請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/10388完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 張帆人(Fan-Ren Chang) | |
| dc.contributor.author | Ying-Hsiu Chung | en |
| dc.contributor.author | 鍾潁秀 | zh_TW |
| dc.date.accessioned | 2021-05-20T21:25:37Z | - |
| dc.date.available | 2010-08-20 | |
| dc.date.available | 2021-05-20T21:25:37Z | - |
| dc.date.copyright | 2010-08-20 | |
| dc.date.issued | 2010 | |
| dc.date.submitted | 2010-08-19 | |
| dc.identifier.citation | [1] M. A. Abidi and T. Chandra, “Pose Estimation for Camera Calibration and
Landmark Tracking” Proc. Int’l Conf. Robotics and Automation, Vol. 1 pp.420-426, 1990 [2] T. J. Broida, S. Changrashekiiar and R. Chellappa ,“Recursive 3-D Motion Estimation from a Monocular Image Sequence” IEEE Transaction on Aerospace and Electronic Systems Vol. 26, NO. 4, 1990 [3] Homer H. Chen, “A Screw Motion Approach to Uniqueness Analysis of Head-Eye Geometry” Proc. of the IEEE Conf. on Comp. Vision and Pattern Recognition. Los Alamitos, CA: IEEE, pp. 145-151, 1991 [4] Jack C. K. Chou, “Quaternion Kinematic and Dynamic Differential Equations” IEEE Transaction of Robotics and Automation, Vol. 8, NO. 1, 1992 [5] Konstantinos Daniilidis, “Hand-Eye Calibration Using Dual Quaternion” The International Journal of Robotics Research, 1999 [6] Arthur Gelb, Joseph F. Kasper, Jr., Raymond A. Nash, Jr., Charles F. Price, Arthur A. Sutherland, Jr., “Applied Optimal Estimation” The M. I. T. Press. 1974 [7] James Samuel Goddard, Jr. “Pose and Motion from Vision Using Dual Quaternion-Based Extended Kalman Filtering” Ph. D. Thesis, the University of Tennessee at Knoxville, 1997 [8] You-Liang Gu and J. Y. S. Lu, “Dual-Number Transformation and Its Applications to Robotics” IEEE Journal of Robotics and Automation, Vol. RA-3, NO. 6, 1987 [9] R. E. Kalman, “A New Approach to Linear Filtering Prediction Problems” Transaction of the ASME Journal of Basic Engineering 82 Series D, pp. 35-45 , 1960 [10] Chien-Ping Lu, “Fast and Globally Convergent Pose Estimation from Video Image” IEEE Transaction on Pattern Analysis and Machine Intelligence, Vol. 22, NO.6, 2000 [11] Tomas Olsson, Johan Bengtsson, Anders Robertsson and Rolf Johansson, “Visual Position Tracking using Dual Quaternions with Hand-Eye Motion Constraints” Proceedings of 2003 IEEE International Conference on Robotics & Automation, 2003 [12] Long Quan and Zhongdan Lan, “Linear N-Point Camera Pose Determination” IEEE Transaction on Pattern Analysis and Machine Intelligence, Vol. 21, NO.8, 1999 [13] Henrik Rehbinder, “Pose Estimation Using Line-Based Dynamic Vision and Inertial Sensors” IEEE Transaction on Automatic Control, Vol. 48, NO2, 2003 [14] Malcolm D. Shuster, “A Survey of Attitude Representations” The Journal of Astronautical Sciences. Vol. 41, NO.4, 429-517, 1993 [15] G. R. Veldkamp, “On the Use of Dual Numbers, Vector and Matrices in Instantaneous, Spatial Kinematics” Mechanism and Machine Theory, Vol. 11, pp. 141-156, 1975 [16] Michael W. Walker, Lejun Shao and Richard A. Volz, “Estimation 3-D Location Parameters Using Dual Number Quaternions” CVGIP: Image Understanding Vol. 54, NO.3, pp. 358-367, 1991 [17] Jiang Wang and William J. Wilson, “3D Relative Position and Orientation Estimation Using Kalman Filter for Robot Control” Proceedings of the 1992 IEEE Internal Conference on Robotics and Automation, 1992 [18] Yuanxin Wu, Xiaopin Hu, Dewen Hu, Tao Li and Junxiang Lian, “Strapdown Inertial Navigation System Algorithms Based on Dual Quaternions” IEEE Transactions on Aerospace and Electronic Systems, Vol. 41, NO. 1, 2005 [19] Joseph S,-C. Yuang, “A General Photometric Method for Determining Object Position and Orientation” IEEE Journal of Robotics and Automation, Vol. 5, NO. 2, 1989 [20] 姜義德, “整合GPS載波相位及陀螺儀量測應用於姿態判定” 國立臺灣大學博 士論文, 2002 [21] 黃博彥, “應用雙四元數同時估測轉動與移動” 國立臺灣大學碩士論文, 2007 [22] 林楊興, “應用雙四元數進行相對定位的估測” 國立臺灣大學碩士論文, 2009 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/10388 | - |
| dc.description.abstract | 在機器人學、攝影測量、電腦視覺中,利用相機、攝影機等所提供的影像判斷物體的位置與姿態是很重要的課題。此問題可以被描述成尋找附體座標系與相機座標系兩者相對的位移(translation)與轉動(rotation)。其中位移即代表物體位置(position),轉動則代表物體姿態(attitude)。
使用雙四元數(dual quaernion)同時表示兩座標系相對的位移與轉動是方便且有效的。利用空間中的直線在附體座標系的資訊以及相片上這些線的影像並且結合延伸型卡爾曼濾波器(Extended Kalman Filter)可以估測到表示物體位置與姿態的雙四元數。然而延伸型卡爾曼濾波器會無法完全滿足雙四元數本身的限制條件(constraints),並可能因此影響解的正確性與收斂性。另外,以往利用雙四元數求解過程中,仍然將位移與轉動分開處理,因而損失了雙四元數求解的一致性。 本文設計兩個動態系統:主系統(nominal system)與修正系統(correction system)。主系統代表待估測的狀態,包含表示位置與姿態的雙四元數等;修正系統則定義為主系統的估測值與實際值的差異。使用卡爾曼濾波器估測修正系統,再利用這些估測值修正主系統,由此得到的主系統估計值將符合限制條件,從而減少得到錯誤解的機會。此外我們使用雙四元數的微分方程求解,保留了雙四元數同時表示位移與轉動的特性。 最後提出程式模擬以及拍照實驗。模擬結果驗證此濾波器不僅成功估測到物體位置及姿態,也符合雙四元數的限制條件。而拍照實驗顯示:我們設計的濾波器在實際應用上是可行的。 | zh_TW |
| dc.description.abstract | In this thesis, we propose a method to determine the 3-dimentional (3D) position and orientation (pose) of a moving object from image sequence. This problem, which is important in robotics, photometric, computer vision etc, is formulated as finding the translation and the rotation between body frame and camera frame.
We use dual quaternion to represent this coordinate transformation and apply Kalman filter to estimate corresponding translation, rotation, velocity and angular velocity. Because of the constraints of the dual quaternion, we cannot use extend Kalman filter to estimate the parameters successfully, so that we use constrained Kalman filter instead. In the derivation of constrained Kalman filter, dual quaternion kinematics equation is applied to establish a nominal system whose state includes parameters of pose and motion. Besides, we establish a correction system which is defined as the estimation error of the nominal system and apply it to Kalman filter. Then we use the filtered estimation to correct the estimation of nominal system and make the state fit its constraints. Both simulation and experiments results show that our method estimates the pose, velocity and angular velocity successfully. Moreover, the experiments present the filtering method can be applied in the real world. | en |
| dc.description.provenance | Made available in DSpace on 2021-05-20T21:25:37Z (GMT). No. of bitstreams: 1 ntu-99-R97921043-1.pdf: 3689628 bytes, checksum: 57fe3356d44bd46526a840d5f0ffbda5 (MD5) Previous issue date: 2010 | en |
| dc.description.tableofcontents | 摘要 i
Abstract iii 致謝 v 目錄 vii 圖目錄 ix 表目錄 xi 第一章 緒論 1 1.1 研究背景 1 1.2 各章概述 2 1.3 符號介紹 3 第二章 背景知識 6 2.1 座標系 6 2.2 正交轉換與四元數 7 2.2.1 座標系的正交轉換 7 2.2.2 歐拉公式 8 2.2.3 四元數性質 9 2.2.4 使用四元數旋轉 11 2.2.5 四元數微分方程 12 2.3 雙四元數 13 2.3.1 空間中的座標轉換 13 2.3.2 查理定律 14 2.3.3 雙數 15 2.3.4 雙向量 16 2.3.5 雙四元數性質 17 2.3.6以雙四元數進行座標轉移 18 2.3.7 雙四元數微分方程 19 2.4慣性座標系與附體座標系 20 2.5 卡爾曼濾波器 22 2.5.1線性卡爾曼濾波器 22 2.5.2 延伸型卡爾曼濾波器 25 第三章 濾波器設計 27 3.1 主系統狀態方程式 27 3.2 量測模型 29 3.3 修正系統狀態方程式 31 3.4 利用修正系統修正主系統 35 3.5 濾波流程 41 3.6 模擬結果與分析 44 3.6.1 模擬環境 44 3.6.2 模擬結果 47 第四章 實驗 54 4.1實驗方法 54 4.2 實驗環境與實驗結果 56 4.2.1實驗環境 56 4.2.2位移 58 4.2.3 姿態 69 4.3 實驗結果分析 78 第五章 結論與未來展望 79 5.1 結論 79 5.2 未來展望 79 參考文獻 81 | |
| dc.language.iso | zh-TW | |
| dc.title | 以限制型卡爾曼濾波器估測位置與姿態 | zh_TW |
| dc.title | Pose Estimation by Constrained Kalman Filter | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 98-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.coadvisor | 姜義德(Yi-Te Chiang) | |
| dc.contributor.oralexamcommittee | 王立昇(Li-Sheng Wang),王文俊(Wen-June Wang),洪柏智(Po Chih Hung) | |
| dc.subject.keyword | 姿態判定,雙四元數,卡爾曼濾波器,限制條件, | zh_TW |
| dc.subject.keyword | Pose estimation,dual quaternion,Kalman filter,Constraint., | en |
| dc.relation.page | 83 | |
| dc.rights.note | 同意授權(全球公開) | |
| dc.date.accepted | 2010-08-19 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 電機工程學研究所 | zh_TW |
| 顯示於系所單位: | 電機工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-99-1.pdf | 3.6 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
