Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
    • Advisor
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 數學系
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/10630
Title: 星星森林的邊拉姆西數
Size Ramsey Numbers of Star Forests
Authors: Yen-Jen Cheng
鄭硯仁
Advisor: 張鎮華(Gerard Jennhwa Chang)
Keyword: 拉姆西,星星森林,
Ramsey,star forest,
Publication Year : 2010
Degree: 碩士
Abstract: 對於圖 G_1, G_2, ..., G_r和 F,如果當 F的邊被著上 1, 2, ..., r這些顏色時,總是存在 i使得著顏色 i的邊中包含圖 G_$的話,則記作 F -> (G_1, G_2, ..., G_r)。在所有滿足 F -> (G_1, G_2, ..., G_r)的 F中,所含邊數的最小值稱為邊拉姆西數,記作 r(G_1, G_2, ..., G_r)。
假設 G_1 = U_{i=1}^{m}{K_{1,a_i}},G_2 = U_{i=1}^{n}{K_{1, b_i}}且 a_1 >= a_2 >= ... >= a_m,b_1 >= b_2 >= ... >= b_n,令 l_s = max_{i+j=s+1}{(a_i+b_j-1)},Burr, Erdos, Faudree, Rousseau 和 Schelp [4]猜測 $r(G_1, G_2) = sum_{s=1}^{m+n-1}{l_s}。這篇論文的目的是研究這個猜想在 a_1,b_1以外的數都等於 1時的情形。
For graphs G_1, G_2, ..., G_r and F, we write F -> (G_1, G_2, ..., G_r)$ to mean that if the edges of
F are colored by 1, 2, ..., r then there exists some i such that the edges of color i contains a copy of G_i. The size Ramsey number r(G_1, G_2, ..., G_r) is the least number of edges of a graph F for which F -> (G_1, G_2, ..., G_r).
Suppose G_1 = U_{i=1}^{m}{K_{1,a_i}} with a_1 >= a_2 >= ... >= a_m and G_2 = U_{i=1}^{n}{K_{1, b_i}} with b_1 >= b_2 >= ... >= b_n. Let l_s = max_{i+j=s+1}{(a_i+b_j-1)}. Burr, Erdos, Faudree, Rousseau and Schelp [4] conjectured that
r(G_1, G_2) = sum_{s=1}^{m+n-1}{ell_s}. The purpose of this thesis is to study the conjecture for the case when a_i = b_j = 1 for 2 <= i <= m and $2 <= j <= n.
URI: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/10630
Fulltext Rights: 同意授權(全球公開)
Appears in Collections:數學系

Files in This Item:
File SizeFormat 
ntu-99-1.pdf761.79 kBAdobe PDFView/Open
Show full item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved