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Abstract

For graphs G1, G2, . . . , Gr and F , we write F → (G1, G2, . . . , Gr) to mean that

if the edges of F are colored by 1, 2, . . . , r then there exists some i such that the

edges of color i contains a copy of Gi. The size Ramsey number r̂(G1, G2, . . . , Gr)

is the least number of edges of a graph F for which F → (G1, G2, . . . , Gr).

Suppose G1 = ∪m
i=1K1,ai with a1 ≥ a2 ≥ . . . ≥ am and G2 = ∪n

i=1K1,bi with

b1 ≥ b2 ≥ . . . ≥ bn. Let !s = maxi+j=s+1 (ai + bj − 1). Burr, Erdős, Faudree,

Rousseau and Schelp [4] conjectured that r̂(G1, G2) =
∑m+n−1

s=1 !s. The purpose

of this thesis is to study the conjecture for the case when ai = bj = 1 for 2 ≤ i ≤ m

and 2 ≤ j ≤ n.
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1 Introduction

For graphs G1, G2, . . . , Gr and F , we write F → (G1, G2, . . . , Gr) to mean that if the

edges of F are colored by 1, 2, . . . , r then there exists some i such that the edges of color

i contains a copy of Gi. The classical Ramsey number R(G1, G2, . . . , Gr) is the least

number of vertices in a graph F for which F → (G1, G2, . . . , Gr). For the case when all

Gi are isomorphic, we write (G; r) as a short notation for (G1, G2, . . . , Gr).

In general, for any graph parameter ρ, the ρ-Ramsey number Rρ(G1, G2, . . . , Gr),

which was introduced by West [7], is the minimum value of ρ(F ) for a graph F with

F → (G1, G2, ..., Gr). This concept was introduced by Burr, Erdős and Lovász [12]. A

graph parameter ρ is monotone if ρ(G) ≤ ρ(H) for any two graphs G ⊆ H. It is easy

to see that if ρ is monotone, then so is Rρ.

In the literature, there are many studies in ρ-Ramsey numbers for various graph

parameters ρ. For instance, Folkman [10] proved that the clique Ramsey number

Rω(G,G) equals the clique number ω(G). Nešetřil and Rödl [13] extended the result to

Rω(G; r) = ω(G) for every r. Let Hom(G) denote the set of all homomorphism images

of G. For any set A of graphs, R(A) denotes the minimal number n such that for every

2-edge-coloring of Kn there exists a monochromatic subgraph isomorphic to one in A.

When the parameter is the chromatic number χ(G), Burr, Erdős and Lovász [6] showed

that Rχ(G,G) = R(Hom(G)). They proved that min{Rχ(G; r) : χ(G) = k} ≤ kr and

conjectured that min{Rχ(G; r) : χ(G) = k} = kr + 1. Zhu [16] proved the conjecture

for k ≤ 5 and s = 2. The conjecture remains open in general.

Erdős, Faudree, Rousseau and Schelp [9] were the first to consider the size Ramsey

number r̂(G1, G2, . . . , Gr), which is the least number of edges of a graph F for which

F → (G1, G2, . . . , Gr). Notice that r̂ = Rm, where m(G) is the number of edges of G.
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For more study on the size Ramsey number, please see [1, 2, 8, 14]. It is easy to see

that r̂(K1,a, K1,b) = a + b− 1 and r̂(mK2, nK2) = m + n− 1. More generally, for star

forests ∪m
i=1K1,ai with a1 ≥ a2 ≥ . . . ≥ am and ∪n

i=1K1,bi with b1 ≥ b2 ≥ . . . ≥ bn, let

!s = max
i+j=s+1

(ai + bj − 1)

for 1 ≤ s ≤ m+ n− 1. There is a famous conjecture about the size Ramsey number of

star forests by Burr, Erdős, Faudree, Rousseau and Schelp [4].

Conjecture 1. (Burr, Erdős, Faudree, Rousseau and Schelp [4])

r̂(∪m
i=1K1,ai ,∪n

i=1K1,bi) =
m+n−1∑

s=1

!s.

In the same paper, they confirmed the conjecture for a1 = a2 = . . . = am = a and

b1 = b2 = . . . = bn = b by proving that

r̂(mK1,a, nK1,b) = (m+ n− 1)(a+ b− 1).

Min [12] generalize the result to

r̂(n1K1,a1 , n2K1,a2 , . . . , nrK1,ar) =

(
r∑

i=1

ni − r + 1

)(
r∑

i=1

ai − r + 1

)
.

The purpose of this thesis is to study the conjecture for the case when ai = bj = 1

for 2 ≤ i ≤ m and 2 ≤ j ≤ n.

2 Main Result

In this thesis, we also write down the proofs for known results for completeness.

It’s easy to see the following proposition.
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Proposition 2. If F → (G1, G2) and H1 ⊆ G1, H2 ⊆ G2, then F → (H1, H2) and F

contains both G1 and G2.

We first notice that r̂(∪m
i=1K1,ai ,∪n

i=1K1,bi) ≤
∑m+n−1

s=1 !s, which gives the upper

bound in Conjecture 1.

For convenience, by a 2-edge-coloring of a graph F , we always mean a coloring of

the edges by red and blue. We then use (F )R and (F )B to denote the subgraph of F

induced by the set of red edges and the set of blue edges, respectively.

Theorem 3. ([5]) ∪m+n−1
s=1 K1,$s → (∪m

i=1K1,ai ,∪n
i=1K1,bi) and so r̂(∪m

i=1K1,ai ,∪n
i=1K1,bi) ≤

∑m+n−1
s=1 !s.

Proof. Let F = ∪m+n−1
s=1 K1,$s and consider any 2-edge-coloring of F . We claim that for

every t with 0 ≤ t ≤ m+n−1 there exist i and j with i+j = t such that in the subgraph

∪t
s=1K1,$s , (F )R contains a copy of ∪i

s=1K1,as and (F )B contains a copy of ∪j
s=1K1,bs . We

shall prove the claim by induction on t. The case of t = 0 is clear. Suppose the claim

holds for t. Since !t+1 = maxi′+j′=t+2 (ai′ + bj′ − 1) ≥ ai+1+ bj+1−1, we have K1,$t+1 →

(K1,ai+1 , K1,bj+1) and so there is a red K1,ai+1 or a blue K1,bj+1 in K1,$t+1 . Therefore, in

the subgraph ∪t+1
s=1K1,$s , either “(F )R contains a copy of ∪i+1

s=1K1,as and (F )B contains

a copy of ∪j
s=1K1,bs” or “(F )R contains a copy of ∪i

s=1K1,as and (F )B contains a copy

of ∪j+1
s=1K1,bs”. So the claim holds by induction. For the case of t = m + n− 1, by the

pigeonhole principle, i ≥ m or j ≥ n, which gives r̂(F ) → (∪m
i=1K1,ai ,∪n

i=1K1,bi).

It then follows that r̂(∪m
i=1K1,ai ,∪n

i=1K1,bi) ≤ m(F ) =
∑m+n−1

s=1 !s.

A graph F is (G,H)-minimal if F → (G,H) but F ′ ! (G,H) for every F ′ " F .

Proposition 4. The graph F = ∪m+n−1
s=1 K1,$s is (∪m

i=1K1,ai ,∪n
i=1K1,bi)-minimal.
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Proof. For any F ′ " F , let F ′ = ∪m+n−1
s=1 K1,$′s , where !

′
1 ≥ !′2 ≥ . . . ≥ !′m+n−1 ≥ 0. Since

m(F ′) < m(F ), there exists some s0 such that !′s0 < !s0 = ai+bj−1 with i+ j = s0+1.

For any s ≥ s0, we have !s ≤ (ai − 1) + (bj − 1) and so K1,$s ! (K1,ai , K1,bj). If

we color ∪i−1
s=1K1,$s red and ∪s0

s=iK1,$s blue. Every component of ∪m+n−1
s=s0 K1,$s contains

neitherK1,ai norK1,bj . So (F
′)R contains no ∪i

s=1K1,as and (F ′)B contains no ∪j
s=1K1,bs ,

F ′ ! (∪m
i=1K1,ai ,∪n

i=1K1,bi).

Proposition 4 tells us that if there is a counter example to the conjecture, then it

is not a subgraph of ∪m+n−1
s=1 K1,$s .

A proper k-edge-coloring is a coloring on edges with k colors so that incident edges

have different colors. The edge-chromatic number χ′(G) is the least k such that G has

a proper k-edge-coloring.

The following two famous theorems can be found in [15].

Theorem 5. (Vizing) ∆(G) ≤ χ′(G) ≤ ∆(G) + 1.

A k-factor of a graph G is a k-regular subgraph of G.

Theorem 6. (Peterson) IfG is 2k-regular, thenG can be decomposed into k 2-factors.

The following lemma is Theorem 1.3 in [11].

Lemma 7. Any connected graph G with ∆(G) ≤ k can be embedded into a k-regular

connected graph G′. When k is even and G is not k-regular, G can be embedded in

a connected graph G′ in which all vertices are of degree k except exactly two vertices

have odd degree less then k.

Proof. For odd k, let Hk be the graph constructed by adding a vertex x adjacent to

all vertices of one part in Kk−1,k−1 and adding a perfect matching on the other part.
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Then Hk has x with degree k − 1 and all other vertices with degree k. For even k, let

Hk be the graph constructed by adding a vertex x1 adjacent to all vertices in one part

of Kk−1,k−1 and another vertex x2 adjacent to all vertices in the other part. Then Hk

has exactly two vertex with degree k − 1 and all other vertices with degree k.

Add edges from vertices of degree less than k in G to distinct new vertices until

the degree of all vertices in G become k. If k is odd, for each new vertex we add a copy

of Hk and identify the new vertex with x in Hk. Then the resulting graph is k-regular.

If k is even, the number of new vertices must be even since the sum of degrees is even.

We can partition them into pairs of two vertices. For each pair we add a copy of Hk

and identify x1 and x2 with these two vertices. Then the resulting graph is k-regular.

For the second statement, we just discard the the final copy of Hk.

The following three lemmas consider lower bounds of the maximum degree for a

graph F such that F → (K1,a, K1,b).

Lemma 8. If F → (K1,a, K1,b), then ∆(F ) ≥ a+ b− 2.

Proof. Suppose to the contrary that ∆(F ) ≤ a + b − 3. By Vizing’s theorem, we may

properly color the edges of F by using colors 1, 2, . . . , a + b − 2. Recolor the edges

with colors 1, 2, . . . , a − 1 by red and the edges with colors a, a + 1, . . . , a + b − 2 by

blue. Then (F )R contains no K1,a and (F )B contains no K1,b. So F ! (K1,a, K1,b), a

contradiction.

Lemma 9. ([5]) If a and b are odd and F → (K1,a, K1,b), then ∆(F ) ≥ a+ b− 1.

Proof. Suppose to the contrary that∆(F ) ≤ a+b−2. By Lemma 7, F can be embedded

into an (a+ b− 2)-regular graph F ′. Since a+ b− 2 is even, by Peterson’s theorem, F ′
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can be decomposed into (a+ b− 2)/2 2-factors. Color (a− 1)/2 of these 2-factors red

and other (b − 1)/2 2-factors blue. Then (F ′)R is (a − 1)-regular and so contains no

K1,a, and (F ′)B is (b− 1)-regular and so contains no K1,b. Therefore, F ′ ! (K1,a, K1,b)

and then F ! (K1,a, K1,b), a contradiction.

Lemma 10. ([6]) If a is even and F → (K1,a, K1,a), then either ∆(F ) ≥ 2a − 1 or F

contains a (2a− 2)-regular odd component.

Proof. For every F → (K1,a, K1,a), there is a component C of F such that C →

(K1,a, K1,a), for otherwise we can color every component such that there is no monochro-

matic K1,a. So we may assume that F is connected. Suppose ∆(F ) ≤ 2a− 2 but F is

not a (2a− 2)-regular graph of odd order.

We first consider the case when F is (2a − 2)-regular and has an even number

of vertices. Then F has an eulerian tour with an even number of edges since (2a −

2)|V (F )|/2 is even. Color the edges of this eulerian tour alternately by red and blue.

This yields a 2-coloring of F for which both (F )R and (F )B are (a − 1)-regular. So

F ! (K1,a, K1,a).

Next, consider the case when F is not (2a − 2)-regular. By Lemma 7, F can be

embedded into a graph F ′, where ∆(F ′) = 2a − 2 and F ′ has exactly two vertices of

odd degree. There is an eulerian trail between these two odd vertices. Color the edges

of the eulerian trail alternately by red and blue. Then each of (F ′)R and (F ′)B has

maximum degree at most a− 1. So F ′ ! (K1,a, K1,a) and hance F ! (K1,a, K1,a).

In the rest of this section, we need the following notation. For a graph F , let F1 =

F . Having defined Fi, let vi be a vertex of degree di = ∆(Fi) in Fi and Fi+1 = Fi − vi.

6



Lemma 11. If F → (∪m
i=1K1,ai ,∪n

j=1K1,bj) and p+q = s+1, then Fs → (∪m
i=pK1,ai ,∪n

j=qK1,bj).

Proof. We shall prove the lemma by induction on s. For the case of s = 1, we have

p = q = 1 and so the lemma is clear. Suppose s ≥ 2 and the lemma holds for

s − 1. For p + q = s + 1, without loss of generality we may assume that p ≥ 2. As

(p− 1)+ q = (s− 1)+ 1, by the induction hypothesis, Fs−1 → (∪m
i=p−1K1,ai ,∪n

j=qK1,bj).

For every coloring of Fs, we color edges adjacent to vs−1 in Fs−1 by red. These give

a coloring of Fs−1. By the induction hypothesis, Fs−1 has a red ∪m
i=p−1K1,ai or a blue

∪n
j=qK1,bj . For the later case, the blue ∪n

j=qK1,bj is also in Fs. For the former case,

suppose vs−1 appears in the k-th component K1,ak in ∪m
i=q−1K1,ai . Then, Fs contains a

red (∪k−1
i=q−1K1,ai) ∪ (∪m

i=k+1K1,ai). Since each ai ≥ ai+1, (∪k−1
i=p−1K1,ai) ∪ (∪m

i=k+1K1,ai)

contains ∪m
i=pK1,ai . Hence, Fs → (∪m

i=pK1,ai ,∪n
j=qK1,bj). The lemma then follows from

induction.

For ∪m
i=1K1,ai with a1 ≥ a2 ≥ . . . ≥ am and ∪n

i=1K1,bi with b1 ≥ b2 ≥ . . . ≥ bn, let

ui,j =





ai + bj − 1, if ai and bj are odd, or one of ai and bj is 1;

ai + bj − 2, otherwise.

If F → (K1,ai , K1,bj), then ∆(F ) ≥ ui,j by Lemmas 8 and 9 and Proposition 2.

Lemma 12. If F → (∪m
i=1K1,ai ,∪n

j=1K1,bj), then m(F ) ≥
∑m+n−1

s=1 maxi+j=s+1 ui,j.

Proof. For all i and j with i + j = s + 1, we have Fs → (K1,ai , K1,bj) by Lemma 11

and Proposition 2 and so ds ≥ maxi+j=s+1 ui,j, which gives m(F ) ≥
∑m+n−1

s=1 ds ≥
∑m+n−1

s=1 maxi+j=s+1 ui,j.

Corollary 13. r̂(∪m
i=1K1,ai ,∪n

j=1K1,bj)) ≥
∑m+n−1

s=1 !s − (m+ n− 1).
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Proof. The corollary follows from Lemma 12 and that maxi+j=s+1 ui,j ≥ !s − 1.

Theorem 14. Conjecture 1 holds if either (1) all ai and bj are odd, or (2) all bj = 1.

Proof. For either case ui,j = ai + bj − 1 and so

m(F ) ≥
∑m+n−1

s=1 maxi+j=s+1 ui,j =
∑m+n−1

s=1 maxi+j=s+1(ai + bj − 1) =
∑m+n−1

s=1 !s,

which gives the lower bound of Conjecture 1.

In the rest of this section, we consider the case of G1 = ∪m
i=1K1,ai with ai = 1 for

2 ≤ i ≤ m and G2 = ∪n
j=1K1,bj with bj = 1 for 2 ≤ j ≤ n.

Proposition 15. Suppose a1 ≥ b1 and ai = bj = 1 for 2 ≤ i ≤ m and 2 ≤ j ≤ n.

(1) If m ≤ n, then
∑m+n−1

s=1 !s = na1 + b1 +m− 2.

(2) If m > n, then
∑m+n−1

s=1 !s = na1 + (m− n+ 1)b1 + n− 2.

Proof. If m ≤ n and a1 ≥ b1, then !1 = a1 + b1 − 1, !2 = !3 = . . . = !n = a1 and

!n+1 = !n+2 = . . . = !m+n−1 = 1, which gives
∑m+n−1

s=1 !s = (a1 + b1 − 1) + (n− 1)a1 +

(m− 1) = na1 + b1 +m− 2.

If m < n and a1 ≥ b1, then !1 = a1 + b1 − 1, !2 = !3 = . . . = !n = a1,

!n+1 = !n+2 = . . . = !m = b1 and !m+1 = !m+2 = . . . = !m+n−1 = 1, which gives
∑m+n−1

s=1 !s = (a1+b1−1)+(n−1)a1+(m−n)b1+(n−1) = na1+(m−n+1)b1+n−2.

Lemma 16. If Conjecture 1 is false for (∪m
i=1K1,ai ,∪n

j=1K1,bj) with m ≤ n, a1 ≥ b1,

ai = bj = 1 for 2 ≤ i ≤ m and 2 ≤ j ≤ n, then there exists F → (∪m
i=1K1,ai ,∪n

j=1K1,bj)

such that r̂ = (∪m
i=1K1,ai ,∪n

j=1K1,bj) = m(F ) =
∑m+n−1

s=1 !s − 1 and the following hold.

(1) d1 = a1 + b1 − 2 and di = a1 for 2 ≤ i ≤ n.
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(2) Fn = K1,a1 ∪ (m− 1)K2 and Fn+1 = (m− 1)K2.

(3) vi is not adjacent to vj for 2 ≤ i < j ≤ n.

(4) For 2 ≤ i ≤ n, N [vi] = {vi} ∪N(vi) is apart from Fn+1.

Proof. Choose a graph F → (∪m
i=1K1,ai ,∪n

j=1K1,bj) withm(F ) = r̂(∪m
i=1K1,ai ,∪n

j=1K1,bj).

Since u1,1 ≥ a1 + b1 − 2 and ui,j = ai + bj − 1 for (i, j) '= (1, 1), we have d1 ≥ !1 − 1 and

ds ≥ !s for s ≥ 2. Since Conjecture 1 is false, we have

∑m+n−1
s=1 !s > r̂(∪m

i=1K1,ai ,∪n
j=1K1,bj) = m(F ) ≥

∑m+n−1
s=1 ds ≥

∑m+n−1
s=1 !s − 1.

Therefore, r̂(∪m
i=1K1,ai ,∪n

j=1K1,bj) = m(F ) =
∑m+n−1

s=1 !s − 1. And, (1) also follows.

(2) By Lemma 11, Fn → (∪m
i=1K1,ai ,∪n

j=nK1,bj) = (K1,ai ∪ (m− 1)K2, K2). So Fn

contains K1,a1 ∪ (m − 1)K2. And by (1), m(Fn) =
∑m+n−1

s=n !s = a1 +m = m(K1,ai ∪

(m− 1)K2). Therefore, Fn = K1,a1 ∪K2. So (2) also follows.

(3) If vi is adjacent to vj, then dFi(vj) > dFj(vj) = a1, which is impossible as

di = ∆(Fi) ≥ dFi(vj).

(4) For any permutation of (2, 3, . . . , n), say (s2, s3, . . . , sn1), we can choose this as

a new sequence (v′2, v
′
3, . . . , v

′
n) = (vs2 , vs3 , . . . , vsn) and relate F ′

2 = F2, F ′
3, . . . , F

′
n, F

′
n+1 =

Fn+1. Since dF ′
i
(v′i) = ∆(F ′

i ), we have F
′
n = K1,a1 ∪ (m− 1)K2. So N [vsn ] is apart from

Fn+1. We can choose any vi as vsn , so every N [vi] is apart from Fn+1.

By Lemma 16 (3) and (4), we know that F2 is a bipartite graph.

Lemma 17. Suppose G is a bipartite graph with part sets X and Y . If ∆(G) = k ≥ 2

and all vertices in X have degree k except possibly one is of degree at least k− 1, then

there exist a matching M saturate X such that ∆(G−M) ≤ k − 1.
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Proof. We first claim that there is a matching M ′ saturate X by checking Hall’s con-

dition. For any vertex set I ⊆ X of size m, the degree sum of vertices in I is at least

km− 1. If |N(I)| < m, then there exists a vertex y in N(I) such that

dG(y) ≥ (km− 1)/(m− 1) ≥ (km− k)/(m− 1) > k,

a contradiction. So the claim holds. Let Y ′ = {y ∈ Y : dG(y) = k}. By using the

same argument to Y ′ and N(Y ′), there is a matching saturate Y ′. Using properties of

matroids, see Section 8.2 in [15], Y is an independent set in the transversal matroid

formed from the bipartite graph. This independent set can be extended to a basis

Y ′′, which has size equal to |X| = |M ′|. Let M be the matching between X and Y ′′

correspondent to Y ′′. Then M meets every vertex of degree k and so ∆(G − M) ≤

k − 1.

Theorem 18. Conjecture 1 holds for the case when m ≤ n and a1 ≥ b1, ai = bj = 1

for 2 ≤ i ≤ m and 2 ≤ j ≤ n.

Proof. Suppose to the contrary that Conjecture 1 is false for the specified conditions.

Choose graph F satisfying conditions in Lemma 16. So dF (v1) = a1 + b1 − 2 and

T = F2−Fn is a bipartite graph with partite sets X and Y , where X = {v2, v3, . . . , vn}.

Notice that dF2(v2) = dF2(v3) = . . . = dF2(vn) = a1.

Case 1: b1 ≥ 4. Since F2 is bipartite and ∆(F2) = a1, there is a proper edge

a1-coloring of F2, see Theorem 7.1.7 in [15]. Recolor the edges of colors 1, 2, . . . , a1 − 2

by red and edges of colors a1−1, a1 by blue. For edges adjacent to v1, color a1−1 edges

red and b1− 1 edges blue. Then ∆((F )R) < a1 and ∆((F )B) ≤ max{b1− 1, 3} < b1. So

F ! (∪m
i=1K1,ai ,∪n

j=1K1,bj).

Case 2: b1 = 3. ∆(F ) = a1 + b1 − 2 = a1 + 1. Every vertex of degree a1 + 1 are

pairwise adjacent since d2 = a1 < a1 + 1. There is at most 3 such vertices since F2
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is bipartite. Delete edges from v1 to other such vertex forms F ′. Then F ′ − Fn is a

bipartite graph satisfies the condition in Lemma 17. There is a matching M such that

∆(F ′−M) < a1. Color edges in M blue, edges in F ′−M red and remaining two edges

blue. Then ∆((F )R) < a1 and ∆((F )B) < 3.

Case 3: b1 = 2. ∆(F ) = a1 + b1 − 2 = a − 1, F − Fn is bipartite and satisfies

conditions in Lemma 16. The argument is similar to Case 2.

3 Structure of Ramsey graphs with minimum num-

ber of edges

It was proved in [4] that if F → (mK1,a, nK1,b) with minimum number of edges, then

every component of F is a triangle or a star. In general, this is not true.

For example, C5∪K2 → (K1,2∪K2, K1,2∪K2) and C7∪2K2 → (K1,2+∪2K2, K1,2∪

K2), each of them has a minimum number of edges.

Lemmas 20 and 21 below give some property of F with F → (K1,2 ∪ (m −

1)K2, K1,2 ∪ (n− 1)K2).

Lemma 19. If G′ ∪ F → (G′ ∪G1, G2), then F → (G1, G2).

Proof. Suppose to the contrary that F ! (G1, G2). Color the edges of F such that

(F )R contains no G1 and (F )B contains no G2. Then further color G′ red. This results

a coloring of G′ ∪ F which contains no red G′ ∪G1 or blue G2, a contradiction.
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Lemma 20. Suppose m ≤ n. If n ≥ 2, then C5 ∪ (n − 2)K1,2 ∪ (m − 1)K2 →

(K1,2 ∪ (m− 1)K2, K1,2 ∪ (n− 1)K2). If n ≥ 3, then C7 ∪ (n− 3)K1,2 ∪ (m− 1)K2 →

(K1,2 ∪ (m− 1)K2, K1,2 ∪ (n− 1)K2).

Proof. First, consider the case of m = n. For any 2-edge-coloring of C5 ∪ (n− 2)K1,2 ∪

(n−1)K2, there must be a monochromaticK1,2 in C5, say red. If there is a red K1,2∪K2

in C5, then for any coloring of the following (n− 2)K1,2 ∪ (n− 1)K2, red edges appear

in n−2 components (so there is a red K1,2∪ (n−1)K2 and we are done), or there are n

blue components, one of them is K1,2. So the blue subgraph contains K1,2 +(n− 1)K2.

If there is no red K1,2 ∪K2 in C5, then there is also a blue K1,2 in C5. In the remaining

2n−3 components, by the pigeonhole principle, there exists a monochromatic (n−1)K2,

and we are done.

For any 2-edge-coloring of C7∪(n−3)K1,2∪(n−1)K2, there must be a monochro-

matic K1,2 in C7, say red. If there is a red K1,2 ∪ 2K2 in C7, then the lemma fol-

lows the claim in the previous case. Otherwise there are both red and blue K1,2 and

they appear in consecutive edges in C7. Consider the graph with 2n − 1 components

formed by the union of the edge in C7 which dos not touch the two K1,2 and remain-

ing (n − 3)K1,2 ∪ (n − 1)K2. Then the lemma follows from the claim in the case

C5 ∪ (n− 2)K1,2 ∪ (n− 1)K2.

Let G′ = (n −m)K2. Then the result of the above case can be written as (C5 ∪

(n − 2)K1,2 ∪ (m − 1)K2) ∪ G′ → ((K1,2 ∪ (m − 1)K2) ∪ G′, K1,2 ∪ (n − 1)K2) and

(C7 ∪ (n− 3)K1,2 ∪ (m− 1)K2)∪G′ → ((K1,2 ∪ (m− 1)K2)∪G′, K1,2 ∪ (n− 1)K2). By

Lemma 19, C5 ∪ (n− 2)K1,2 ∪ (m− 1)K2 → (K1,2 ∪ (m− 1)K2, K1,2 ∪ (n− 1)K2) and

C7 ∪ (n− 3)K1,2 ∪ (m− 1)K2 → (K1,2 ∪ (m− 1)K2, K1,2 ∪ (n− 1)K2).
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Lemma 21. If F → (K1,2 ∪ (m− 1)K2, K1,2 ∪ (n− 1)K2) with a minimum number of

edges and ∆(F ) < 3, then the length of the maximum cycle of F ≤ 7.

Proof. Without lose of generality, we may assume that m ≤ n. By Lemma 10, there is

a component C of F which is a cycle with size 2t+ 3.

Case 1: t > n−1. Color a path with length 2n−1 blue in C and others red. Then

(F )B contains noK1,2+(n−1)K2 andm((F )R) = 3+2(n−1)+(m−1)−(2n−1) = m+1.

Since there is at least 4 red edges in C, which contains at most two components,

(F )R contains at most 2 + (m + 1 − 4) = m − 1 components and then contains no

K1,2 + (m− 1)K2.

Case 2: 2 < t ≤ n − 1. Let F ′ = F − C. Color C and edges adjacent to v′i red

for i ≤ n − t − 2 and all other edges blue. Then (F )R contains no K1,2 ∪ (n − 1)K2

since C contains at most t+1 component of K1,2∪ (n−1)K2. Therefore, (F )B contains

K1,2 ∪ (n − 1)K2. Since (F )B = F ′
n−t−1, ∆(F ′

i ) = 2 for 1 ≤ i ≤ n − t − 1 and then

m(F ′
n−t−1) = m(F )−m((F )R) = 3+2(n−1)+(m−1)− (2t+3)−2(n− t−2) = m+1.

So F ′
n−t−1 = K1,2+(m−1)K2. Label the edges of C clockwise by 1, 2, . . . , 2t+3. Color

1, 4, 7 in C and F ′
n−t = Fn+1 = (m− 1)K2 red and others blue. Then (F )R contains no

K1,2 and the number of components of (F )B is at most t(in C)+(n − t − 1) = n − 1.

So (F )B contains no K1,2 ∪ (n− 1)K2.

We close the thesis by posting two problems.

Problem 22. Is the diameter of a minimum graph bounded?

Problem 23. When is the minimum graph unique?
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