Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 資訊工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/10421
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor林智仁
dc.contributor.authorTian-Liang Huangen
dc.contributor.author黃天亮zh_TW
dc.date.accessioned2021-05-20T21:28:13Z-
dc.date.available2010-08-20
dc.date.available2021-05-20T21:28:13Z-
dc.date.copyright2010-08-20
dc.date.issued2010
dc.date.submitted2010-08-19
dc.identifier.citationA. L. Berger, V. J. Della Pietra, and S. A. Della Pietra. A maximum entropy
approach to natural language processing. Computational Linguistics, 22(1):39–
71, 1996.
B. E. Boser, I. Guyon, and V. Vapnik. A training algorithm for optimal mar-
gin classifiers. In Proceedings of the Fifth Annual Workshop on Computational
Learning Theory, pages 144–152. ACM Press, 1992.
L. Bottou, C. Cortes, J. Denker, H. Drucker, I. Guyon, L. Jackel, Y. LeCun,
U. Muller, E. Sackinger, P. Simard, and V. Vapnik. Comparison of classifier meth-
ods: a case study in handwriting digit recognition. In International Conference
on Pattern Recognition, pages 77–87. IEEE Computer Society Press, 1994.
K.-W. Chang, C.-J. Hsieh, and C.-J. Lin. Coordinate descent method for large-
scale L2-loss linear SVM. Journal of Machine Learning Research, 9:1369–1398,
2008. URL http://www.csie.ntu.edu.tw/~cjlin/papers/cdl2.pdf.
C. Cortes and V. Vapnik. Support-vector network. Machine Learning, 20:273–
297, 1995.
K. Crammer and Y. Singer. On the learnability and design of output codes for
multiclass problems. In Computational Learing Theory, pages 35–46, 2000.
R.-E. Fan, K.-W. Chang, C.-J. Hsieh, X.-R. Wang, and C.-J. Lin. LIB-
LINEAR: A library for large linear classification. Journal of Machine Learn-
ing Research, 9:1871–1874, 2008. URL http://www.csie.ntu.edu.tw/~cjlin/
papers/liblinear.pdf.
C.-J. Hsieh, K.-W. Chang, C.-J. Lin, S. S. Keerthi, and S. Sundararajan. A
dual coordinate descent method for large-scale linear SVM. In Proceedings of the
Twenty Fifth International Conference on Machine Learning (ICML), 2008. URL
http://www.csie.ntu.edu.tw/~cjlin/papers/cddual.pdf.
C.-W. Hsu and C.-J. Lin. A comparison of methods for multi-class support vector
machines. IEEE Transactions on Neural Networks, 13(2):415–425, 2002.
F.-L. Huang, C.-J. Hsieh, K.-W. Chang, and C.-J. Lin. Iterative scaling and
coordinate descent methods for maximum entropy. In Proceedings of the 47th
Annual Meeting of the Association of Computational Linguistics (ACL), 2009.
Short paper.
T. Joachims. Training linear SVMs in linear time. In Proceedings of the 12th ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining,
2006.
D. Jurafsky and J. H. Martin. Speech and Language Processing: An Introduction
to Natural Language Processing, Computational Linguistics and Speech Recogni-
tion. Prentice Hall, second edition, 2008.
S. S. Keerthi, S. Sundararajan, K.-W. Chang, C.-J. Hsieh, and C.-J. Lin. A
sequential dual method for large scale multi-class linear SVMs. In Proceedings of
the 14th ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining, 2008. URL http://www.csie.ntu.edu.tw/~cjlin/papers/sdm_
kdd.pdf.
S. Knerr, L. Personnaz, and G. Dreyfus. Single-layer learning revisited: a stepwise
procedure for building and training a neural network. In J. Fogelman, editor, Neu-
rocomputing: Algorithms, Architectures and Applications. Springer-Verlag, 1990.
C.-J. Lin, R. C. Weng, and S. S. Keerthi. Trust region Newton method for large-
scale logistic regression. Journal of Machine Learning Research, 9:627–650, 2008.
URL http://www.csie.ntu.edu.tw/~cjlin/papers/logistic.pdf.
E. Mayoraz and E. Alpaydin. Support vector machines for multi-class classifica-
tion. In IWANN (2), pages 833–842, 1999. URL http://citeseer.nj.nec.com/
mayoraz98support.html.
R. Memisevic. Dual optimization of conditional probability models. Technical
report, Department of Computer Science, University of Toronto, 2006.
R. Rifkin and A. Klautau. In defense of one-vs-all classification. Journal of
Machine Learning Research, 5:101–141, 2004. ISSN 1533-7928.
S. Shalev-Shwartz, Y. Singer, and N. Srebro. Pegasos: primal estimated sub-
gradient solver for SVM. In Proceedings of the Twenty Fourth International Con-
ference on Machine Learning (ICML), 2007.
J. Weston and C. Watkins. Multi-class support vector machines. Technical Report
CSD-TR-98-04, Royal Holloway, 1998.
H.-F. Yu, F.-L. Huang, and C.-J. Lin. Dual coordinate descent methods for
logistic regression and maximum entropy models. Technical report, Depart-
ment of Computer Science, National Taiwan University, March 2010. URL
http://www.csie.ntu.edu.tw/~cjlin/papers/maxent_dual.pdf.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/10421-
dc.description.abstractThe classification problem appears in many applications such as document classification and web page search. Support vector machine(SVM) is one of the most popular tools used in classification task. One of the component in SVM is the kernel trick. We use kernels to map data into a higher dimentional space. And this technique is applied in non-linear SVMs. For large-scale sparce data, we use the linear kernel to deal with it. We call such SVM as the linear SVM. There are many kinds of SVMs in which different loss functions are applied. We call these SVMs as L1-SVM and L2-SVM in which L1-loss and L2-loss functions are used respectively. We can also apply SVMs to deal with multi-class classification with one-against-one or one-against-all approaches. In this thesis several models such as logistic regression, L1-SVM, L2-SVM, Crammer and Singer, and maximum entropy will be compared in the multi-class classification task.en
dc.description.provenanceMade available in DSpace on 2021-05-20T21:28:13Z (GMT). No. of bitstreams: 1
ntu-99-R97922002-1.pdf: 1686282 bytes, checksum: 5661b069fab83159f4cf312aa1d6b8e5 (MD5)
Previous issue date: 2010
en
dc.description.tableofcontents口試委員會審定書...........................................i
中文摘要..................................................ii
Abstract.................................................iii
List of tables............................................iv
CHAPTER
I. Introduction..........................................1
II. Models................................................4
2.1 Support Vector Machine................................4
2.2 Crammer and Singer....................................6
2.3 Maximum entropy (ME)..................................7
III. Methods...............................................9
3.1 Trust Region Newton Method (TRON).....................9
3.1.1 Logistic Regression (LR)..........................10
3.1.2 L2-loss Support Vector Machine (L2-SVM)...........11
3.2 Coordinate Descent...................................11
3.2.1 Support Vector Machine Dual with L1-loss and L2-loss
..12
3.2.2 Crammer and Singer................................13
3.2.3 Maximum entropy (ME)..............................14
I.V. Feature of Different Schemes.........................17
V. Experiment...........................................20
5.1 Data Sets...........................................20
5.2 Setting.............................................21
5.3 Comparison..........................................22
V.I. Discussion and Conclusion............................27
BIBLIOGRAPHY..............................................29
dc.language.isoen
dc.title二階正規化多標籤線性分類器比較zh_TW
dc.titleComparison of L2-Regularized Multi-Class Linear Classifiersen
dc.typeThesis
dc.date.schoolyear98-2
dc.description.degree碩士
dc.contributor.oralexamcommittee林軒田,鮑興國
dc.subject.keyword線性分類模型,線性支持向量機,多標籤分類,最大熵方法,座標下降法,zh_TW
dc.subject.keywordlinear classification,linear support vector machines,multi-class classification,maximum entropy,coordinate descent,en
dc.relation.page30
dc.rights.note同意授權(全球公開)
dc.date.accepted2010-08-19
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept資訊工程學研究所zh_TW
顯示於系所單位:資訊工程學系

文件中的檔案:
檔案 大小格式 
ntu-99-1.pdf1.65 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved