microbial Ecology of Ocean Biogeochemistry: A Community Perspective, Science 320: 1043-1045 (2008)
Sverdrup, H. U., Johnson, M. W., and Fleming, R. H., The Oceans: their physics, chemistry and general biology (Prentice-Hall, Englewood Cliffs, New Jersey, 1942)
Tamura, K., Dudley, J., Nei, M., Kumar, S., MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0, Mol. Biol. Evol. 24: 1596-1599 (2007)
Thompson, F. L., Thompson, C. C., Li, Y., Gomez-Gil, B., Vandenberghe, J., Hoste, I. B., Swings, J., Vibrio kanaloae sp. nov., Vibrio pomeroyi sp. nov. and Vibrio chagasii sp. nov., from sea water and marine animals, Int. J. Syst. Evol. Microbiol. 53: 753-759 (2003)
Thompson, J. D., Higgins, D. G., Gibson, T. J., CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice, Nucl. Acids Res. 22: 4673-4680 (1994)
Tunsjø, H. S., Paulsen, S. M., Mikkelsen, H., L'Abée-Lund, T. M., Skjerve, E., Sørum, H., Adaptive response to environmental changes in the fish pathogen Moritella viscosa, Res Microbiol 158: 244-250 (2007)
Vandamme, P., and Coenye, T., Taxonomy of the genus Cupriavidus: a tale of lost and found, Int. J. Syst. Evol. Microbiol. 54: 2285-2289 (2004)
Venter, J. C., Remington, K., Heidelberg, J. F., Halpern, A. L., Rusch, D., Eisen, J. A., Wu, D., Paulsen, I., Nelson, K. E., Nelson, W., Fouts, D. E., Levy, S., Knap, A. H., Lomas, M. W., Nealson, K., White, O., Peterson, J., Hoffman, J., Parsons, R., Baden-Tillson, H., Pfannkoch, C., Rogers, Y. H., Smith, H. O., Environmental genome shotgun sequencing of the Sargasso Sea, Science 304: 66-74 (2004).
Wen, L. S., Jiann, K. T., Santschi, P. H., Physicochemical speciation of bioactive trace metals (Cd, Cu, Fe, Ni) in the oligotrophic South China Sea, Marine Chemistry 101: 104-129 (2006)
Whittaker, R. H., New concepts of kingdoms or organisms, Science 163: pp.150-160 (1969)
Wierckx, N., Koopman, F., Bandounas, L., de Winde, J. H., Ruijssenaars, H. J., Isolation and characterization of Cupriavidus basilensis HMF14 for biological removal of inhibitors from lignocellulosic hydrolysate, Microb Biotechnol 3: 336-343
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/10648-
dc.description.abstract原核微生物是海洋中數量最多的生物,這些海洋原核微生物具有非常高的初級和次級生產力,對海洋甚至整個地球的元素循環扮演著重要的角色,因此為了了解這些微生物在海洋中的生態角色,探討海洋微生物群集的結構、分布和多樣性是很重要的基礎研究之一。目前大多數海洋原核微生物群集的研究集中於溫帶或寒帶海域表水或某一深度的調查,對內部的海洋微生物分布卻所知不多。相對地,西太平洋熱帶海域的海洋微生物群集研究極為缺乏,更遑論內部微生物群集。本研究即針對熱帶海洋內部微生物群集進行調查,以期能增加對於熱帶海洋內部微生物了解。
我們利用高輸出定序技術(massively-parallel pyrosequencing)對南海北部的海洋菌相與多樣性作了垂直剖面的調查。從四個不同深度(10、 100、 1000、 3000公尺)的樣本中,獲得38,704條源自於細菌的核糖體小次單元之高度變異區的基因序列(the V6 hypervariable region of 16S rRNA gene)以及5,269條的古菌序列。經比較分析發現:(1)細菌群集多樣性遠高於過去用傳統方法所估計。(2)四個深度中,細菌皆高於古菌多樣性。(3)表水和中水層的菌相較深海的菌相複雜。
除群集多樣性的分析外,在細菌組成的分析結果指出α-proteobacteria和γ- proteobacteria是南海各水層佔有最高比例的兩種菌群,而Cyanobacteria則是在表水層佔較高比例。β-proteobacteria菌群則在10m和100m的水層中佔有較高的比例;相反地,δ-proteobacteria菌群則是在越深的水樣中佔有越高的比例。在古菌組成分析結果,發現Euryarchaeota在南海淺層10m到3000m共四個深度的水樣中都是古菌群集中的最優勢菌群,這和其他海域的深海以Crenarchaeota菌群為主不同。
在獨特序列(即相同序列集結為一獨立序列單位)間數目比較和親緣相關分析結果顯示,發現這些序列的比例多寡和深度有關。針對相對佔多數的序列進行親源關係的分析發現除了發現有些序列(種類)具有廣深性(在各個深度的水樣中都佔不少比例),也發現不少菌群有「依深度分群」的現象,例如四個分支的Oceanospirillales中,有兩個分支都是在3000m佔最高比例,其他三個深度都很少;另一支則屬於淺層序列的分支,以及第四分支的序列則在中間兩個水層(100m和1000m)的較多。另外Alteromonadales、Pseudomonadales、marine euryarchaeota group II 和 marine euryarchaeota group III的序列也都有「依深度分群」的現象,這些結果顯示在南海北部的原核生物分布具有生物地理區隔的特徵。
我們的結果是目前熱帶海域的微生物多樣性中最完整的研究資料,可對南海微生物群集在垂直分布及組成有更深入的了解。
zh_TW
dc.description.abstractProkaryotic microbes are the largest population in oceans; they are evidently responsible for the major primary and secondary productions and, as a result, play a key role in significant element cycles in marine ecosystems and even global. However, the ecology, such as composition, distribution and diversity, of these microbes are still mainly unknown. To date, most of the studies of the marine prokaryotic community are only focused on the surface water or a certain depth in the mesopelagic zone of the polar or temperate oceans. Hence, the goal of this study is to survey the composition and diversity of the stratified microbial assemblages in the interior of the western tropical Pacific Ocean. We anticipate to extending the current understanding for the marine community in tropical water through this study.
By adopting a massively-parallel pyrosequencing strategy, we performed analyses of the diversity and composition of planktonic microbial communities isolated from the northern South China Sea (SCS; 18°15' N, 115°30' E), from the ocean’s surface to near the sea bottom. Through examining 38,704 bacterial and 5,269 archaeal V6 amplicons of 16S ribosomal RNA genes, we observed several findings, including that (1) the bacterial diversity in northern SCS is greater than previous estimates based on conventional methods; (2) the bacterial community in the bathypelagic layer is less diverse than that in other three upper layers; (3) our data show the less diversity of the archaeal communities compared to the bacterial communities in four depths. In the composition analysis, our results show that the most abundant bacterial groups at four depths in the northern SCS are α- and γ- proteobacteria, while Cyanobacteria is mainly found from the sea surface. β-proteobacteria is more abundant in the euphotic zone than in the aphotic zone; in contrast to β-proteobacteria, the relative abundance of sequences from δ-proteobacteria increases with increasing depth in northern SCS. Moreover, we revealed unique assemblages of Archaea in the northern SCS, with Euryarchaeota dominating throughout the water column, which is contrast to most of previous studies reported that Crenarchaeota are more abundant than Euryarchaeota in the deep sea. Furthermore, our results of profiles of the unique sequences show the presences of depth-specific inhabiting groups. Through the phylogenetic analysis of the dominant unique sequences, we observed many eurybathyal sequences (i.e., those sequences were detected in four depths) and the depth-related subdivision in many groups. For example, at least four clades are found in the phylogenetic tree of Oceanospirillales V6 sequences, and sequences in two clades are represented at the highest frequencies in the greast depth; one is the mainly upper layers clade, while sequences in the other one clade are highly abundant in the middle two layers. The depth-related subdivision was observed in other groups, including Alteromonadales, Pseudomonadales, and the marine euryarchaeota groups II and III, indicating biogeographical traits for prokaryotic communities exist in the norther SCS.
Our work presents the most comprehensive examination of microbial diversity in the tropical ocean and provides a significant insight into the marine microbial community structures along the vertical profiles in the SCS.
en
dc.description.provenanceMade available in DSpace on 2021-05-20T21:46:41Z (GMT). No. of bitstreams: 1
ntu-99-R97241208-1.pdf: 2358243 bytes, checksum: 133f9061be14eed22b53c01bd1302542 (MD5)
Previous issue date: 2010
en
dc.description.tableofcontentsCONTENTS
口試委員會審定書 #
誌謝 i
中文摘要 ii
ABSTRACT iv
CONTENTS vi
LIST OF FIGURES viii
LIST OF TABLES x
Chapter 1 Introduction 1
1.1 A brief history 1
1.2 The importance of marine microbial diversity and community structures 2
1.3 Microbial composition surveys in the South China Sea 5
1.4 Massively-parallel pyrosequencing 9
1.5 Aim of this study 10
Chapter 2 Materials and Methods 12
2.1 Sample collecting, processing, and sequencing 12
2.1.1 Sample collection 12
2.1.2 DNA extraction 15
2.1.3 Microbe counting 15
2.1.4 Mutliplexing sample preparation: Amplification of the V6 region DNA of 16S ribosomal RNA genes 16
2.1.5 Massively-parallel pyrosequencing 19
2.2 Analysis of V6 sequence 21
2.2.1 Biodiversity analysis by using DOTUR 21
2.2.2 The taxonomic identification of V6 sequences 22
2.2.3 Profiles of the V6 unique sequences 22
2.2.4 Phylogenetic analysis of the V6 unique sequences 23
Chapter 3 Results and Discussion 24
3.1 Sampling information 24
3.1.1 The study area 24
3.1.2 Vertical profiles of CTD data, the T-S diagram, and oceanographic data 24
3.2 Direct cell counts 26
3.3 Analysis of V6 sequence 30
3.3.1 V6 sequencing information 30
3.3.2 Bacterial and archaeal diversity and rarefaction curves 31
3.3.3 Microbial community structures 39
3.3.4 Profiles of unique sequences 45
3.3.5 Phylogenetic analysis of the V6 unique sequences 51
Chapter 4 General discussion and conclusions 79
4.1 Diversity of the prokaryotes in the South China Sea 79
4.2 Depth-related distribution 80
4.3 Ambiguous taxonomically classified groups 84
4.4 Unique archaeal assemblages 85
4.5 Conclusions/significance 88
Chapter 5 Future work 91
REFERENCE 93
dc.language.isoen
dc.title南海北部不同深度的菌相與多樣性研究zh_TW
dc.titleThe diversity and compositions of stratified microbial assemblages in the interior of the northern South China Seaen
dc.typeThesis
dc.date.schoolyear98-2
dc.description.degree碩士
dc.contributor.coadvisor湯森林(Sen-Lin Tang)
dc.contributor.oralexamcommittee林立虹(Li-Hung Lin)
dc.subject.keyword南海,微生物群集,細菌,古菌,多樣性,zh_TW
dc.subject.keywordSouth China Sea,pyrosequencing,bacteria,archaea,community,diversity,en
dc.relation.page113
dc.rights.note同意授權(全球公開)
dc.date.accepted2010-08-05
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept海洋研究所zh_TW
顯示於系所單位:海洋研究所

文件中的檔案:
檔案 大小格式 
ntu-99-1.pdf2.3 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved