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摘要 

    在機器人學、攝影測量、電腦視覺中，利用相機、攝影機等所提供的影像判

斷物體的位置與姿態是很重要的課題。此問題可以被描述成尋找附體座標系與相

機座標系兩者相對的位移(translation)與轉動(rotation)。其中位移即代表物體位置

(position)，轉動則代表物體姿態(attitude)。 

 使用雙四元數(dual quaernion)同時表示兩座標系相對的位移與轉動是方便且

有效的。利用空間中的直線在附體座標系的資訊以及相片上這些線的影像並且結

合延伸型卡爾曼濾波器(Extended Kalman Filter)可以估測到表示物體位置與姿態的

雙四元數。然而延伸型卡爾曼濾波器會無法完全滿足雙四元數本身的限制條件

(constraints)，並可能因此影響解的正確性與收斂性。另外，以往利用雙四元數求

解過程中，仍然將位移與轉動分開處理，因而損失了雙四元數求解的一致性。 

    本文設計兩個動態系統：主系統(nominal system)與修正系統(correction system)。

主系統代表待估測的狀態，包含表示位置與姿態的雙四元數等；修正系統則定義

為主系統的估測值與實際值的差異。使用卡爾曼濾波器估測修正系統，再利用這

些估測值修正主系統，由此得到的主系統估計值將符合限制條件，從而減少得到

錯誤解的機會。此外我們使用雙四元數的微分方程求解，保留了雙四元數同時表

示位移與轉動的特性。 

    最後提出程式模擬以及拍照實驗。模擬結果驗證此濾波器不僅成功估測到物

體位置及姿態，也符合雙四元數的限制條件。而拍照實驗顯示：我們設計的濾波

器在實際應用上是可行的。 

 

關鍵詞:姿態判定、雙四元數、卡爾曼濾波器、限制條件 
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Abstract 

In this thesis, we propose a method to determine the 3-dimentional (3D) position 

and orientation (pose) of a moving object from image sequence. This problem, which is 

important in robotics, photometric, computer vision etc, is formulated as finding the 

translation and the rotation between body frame and camera frame. 

We use dual quaternion to represent this coordinate transformation and apply 

Kalman filter to estimate corresponding translation, rotation, velocity and angular 

velocity. Because of the constraints of the dual quaternion, we cannot use extend 

Kalman filter to estimate the parameters successfully, so that we use constrained 

Kalman filter instead. In the derivation of constrained Kalman filter, dual quaternion 

kinematics equation is applied to establish a nominal system whose state includes 

parameters of pose and motion. Besides, we establish a correction system which is 

defined as the estimation error of the nominal system and apply it to Kalman filter. Then 

we use the filtered estimation to correct the estimation of nominal system and make the 

state fit its constraints. 

 Both simulation and experiments results show that our method estimates the pose, 

velocity and angular velocity successfully. Moreover, the experiments present the 

filtering method can be applied in the real world. 

Key words: Pose estimation, dual quaternion, Kalman filter, Constraint. 
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第一章 緒論 

1.1 研究背景 

    利用相機得知物體的位置，姿態等等是很重要的課題，廣泛運用在攝影測量

學、機器人視覺等等。以數學的觀點來看，此問題可以被描述兩座標系，一是附

體座標系，一是相機座標系，以知某些特徵觀察點(feature point)或特徵觀察線

(feature line)在附體座標系上的表示以及這些點、線在平面上的投影，進而求得相

機座標系以及附體座標系彼此的轉移關係(圖 1.1)。在此以簡化過後的相機模型，

針孔相機模型建構出相機座標系以及投影面以方便求解。 

    最早的方法是猜測一個估計值並且使用牛頓─拉森疊代法(Newton-Raphson 

method)得到正確解[19]。隨著時間的推移，各種方法逐漸被提出來。有利用兩個

特徵觀察點在鏡面上的位置差異，並且使用餘弦定理求解[12]；也有利用投影中心

與投影點所型成的四面體求解[1]；利用點在空間中的誤差與投影點之間的誤差幾

何關係求解[10]；使用特徵觀察線投影結合物體內部感測器求解[13]；以及使用卡

爾曼濾波器[9]遞迴估測求解[2][7][11][17]。早期採用特徵觀察點的投影做為量測資

訊並由此建構延伸型卡爾曼濾波器[2][17]。另一方面，使用雙四元的相關論文也被

提出來[5][16][21][22]。雙四元數的好處在於，以線的變換為基礎描述座標系之間

的轉移，並且同時處理轉動與位移。此法比起早期使用點的基礎，將轉動以四元

數或旋轉矩陣，位移以位移向量表示有效率。Goddard 則開創了結合了雙四元數以

及延伸型卡爾曼濾波器的先河[7]，之後也有了相關的研究[11]。 

1 

* * 0′ ′⊗ + ⊗ =q q q q

    然而使用雙四元數進行座標轉換有兩個限制條件，分別是 以 及

。一般的卡爾曼濾波器，修正量是使用加法加至修正前的估測

值，此舉將會破壞原本雙四元數的限制條件。因為限制條件被破壞，使用估測後

的雙四元數反推物體旋轉的角度、旋轉軸以及位移將會產生困難。另外如果不考

慮限制條件，座標轉換的雙四元數的多對一函數性質將估測到錯誤的解。 

* 1⊗ =q q

 



 

    以往使用雙四元數的方法仍然是利用雙四元數的特性，將雙部(dual part)分解

成旋轉以及位移分別估測。估測完旋轉以及位移以後重新結合成雙四元數的實部

(real part)以及雙部 ，再用此雙四元數進行座標轉換。如此將失去了雙四元數同時

處理轉動以及位移的特性。所幸 Yuanxin Wu 提出了雙四元數的微分方程，引入了

扭轉速度(twist)直接處理雙四元數的實部以及雙部，因此不需要分解雙部的旋轉及

移動部分[18]。 

    本文以雙四元數的微分方程做為基礎建立狀態變數，稱為主系統。並且在假

設估測值與實際值誤差不大的情況下建立了修正系統(即使誤差很大仍然適用)。以

修正狀態當作待估測狀態，觀察線的實際值與估測值的差當作觀測量進行卡爾曼

濾波，並且把估測到的狀態使它符合限制條件後修正原本的主系統。因此我們設

計的濾波器將符合限制條件，並且在不拆開雙四元數的情況下完成，保留了雙四

元數同時處理轉動以及位移的特性。 

2 
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圖 1.1 相機座標系與附體座標系 

 

1.2 各章概述 

    第一章緒論為全篇的主旨。首先介紹利用相機估測姿態與位移，以及現有的
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方法。接下來則點出本文所要解決的卡爾曼濾波器使雙四元數不符合限制條件，

並且說明我們的解決此問題的方法。最後則是各章概述以及介紹本文所使用的符

號。 

    第二章為本文的背景知識。首先提出座標轉換(coordinate rotation)的數學意義

以及旋轉矩陣(rotation matrix)，再介紹四元數的數學性質，並導出使用四元數進行

座標轉換。再來介紹以空間中的點、線為基礎，包含位移的座標轉移。之後介紹

雙四元數，並且推導出雙四元數如何進行座標轉移(coordinate transformation)。本

章最後介紹卡爾曼濾波器以及延伸型卡爾曼濾波器。 

    第三章則是本文的重心，推導出限制型卡爾曼濾波器。首先以一些實際運動

所需的參數做為狀態變數，推導出主系統狀態方程式，再來以這些狀態變數的估

計值誤差做為狀態變數推導出修正系統。接下來說明本文的量測模型針孔相機的

數學模型以及與狀態變數的關係。最後將以上推導整合成限制型卡爾曼濾波器並

整理濾波流程。本章之另一重點則是使用電腦軟體模擬真實的運動行為驗證演算

法，並且分析模擬的結果與數據。 

    第四章則是實驗的部分。本章首先介紹如何進行實驗以及詳細說明實驗步驟。

接下來則呈現實驗的圖片以及數據，最後分析實驗數據。 

    第五章則是結論與未來展望，首先說明本文的主要貢獻以及所達到的成果。

之後說明本文的不足之處以及限制，最後是本文未來可以繼續研究的方向與可能

的解法。 

 

 

 

 

1.3 符號介紹 

    本文使用相當多的數學符號，本節簡要地介紹這些符號，如(表 1.1)。 

3 
 



 

         

表 1.1 符號對照表 

符號 描述 

, , ......a b c  實數 

, , ......a b c
�� �  雙數 

, , ......a b c
GG G  三維向量 

, , ......a b c  n 維行向量 

ˆˆ ˆ, , ......a b c  
單位向量 

, , ......a b c
�� G �G G  雙向量 

, , ......a b c  四元數 

, , ......a b c
�� �  雙四元數 

, , ......A B C 矩陣 

, , ......a′ ′ ′a aG 雙部 

[ ]×aG  叉積矩陣 

⊗ 四元數乘法 

D 雙四元數乘法

 估計值 ~

 

實數以小寫字母表示，如 ；三維向量則是小寫粗體字母加上箭頭 ，如a ；四a →
G
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元數(quaternion)則是小寫字母粗體，如a；單位向量則是小寫字母粗體加上 ，̂如 ；

而一般的行向量則以小寫字母粗體加上底線表示，如

â

a 。           

    含有實部與雙部的雙數(dual number)、雙向量(dual vector)、雙四元數則是以原

本的實數、向量、四元數加上凹型符號表示，如 , ,a a a
�G ��

；而它們的雙部則是原本的

符號加上一撇，如 。 , ,a′ ′ ′a aG

    大寫字母粗體則代表矩陣，如 ；向量加上乘法以及外框是叉積矩陣(cross 

product matrix)，如[ ，差積矩陣與其他向量相乘的結果是這兩個向量的叉積，

例如[

A

]×aG

]× = ×a b a b
G GG G

。 

    ⊗表示四元數的乘法；D表示雙四元數的乘法。而以上符號加上 則代表估計

值。 

~
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第二章 背景知識 

2.1 座標系 

由線性代數可知，任何三維空間的向量都可以表示成一組基底(basis)的線性組

合 

ˆ ˆ ˆx y z= + +u i j kG                         (2.1) 

在此 為一組彼此正交(orthogonal)且各自範數(norm)等於 1 之正交基底，寫成

算式如下 

, ,i j k
G G G

ˆ ˆ ˆ ˆˆ ˆ 0= = =i j j k k ii i i                       (2.2) 

ˆ ˆ ˆ 1= = =i j k                        (2.3) 

同時這組正交基底滿足 

ˆ ˆ ˆ ˆ ˆ ˆˆ ˆ ˆ,  ,  × = × = × =i j k j k i k i j                  (2.4) 

(2.4)的性質稱為右手定則(right hand rule)。習慣上，在幾何學處理三維空間都使用

符合右手定則的正交基底定義座標系。 

    在幾何的概念上，我們可以把上述的三維向量在空間上表示。我們將正交基

底與座標軸結合在一起形成座標系，則上述的uG的座標表示為 ( ), ,x y z 。 

    三維向量 可以由基底{uG }1 2 3ˆ ˆ ˆ, ,
ε

e e e 組合成 1 1 2 2 3 3ˆ ˆ ˆx x x= + +u e e eG
；也可以由基底

{ }1 2 3ˆ ˆ ˆ, ,
ε ′

′ ′ ′e e e 組合成 1 1 2 2 3 3ˆ ˆ ˆx x x′ ′ ′ ′+e e′ ′= +
Gu e 。以這些正交基底構成座標系，則可得到同

一向量在不同座標系之表示，分別是 ( )31 2, ,x x x 及 ( )' ' '
1 2 3, ,x x x ，我們稱之為座標系ε

及ε′的座標(圖 2.1)。為了符號運算上的方便，我們把{ }ˆ ˆ ˆ, ,i j k 寫成{ }1 2 3ˆ ˆ ˆ, ,e e e ；( ), ,x y z

寫成 ( )1 2, , 3x x x 。原有的符號{ }ˆ ˆ ˆ, ,i j k ；( ), ,x y z 則用來概念性的表示三維座標基底。 
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uG
3x

1x

( ) ( )1 2 3 1 2 3: , , , , ,x x x x x x
ε ε ′

′ ′ ′uG  

3x′  

1x′  

2x′

x
 

圖 2.1 座標轉換的概念 

2.2 正交轉換與四元數 

2.2.1 座標系的正交轉換 

    在 2.1 節中，我們提到同一向量在不同座標系中有不同的表示。本節將解釋這

些表示彼此之間的線性轉換關係，我們稱之為座標轉換。 

    如同在 2.1 節所舉的例子：一個向量uG 的座標可以經由 1 1 2 2 3 3ˆ ˆ ˆx x x= + +u e e eG
表

示成 ( )1 2 3, ,x x x ；也可以經由 1 1 2 3 3ˆ ˆ ˆ2x x x′ ′ ′ ′′ ′= + +u e eG e 表示成 ( )1 2 3, ,x x x′ ′ ′ 。為了方便處理

座標轉換，我們將向量的座標 ( )1 2 3, ,x x x 寫成行向量的形式 [ ]1 2 3  Tx x x=xG 。則同一

向量u 在兩組基底{G }1 2 3ˆ ˆ ˆ, ,
ε

e e e 及{ }1 2 3ˆ ˆ ˆ, ,
ε ′

′ ′ ′e e e 所形成的兩個座標系的座標分別是 

1

2

3

x
x
x

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

xG  以及 
1

2

3

x
x
x

′⎡ ⎤
⎢ ⎥′ ′= ⎢ ⎥
′⎢ ⎥⎣ ⎦

xG                     (2.5) 

    另一方面，由於基底也是屬於三維空間的向量，因此一組基底中的元素可以

用另一組基底的線性組合得到，也就是 
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ij j ˆij j

3

1

ˆ ˆi
j

C
=

′ = ∑e e  以及 
3

1

ˆ i
i

C
=

′ ′= ∑e e                   (2.6) 

由於這兩組基底都是正交基底，因此我們可以得到 

ˆ ˆij i jC ′= e ei  以及 ˆ ˆij i jC′ ′= e ei                    (2.7) 

由(2.7)可知， ij jiC C′= 。因此以 、ijC ijC′做為元素的3 3× 矩陣C及 彼此對稱，也

就是 。因為 與 互為反運算，且經由實際矩陣相乘可知兩矩陣互為反矩

陣 

′C

T′=C C C TC

1 T− =C C                            (2.8) 

由(2.8)可知C為一正交矩陣。 

    因為座標是由正交基底所構成，所以向量uG的座標有以下性質 

ˆi ix = e xi  以及 ˆi ix′ ′ ′= e xi                     (2.9) 

將(2.6)、(2.7)代入u 線性組合的公式可以得到 
G

3

1
i i

j
j jx C x

=

′ =∑ 以及 
3

1
i j

j
i jx C x

=

′= ∑                   (2.10) 

寫成矩陣形式則是 

' =x Cx  以及 T ′=x C x                     (2.11) 

   若兩座標系的變換是旋轉關係，則我們稱呼表示這種座標轉換的矩陣為旋轉矩

陣，通常以R 表示。旋轉矩陣在實際應用上可用來表示物體的姿態、旋轉。我們

通常定義一個附體座標系以及慣性座標系討論兩者的座標轉換關係，求得相對應

的旋轉矩陣對應到物理世界上。在後面的章節將會詳細說明此二座標系的定義以

及關係。 

2.2.2 歐拉公式 

    表示座標旋轉關係有幾種方式，分別為：歐拉角(Euler angle)、歐拉公式(Euler 

formula)以及四元數。歐拉角在運算上不便但卻能得到詳細的數據，其精神在於，

任何旋轉可以解釋成對著三個座標軸分別旋轉的結果。因此在實際應用上，比如

飛行載具的姿態判定等等最後都將表示姿態的旋轉關係使用歐拉角分析三軸所旋

 



 

轉的角度，以期能夠在判斷姿態上得到詳細的資料。 

    而歐拉公式則表示：任何旋轉可以寫成一個轉軸單位向量 旋轉一個角度n̂ θ 。

經由証明[14]，表示此旋轉的旋轉矩陣可以寫成： 

( ) ( ) [ ]ˆ ˆ ˆ, cos 1 cos sinTθ θ θ θ= + − +R n nn n̂ ×

k

            (2.12) 

使用歐拉公式的好處在於可以很快的決定旋轉矩陣，不需經過繁瑣的運算。另一

方面歐拉公式很清楚的表明旋轉軸以及旋轉角，這在數學分析上具有極大的方便

性。 

2.2.3 四元數性質 

    除了使用旋轉矩陣處理旋轉外，我們可以使四元數表示旋轉關係。相較於旋

轉矩陣，四元數運算減少了變數以及限制條件，同時在運算上更為簡潔；另一方

面，四元數有許多運算上的性質使的處理一些特殊的旋轉上較為方便。 

    類似於三維空間向量，一個四元數是由 四個基本元素所組成。其中基

底 是 2.1 節所說的三維空間正交基底；1則是指常數1，也就是我們所熟知的

實數乘法單位元素。四元數即是把三維空間三個變數的定義域延伸至四個變數。

因此四元數可以表示為 

ˆ ˆ ˆ(1, , , )i j k

ˆ ˆ ˆ( , , )i j k

0 1 2 3
ˆ ˆ ˆa a a a= + + +a i j                   (2.13) 

由上式可以看出四元數其實是一個常數以及一個三維向量的線性組合 

0a= +a aG                           (2.14) 

為了方便，我們通常把四元數寫成 4 1× 向量的型式 

0

TTa⎡ ⎤= ⎣ ⎦a aG                           (2.15) 

如此可以使用矩陣、向量等線性代數的方法處理四元數運算。 

    接下來我們說明一些四元數的代數性質，以方便之後的計算[4]。四元數的

加減法定義如下 
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    ( ) ( )0 0a b± ± + ±a b a b
GG�                   (2.16) 

寫成向量型式 

0 0

TT Ta b⎡ ⎤± ± ±⎣ ⎦a b a b
GG�                  (2.17) 

我們可以輕易的導出四元數的加減法符合結合性以及交換性。四元數的乘法定義

為 

( ) ( )0 0 0 0
Ta b b a⊗ − + + + ×a b a b a b a b

G GG G�       (2.18) 

其中⊗代表四元數乘法，將四元數乘法寫成向量形式 

0 0

0 0

Ta b
b a
⎡ ⎤−

⊗ = ⎢ ⎥
+ + ×⎣ ⎦

a b
a b

a b a b

GG
G GG G                  (2.19) 

令 ，我們發現上式可以分解成矩陣相乘的型式 = ⊗c a b

[ ]
00 00

0 0

TT bc ba
a b

⎡ ⎤−⎡ ⎤−⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢= =⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎡ ⎤+ × − ×⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎣ ⎦⎣ ⎦

ba
c ba I a b I b

0a
⎥

a

GG
G G GG GG G            (2.20) 

因此四元數乘積在向量型式中可以當成一個左乘矩陣或右乘矩陣乘以四元數 

{ } { }L
=c a b b�

R
a                      (2.21) 

我們也可以輕易導出四元數乘法滿足結合性以及分配性： ( ) ( )⊗ ⊗ = ⊗ ⊗a b c a b c  

( )⊗ ± = ⊗ ± ⊗a b c a b a c  但是不滿足交換性： ⊗ ≠ ⊗a b b a。 

    四元數的乘法單位元素為 1=1 滿足 ⊗ = ⊗ =a 1 1 a a。四元數的共軛定義為 

*
0a −a aG�                           (2.22) 

且存在以下關係 

( )* * *⊗ = ⊗a b b a                       (2.23) 

由四元數共軛的可以定義四元數的範數為 

( ) * *N ⊗ = ⊗a a a a� a                    (2.24) 

且等於 
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( ) 2 2 2 2
0 1 2 3

TN a a a a= + + + =a a a                 (2.25) 

由(2.25)可知，四元數的範數即是它本身向量型式的範數。由以上性質我們可以 

更進一步的定義四元數的反元素為 

 
( )

1
2N

− aa
a

�                           (2.26) 

    為了方便使用線性代數的性質，本文運算四元數一律採用向量型式。 

2.2.4 使用四元數旋轉 

    我們可以使用四元數表示物體的旋轉。[4][14]定義一個單位範數四元數 

0

cos
2

ˆsin
2

q
θ

θ

⎡ ⎤⎛ ⎞
⎜ ⎟⎢ ⎥⎡ ⎤ ⎝ ⎠⎢ ⎥⎢ ⎥ ⎢ ⎥⎛ ⎞⎣ ⎦

⎢ ⎥⎜ ⎟
⎝ ⎠⎣ ⎦

q
q

n
� �G                       (2.27) 

稱為歐拉參數(Euler parameter)。其中θ 是旋轉的角度， 是旋轉軸單位向量。 n̂

如此我們可以把旋轉表示如下 

*O N= ⊗ ⊗r q r q                          (2.28) 

其中r是三維向量的四元數表示，即是 0
TT⎡ ⎤= ⎣ ⎦r rG ；而 、 表示兩座標系。在

此歐拉參數是由 O座標系所定出來的。 

O N

    使用(2.21)展開(2.28)可以得到 

{ } { }* *

1 0 0 0
    

0

O N
L R

= ⊗ ⊗ =

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
= =⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦ ⎣ ⎦

r q r q q q r

R r RrG G

N

            (2.29) 

因此旋轉可以使用四元數的乘法運算。而表示旋轉的四元數，也就是歐拉參數，

有四個自由度，一個限制條件為 

* 1⊗ =q q                           (2.30) 

由限制條件可知，q的共軛即是它本身的反元素 

* 1−=q q                            (2.31) 
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2.2.5 四元數微分方程 

12 

t    如果姿態隨著時間變化，則歐拉參數也將隨著時間變化。在時間 t 歐拉參

數為 

+Δ

( ) ( )t t t+ Δ = Δ ⊗q q q

t

                  (2.32) 

這是由於時間 t 的姿態可以視為由時間 t的姿態進一步旋轉而來。另一方面，

假設 足夠小，則 

+Δ

tΔ

1

2
δ
⎡ ⎤
⎢ ⎥Δ = ⎢ ⎥
⎢ ⎥⎣ ⎦

q θ
G                          (2.33) 

其中δ δθθ n
G G� 表示包含旋轉軸nG 以及微小角度δθ 的向量。依照微分的定義我們推

得 

( ) ( ) ( ) ( )t t t t t
t t

+Δ − Δ ⊗ − ⊗
=

Δ Δ
q q q q 1 q

          (2.34) 

( ) ( )
( )

0

2

t
t

t t

δ
⎡ ⎤
⎢ ⎥ ⊗⎢ ⎥

Δ − ⊗ ⎢ ⎥⎣ ⎦=
Δ Δ

qθ
q 1 q

G

                (2.35) 

將 取極限趨近於零時，得到 tΔ

1
2

d
dt

= ⊗
q ω q                           (2.36) 

其中 是角速度的四元數。將(2.36)寫成矩陣相乘型式 [0ω G� ]ω

( )1
2

d
dt

= Ω
q ω qG                          (2.37) 

Ω代表三維向量所形成的左乘矩陣[14]，形式如 

( ) [ ]
0 T⎡ ⎤−

Ω ⎢ ⎥×⎣ ⎦

v
v

v v

G
G � G G

                      (2.38)
 

如此，我們推導出歐拉參數的微分公式(2.36)、(2.37) [14]。 

 



 

2.3 雙四元數 

2.3.1 空間中的座標轉換 

    至此我們介紹了座標轉換的概念，以及旋轉關係的幾種表示法。值得注意的

是，以上座標轉換都是以向量做為轉換的參考，用以表示同一向量在不同座標上

的座標。由於向量僅具有大小以及方向兩種要素，無法表示位置，因此將向量放

在任何位置其結果不變。因此在前述的旋轉關係中，我們可以重合不同座標系的

原點，藉此突顯座標旋轉的關係(圖 2.2)。 

 

uG

uG
uG

ε ′

ε ′

εε  

 

圖 2.2 相同向量在不同位置 

    在實際的空間中，座標系原點不一定會重合，而是存在著位移。位移即是兩

座標系原點的差異向量。考慮位移時，我們不使用同一向量在兩座標系的概念，

而是使用空間中的點做為參考。同一點在兩個存在彼此位移以及轉動的座標系，

彼此的位置向量，也就是原點到此點的向量也將不同。值得注意的是，兩位置向

量不僅僅是座標不同而是兩個不同的向量。若兩個位置向量分別為 以及 則彼

此將存在以下關係 

OrG NrG

O N= +r r t
GG G                          (2.39) 

t
G
是位移。 
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設兩座標系分別為 及 且兩位置向量的座標分別是O N OpG 以及 NpG 。將(2.39)等號左

右分別座標化後則有以下關係 

( )O N N N O= + = +p R p t Rp t
G GG G G              (2.40) 

其中 是兩座標系的旋轉矩陣。我們稱這種座標轉換關係為座標的轉移。為了方

便與符號的統一後文我們採用

R

t
G
取代 Ot

G
。 

 

NrG
OrG

t
G

( )O N N N O= + = +p R p t Rp t
G GG G G

N

O  

圖 2.3 座標轉移 

2.3.2 查理定律 

    相對於座標旋轉的歐拉公式，座標轉移則有查理定律以方便分析。查理定律

表示，空間中兩座標系的轉移可視為以空間中的某條線為軸，沿著此軸螺旋前進，

如(圖 2.4)所示。 

    查理定律在數學上將座標轉移單純化成利用空間中的直線(螺旋軸)、整個座標

系對螺旋軸旋轉的角度以及沿著旋轉軸的位移所決定[3]。 
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圖 2.4 查理定律的幾何意義 

2.3.3 雙數 

    另一種表達座標轉移的方法是雙四元數。這是一種特別的表示法，可以同時

處理旋轉與位移；雙四元數也有許多類似於四元數的運算特性，減少了變數以及

限制條件，運算上也較為簡潔 。事實上，類似於四元數之於歐拉公式，其中一種

雙四元數表達法也可以結合查理定律。後面將會深入探討雙四元數的數學性質以

及計算方式[5][8][15][16]。 

    介紹雙四元數前，首先須要先介紹雙數。雙數是一種數，如同複數有實部與

虛部，雙數的定義則是具有實部以及雙部。為了方便表示，我們記為 

( ),a a a′� �                          (2.41) 

其中 為實部，aa ′為雙部。本文雙部採用的符號為右上角加上一撇。雙數的相等、

加法以及乘法分別定義如下 

 ,  a b a b a b′ ′= ⇒ = =
��                  (2.42) 

( ),a b a b a b′ ′+ + +
�� �                   (2.43) 

( ),ab ab ab a b′ ′+
�� �                    (2.44) 

經由以上的定義，我們可以知道雙數滿足加法交換律、結合律；乘法交換律、結

O
N

 



 

合律；以及分配律，因此是一個交換環。 

2.3.4  雙向量 

    如同實數形成向量，雙數也可形成雙向量如下 

( ), ′a a a
G G G� �                          (2.45) 

類似於雙數，雙向量含有實部以及雙部，分別由實數三維向量所形成。為了方便

使用線性代數的性質運算，我們通常將雙向量行向量化成一個 的行向量

。 

6 1×

 
TT T′⎡ ⎤⎣ ⎦a aG G

    雙向量通常用來表示空間中的直線。空間中的直線是由兩大要素所定義出來

的，分別是直線的方向向量，以及直線所通過的點。不失其一般性的情況下，我

們把這種定義稍做修改。空間中的一條直線可以由方向單位向量 以及矩(moment)

所決定，其中 是通過這條直線的任何一點位置向量(圖 2.5)。我們以方向

向量做為實部，矩作為雙部則可形成一個雙向量 

l̂

ˆ×m p lG G� pG

( )ˆ,=l l m
G� G                          (2.46) 

因此空間中的直線都可以用雙向量表示，如此一來就可以配合雙四元數進行座標

轉移。同樣地，表示直線的雙向量我們通常也將它行向量化成為
 

ˆ TT T⎡ ⎤⎣ ⎦l mG

 

( )ˆ,=l l m
G� G

ˆ= ×m p lG G

l̂

pG
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圖 2.5 空間中的直線表示法 

2.3.5 雙四元數性質 

    在介紹使用雙四元數進行轉移前，必須先說明雙四元數的數學性質以方便之

後的計算。 

    雙四元數的定義是 

( ), ′a a a� �                          (2.47) 

其中四元數a 與 ′a 分別是 的實部與雙部。雙四元數的加減法定義如下 a�

( ), ′ ′+ + +a b a b a b
�� �                      (2.48) 

由(2.43)可以推得，雙四元數的加減法符合結合性與交換性。雙四元數的乘法定義

為 

( ), ′ ′⊗ ⊗ + ⊗a b a b a b a b
�� D �                   (2.49) 

考慮 並且將雙四元數的實部以及雙部行向量化，代入(2.21)可以得到 =c a b
�� � D

{ }
{ } { }

{ }
{ } { }

4 4 4 4L R

L L R R

×⎡ ⎤ ⎡⎡ ⎤ ⎡ ⎤ ⎡ ⎤
= =⎢ ⎥ ⎢⎢ ⎥ ⎢ ⎥ ⎢ ⎥′ ′′ ′⎢ ⎥ ⎢⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎣

a 0 b 0c b
a a b bc b

× ⎤
⎥ ′⎥⎦

a
a

           (2.50) 

則(2.50)可以寫成左乘矩陣與右乘矩陣乘以行向量的形式 

[ ]L R

⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎡ ⎤=⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦′ ′⎣ ⎦ ⎣ ⎦ ⎣ ⎦

c b
a b

c b
���

′
a
a

�D

                   (2.51) 

由以上性質，我們可以輕易導出雙四元數符合結合性及分配性：  

( ) ( )=a b c a b c
� �� � � �D D D D ； 。但不滿足交換性： 。 ( )+ = +a b c a b a c

� �� � � �D D ≠a b b a
� �� �D D

雙四元數的共軛定義為 

( )* * *, ′a a a� �                          (2.52) 

如同四元數，存在以下關係 

( )* * *=a b b a
� �� �D D                       (2.53)
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而雙四元數的範數則定義為 

( ) *N a a� �� Da�                       (2.54) 

雙四元數的乘法單位元素則是 ( ),1 1 0
�
� 滿足 = =1 a a 1 a

� �� � �D D 。因此我們可以更進一步

的定義雙四元數的反元素 

( )
*

1

N
− aa

a

�� � �                         (2.55) 

    實務上，我們將雙四元數的實部以及雙部寫成8 1× 的行向量如 以方

便使用線性代數性質。 

TT T′⎡ ⎤⎣ ⎦a a

2.3.6 以雙四元數進行座標轉移 

    由 2.3.4 節可知，空間中的直線是由方向向量 ˆ 以及矩l mG 所構成。 

假設座標系O與座標系 存在轉移關係，則方向向量是 N

ˆO ˆN=l Rl                           (2.56) 

而直線的矩是 

( )ˆO O O N O ˆO= × = + ×m p l Rp t l
GG G              (2.57) 

( ) ( ) ( )ˆ ˆ ˆN O N N N N+ × = + × = × + ×Rp t l Rp t Rl R p l t Rl
G GG G G ˆNG

     (2.58) 

( )ˆ ˆN N N N× + × = + ×R p l t Rl Rm t Rl̂NG GG G
        (2.59) 

將各個向量，如方向向量、矩、位移擴展成四元數 ˆ0
TT⎡ ⎤= ⎣ ⎦l l 、 、

且利用四元數性質得到

0
TT⎡ ⎤= ⎣ ⎦m mG

0
TT⎡= ⎣t t

G
⎤⎦ ( ) ( )*⊗ t10

2

TT⎡ ⎤× = ⊗ +⎢ ⎥⎣ ⎦
t q t q q
G G

，我們可以把

(2.56)、(2.57)以四元數運算表示如下 

 

 *O N= ⊗ ⊗l q l q                       (2.60) 
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( )* *1
2

O N N N= ⊗ ⊗ + ⊗ ⊗ ⊗ + ⊗ ⊗ ⊗m q m q t q l q q l q t*        (2.61) 

建立雙四元數 

( ) 1, ,
2

⎛′= ⎜
⎝ ⎠

q q q q t q� � ⎞⊗ ⎟                    (2.62) 

以及將空間中的直線雙向量擴展成雙四元數 

( ),l l m
�
�                              (2.63) 

將(2.62)、(2.63)以雙四元數乘法進行以下運算並且比較(2.60)、(2.61)可得到 

( )* ,N O O O= =q l q l m l
�� �D D

�
                  (2.64) 

類似於(2.29)以四元數及向量處理旋轉，(2.64)利用雙四元數以及直線同時處理位移

與旋轉。而雙四元數q 則有兩個限制條件，分別是 �

* 1⊗ =q q 、 * * 0′ ′⊗ + ⊗ =q q q q                  (2.65) 

由(2.55)的性質可以得到，雙四元數q的反元素
� 1−q� 等於它的共軛 

    由以上可知尋找座標轉換關係的問題可以等價為尋找兩座標系轉移對應的雙

四元數。本文所要探討的即是如何設計濾波器以尋找相對應的雙四元數同時滿足

(2.65)的限制條件。 

2.3.7 雙四元數微分方程 

    接下來推導座標轉移的雙四元數微分方程[18]。雙四元數的微分方程廣泛應用

在動態的座標轉移上，也是本文使用的核心工具，以此建立估測雙四元數的狀態。 

    將(2.62)微分得到 

( )1 1, , ,
2 2

d d d d d d d d
dt dt dt dt dt dt dt dt

′ ⎛ ⎞⎛ ⎞ ⎛ ⎞ ⎛= = ⊗ = ⊗ + ⊗⎜ ⎟ ⎜ ⎟ ⎜⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝⎝ ⎠

q q q q q t qt q q t
�

⎞
⎟
⎠

 (2.66) 

將四元數微分方程(2.36)代入(2.66)得到 

1 1 1 1, ,
2 2 2 2

d d d
dt dt dt

⎛ ⎞ ⎛⎛ ⎞ ⎛⊗ + ⊗ = ⊗ ⊗ + ⊗ ⊗⎜ ⎟ ⎜⎜ ⎟ ⎜
⎝ ⎠ ⎝⎝ ⎠ ⎝

q t qq t ω q t q t ω q� ⎞⎞
⎟⎟
⎠⎠

   (2.67) 

再將(2.67)結合四元數的乘法可以得到 
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1 1 1  ,
2 2 2

01 1 1,
2 2 2

⎛ ⎞⎛ ⎞⊗ ⊗ + ⊗ ⊗⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

⎛ ⎞⎛ ⎞⎡ ⎤
= ⊗ ⊗ + ⊗ + ⊗ ⊗⎜ ⎟⎜ ⎟⎢ ⎥⎜ ⎟×⎣ ⎦⎝ ⎠⎝ ⎠

ω q t q t ω q

ω q t q q ω t q
t ω

�

� G G
        (2.68) 

以雙四元數的乘法公式(2.51)合併(2.68)，得到 

01 , ,
2 2O

d
dt

⎛ ⎞⎡ ⎤ ⎛= + ⊗⎜ ⎟ ⎜⎢ ⎥× ⎝ ⎠⎣ ⎦⎝ ⎠

q ω t 1 ⎞
⎟q t q

t ω

�
� G DG                 (2.69) 

 

我們另外定義扭轉速度為 

0
,

⎛ ⎞⎡ ⎤
+⎜ ⎟⎢ ⎥×⎣ ⎦⎝ ⎠

s ω t
t ω

� � G� G                     (2.70) 

將(2.70)代入(2.69)，且由 2.3.5 節得知
1
2

′ = ⊗q t q ，(2.70)可以寫成 

1
2

d
dt

=
q s q
� � �D                         (2.71) 

把實部與雙部合成行向量代入(2.71)得到 

[ ]1
2 L

d
dt
⎡ ⎤ ⎡

=
⎤

⎢ ⎥ ⎢ ⎥′ ′⎣ ⎦ ⎣

q q
s

q q
�

⎦
                     (2.72) 

    (2.71)、(2.72)是座標轉移雙四元數的微分方程。可以直接把雙四元數的微分寫

成類似四元數歐拉參數微分的形式。如此便不用經由以往的方法，將雙四元數的

雙部與實部分開微分，利用
1
2

′ = ⊗q t q、 =t v� 及
1
2

d
dt

= ⊗
q ω q 的特性求解而是直接

利用雙四元數推導許多動態座標轉移的狀態，運動方程式等，保持了雙四元數的

求解一致性。 

2.4 慣性座標系與附體座標系 

    從 2.1 的定義座標系開始，經過說明座標系的正交轉換，座標轉移，之後推導

了使用四元數及雙四元數分別處理座標轉換的問題。然而，以上推導僅在抽象的

數學概念，代數的層次上。在三維的物理世界中如何應用座標轉換則是一個實際
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的應用問題。最先面對到的問題就是如何定義座標系？本文處理的問題是利用相

機判斷物體的位置以及姿態。對應於此類問題，我們通常會設定兩個座標系，分

別是附體座標系以及慣性座標系。 

    定義一個附著在物體上的座標系，稱為附體座標系。如定義在汽車，飛機上

的座標系。因為附體座標系是由物體所定出來的，所以跟隨著物體移動。如汽車

飛機移動時，它們的附體座標系也會跟著移動。 

另外定義一個不動的觀察者座標系，稱為慣性座標系。如地球座標系、當地

座標系等。慣性座標系是做為觀察物體的參考，因此在處理時視為不動。舉例來

說，地球本身有自轉及公轉的運動，但是我們在判斷載具位置時使用的地球座標，

則把地球視為不動。而在討論地球相對於太陽系運動行為時，則是把地球視為物

體，地球座標系視為附體座標系跟隨地球運動，另外定義太陽系的慣性座標系來

討論兩座標系關係，此時地球變成會動的物體而太陽系則是不動的慣性座標。由

此可知，任何慣性座標系只是片面定義它是固定的，事實上則是會運動的。實際

上在物理三維世界中，我們討論的僅是相對關係，端看使用者如何定義座標系以

符合需求。 

    因此剛體的轉移即可表示成附體座標系在慣性座標系中的轉移。附體座標系

中的點、直線等等則保持固定，僅隨著整個附體座標系在慣性座標系中轉移。這

是由於剛體的定義是內部沒有相對運動的物體。我們以一個例子說明：車子的椅

子隨著車子移動，在車內則保持固定不動。 

    因此兩座標系的轉移關係中的位移即是物體在慣性座標系的位置，旋轉則是

物體的姿態。本文定義相機座標系為慣性座標系，而待觀察的物體則在其上定義

附體座標系。我們將附體座標系與慣性座標系的關係做圖如下頁。 
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Body Frame 
(Moved) 

Body Frame 
(Initial) 

Inertial Frame 

圖 2.6 慣性座標系與附體座標系關係 

由於慣性座標系的特性就是具參考性，因此本文除了為了強調而標示座標系外，

未標示座標系之向量、雙向量、四元數、雙四元數等等皆代表其在慣性座標系上

的表示。 

2.5 卡爾曼濾波器 

2.5.1 線性卡爾曼濾波器 

    在控制理論中，從系統輸出觀察系統狀態是很重要的課題。然而系統輸出通

常是充滿雜訊的。舉例來說，汽車的時速表讀數未必是真正的時速；溫度計的水

銀高度未必對應真正的溫度，玻璃管上的刻度也可能有些許誤差。另外由於系統

的狀態常常前後時刻含有無法控制的雜訊干擾，導致即使知道此刻狀態也無法預

估下一時刻狀態。基於以上原因，一般的觀察器常常無法實際應用。 

    卡爾曼濾波器[9]則是一種特別的觀察器，把狀態從含有雜訊的輸出中估測出

來。以下將說明卡爾曼濾波器的濾波流程以及原理。首先考慮一個系統的離散動

態方程式 

1 1k k k k 1− − −= +x Φ x w                      (2.73) 
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其中 為狀態轉移矩陣，1k −Φ 1k −w 為系統的行進雜訊。因此系統的狀態含有隨機的

成分，此刻真正的系統狀態無法由上一刻的狀態所估測。通常我們假設行進雜訊

1k −w 為白色雜訊、機率密度函數為高斯分佈且向量中各元素彼此獨立。行進雜訊

的共變異數矩陣為 ( )TE ww Q� 。由於我們不知道實際的狀態數值，僅知道估測的

狀態，估測的狀態也有離散動態方程式 

1k k k 1− −=x Φ x� �                         (2.74) 

我們可以用ㄧ些統計特性來量化估測狀態與實際狀態的誤差，定義誤差為

k k −e x x�� k 。估測狀態是不偏差的 

( ) 0kE =e                          (2.75) 

誤差的共變異矩陣則定義為 

( )T
k kEP e e� k                         (2.76) 

誤差共變異矩陣與上一時刻的關係為 

1 1 1
T

k k k k− − −=P Φ P Φ                       (2.77) 

而這個系統的輸出，也就是我們可以得到的量測值則是 

k k k k= +z H x v                        (2.78) 

同樣地，輸出的量測雜訊 kv 也和行進雜訊 kw 一樣是白色雜訊、機率密度函數為高

斯分佈且向量中各元素彼此獨立。 

    卡爾曼濾波器的精神在於，利用量測值尋找一個適合的卡爾曼增益 使的原

本的估測狀態接近實際狀態。這種模式我們稱為量測更新。本文量測更新前後的

變數符號以右上角的「 」、「

kK

− +」分別代表。量測更新後的估測狀態與原本的估測

狀態存在以下關係 

( )k k k k k k
+ −= + −x x K z H x� � � −                    (2.79) 

定義一個成本函數 
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( )kJ tr P�                          (2.80) 

因為成本函數量化了狀態誤差的大小，所以藉由極小化成本函數可以求得卡爾曼

增益為 

1(T T
k k k k k k k )− −=K P H H P H R −+                   (2.81) 

而更新後的誤差變異數矩陣則為 

( )k k k k
+ −= −P I K H P                       (2.82) 

最後，我們整理濾波流程為流程圖(圖 2.10)，如下頁 
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k=0 ? 
猜測狀態變數估

計值 

計算量測估計值

計算矩陣  ,k k
+P K

量測更新 

至 k+1 時刻 

量測值 

否 

是 

輸出狀態估計值 

開始

圖 2.7 卡爾曼濾波流程 

2.5.2 延伸型卡爾曼濾波器 

卡爾曼濾波器在線性系統具有良好的估測效果。然而大部分的系統是非線性的，

而是類似下列動態方程式 

( )1 1k k k kφ 1− −= +x x −w                      (2.83) 

一般的線性卡爾曼濾波器無法估測此類系統的狀態，因此必須使用延伸型卡爾曼
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濾波器。延伸型卡爾曼濾波器使用偏微分線性化的觀念，以估測狀態做為泰勒展

開的展開點，因此狀態轉移矩陣變為 

( )
k k

k
k

k

φ
−=

∂
=

∂ x x

x
Φ

x �                     (2.84) 

同樣地，非線性系統輸出則是 

( )k k kh k= +z x v                        (2.85) 

同樣以估測狀態為線性化的展開點展開系統輸出 

( )
k k

k k
k

k

h
−=

∂
=

∂ x x

x
H

x �                      (2.86) 

延伸型卡爾曼濾波器的濾波流程類似於線性卡爾曼濾波器，將(2.84)、(2.86)求得的

及 代入(2.81)、(2.77)得到卡爾曼增益 以及誤差共變數矩陣 的時間推移

關係。而估測系統的時間推移關係與量測更新分別是 

kΦ kH kK kP

( )1k k kφ−
−=x x� � +                    (2.87) 

( )( )k k k k k kh+ − −= + −x x K z x� � �                    (2.88) 

    延伸型卡爾曼濾波器在估測非線性系統具有良好的效果。但是當線性化展開

點距離真實狀態太遠可能無法正確估測，此時則須要使用同一時刻疊代的方法逼

近真實的狀態以取得良好的展開點，再進行時間推移[6]。本文即是使用此疊代法

同時配合延伸型卡爾曼濾波器進行狀態估測，將在下一章詳細推導。 
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第三章 濾波器設計 

3.1 主系統狀態方程式 

    在本章，我們將以雙四元數為運算工具，以物體的針孔成像投影做為量測，

設計一個可以符合雙四元數座標轉移的限制條件的濾波器。由 2.4 節得知，物體的

運動可視為附體座標系的運動，而求物體的運動行為則是求解附體座標系與慣性

座標系的座標轉移關係。而由 2.3.6 小節得知，座標轉移關係可以使用雙四元數表

示，因此物體的運動則可套用由 2.3.7 小節所推導的雙四元數微分方程。由雙四元

數的微分方程，也就是雙四元數的運動方程式為基礎，我們可以推導出一系列的

矩陣微分方程做為物體運動的動態方程式。由此設計卡爾曼濾波器估測前述動態

方程式狀態，也就估測出了物體與觀察者的相對位移與轉動關係。 

    首先，假設慣性座標系 也就是相機座標系與附體座標系 有以下關係 I B
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I B=l q l q
� �� D D                           (3.1) 

重寫(2.65)的雙四元數運動方程式 

[ ]1
2 L

d
dt
⎡ ⎤ ⎡

=
⎤

⎢ ⎥ ⎢ ⎥′ ′⎣ ⎦ ⎣

q q
s

q q
�

⎦
                     (3.2) 

由(2.72)可知物體轉移的雙四元數與扭轉速度 息息相關，所以我們的狀態也需要

包含扭轉速度。我們假設物體是以等速度以及等角速度運動，所以扭轉速度(2.70)

的雙向量的微分是 

s�

d d
dt dt

⎡ ⎤ ⎡ ⎤⎡ ⎤
= =⎢ ⎥ ⎢ ⎥⎢ ⎥′ ×+ ×⎢ ⎥⎣ ⎦ ⎣ ⎦⎣ ⎦

ωs 0
s v ωt t ω

G GG
G G G GGG�                   (3.3) 

因為物體的速度 vG與角速度ω未知，所以我們仍然要把扭轉速度微分後的結果當成

狀態估測。定義雙向量u 使的它的實部與雙部符合 

G

G�

⎡ ⎤⎡ ⎤
⎢ ⎥⎢ ⎥′ ×⎣ ⎦ ⎣ ⎦

u 0
u v ω

GG
�G GG                          (3.4) 

 



 

因此(3.3)可以寫成 

d
dt
⎡ ⎤ ⎡ ⎤

=⎢ ⎥ ⎢ ⎥′ ′⎣ ⎦ ⎣ ⎦

s u
s u

G G
G G                          (3.5) 

因為物體運動為等速度與等角速度，所以雙四元數u 的微分為 �

d
dt

⎡ ⎤⎡ ⎤
= ⎢ ⎥⎢ ⎥′⎣ ⎦ ⎢ ⎥⎣ ⎦

u 0
u 0

GG
GG                          (3.6) 

將(3.2)、(3.5)以及(3.6)三條微分方程式合併為矩陣微分方程，可以得到 

[ ] 6 6 6 8

6 8 6 6 6 6

6 8 6 6 6 6

Ld
dt

× ×

× × ×

× × ×

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥′ ′⎢ ⎥ ⎢ ⎥⎡ ⎤
⎢ ⎥ ⎢ ⎥⎢=⎢ ⎥ ⎢ ⎥⎢

⎥
⎥′ ′⎢ ⎥ ⎢ ⎥⎢ ⎥⎣ ⎦⎢ ⎥ ⎢ ⎥

⎢ ⎥ ⎢ ⎥
′ ′⎣ ⎦ ⎣ ⎦

q q
q q

s 0 0
s s

0 0 I
s s

0 0 0
u u
u u

�
G G
G G
G G
G G

                  (3.7) 

(3.7)是一個系統動態方程式的形式，我們定義狀態 x 以及矩陣F  

⎡ ⎤
⎢ ⎥′⎢ ⎥
⎢ ⎥
⎢ ⎥′⎢ ⎥
⎢ ⎥
⎢ ⎥
′⎣ ⎦

q
q
s

x
s
u
u

G
� G
G
G

                            (3.8) 

[ ] 6 6 6 8

6 8 6 6 6 6

6 8 6 6 6 6

L × ×

× × ×

× × ×

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

s 0 0
F 0 0 I

0 0 0

�

�                      (3.9) 

因此(3.7)可以簡潔地寫成 

( )d
dt

=x F x x                           (3.10) 

由(3.8)的狀態變數定義可知，討論物體運動行為的重要變數包含雙四元數、扭轉速

度等都包含在此系統的狀態變數中。我們稱乎這個系統為主系統。本文的目的即

是如何準確的估出主系統的狀態以及使主系統狀態中的雙四元數符合限制條件。 
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    為了方便使用電腦運算此系統，我們將(3.8)寫成離散的形式。假設時間 與前

一刻 很接近的情況下，可以解得(3.8)近似於 

kt

1kt −

( )( )11

1

t k kk

k

t t
t e −−

kt −

−
≈

F xx x                     (3.11) 

將符號 及 簡化成 與 並且定義kt 1kt − k 1k − ( )( 11
1

t k kk t t
k e −−

−
−

F xΦ � )
，(3.10)就成為了動態方

程式的離散形式 

1k k k 1− −=x Φ x                         (3.12) 

而估測值的動態方程式離散形式則是 

1k1k k −

− +
−=x Φ x� �                         (3.13) 

    (3.11)、(3.12)表示，主系統是一個非線性系統，因此不可使用線性卡爾曼濾波

器。但由(2.88)可知，延伸型卡爾曼濾波器的量測更新是把修正值加到更新前的估

測值上。然而主系統狀態中的雙四元數有兩個限制條件(2.65) 

* 1⊗ =q q 、 * * 0′ ′⊗ + ⊗ =q q q q               (3.14) 

使用加法的量測更新會破壞(3.14)的限制條件。若雙四元數不符合限制條件，則利

用雙四元數定義反推轉動的角度、轉軸以及位移將會產生困難；另一方面，由於

少了限制條件導致表示座標轉移的雙四元數不是一對一函數，很容易估測到錯誤

的解。 

    由於以上的缺失，主系統(3.12)不能直接使用延伸型卡爾曼濾波器估測系統狀

態，必須另外設計濾波的方法以符合限制條件。由於雙四元數與四元數有很多共

通的特性，我們參考姜義德所提出在四元數上使用限制型卡爾曼濾波器的方法[20]

在雙四元數上建立修正系統以符合雙四元數的限制條件。詳細推導將在 3.3 節以及

3.4 節說明。 

3.2 量測模型 

    本文的使用物體的相片上的線做為量測。而相機模型則採用簡化過後的針孔

相機模型。因此相片的線是針孔相機模型上的特徵觀察線的投影。針孔相機模型
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原理是利用光走直線經過焦點投影到投影面的幾何特性，得到上下左右顛倒的實

像。 

    在此我們將相機座標系與針孔相機模型結合。相機焦點重合於相機座標系原

點；投影面則是在相機座標系 軸負方向距離原點焦距z λ與 xy 平面平行的平面。

將附體座標系與相機座標系的成像關係做圖如下(圖 3.1) 
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圖 3.1 物體投影與座標系的關係 

    觀察圖 3.1 可知，特徵觀察線與相機座標系的原點形成一個平面。另外由矩的

定義 得知，此平面的法向量恰等於特徵觀察線的矩。因

此平面方程式為 

ˆ T

x y zm m m⎡× ⎣m p lG G� � ⎤⎦

0x y zm x m y m z+ + =                        (3.15) 

而特徵觀察線在投影面上的投影乃是(3.15)的平面與投影面 z λ= − 的交線，因此我

們可以寫出投影線的方程式為 

x ym x m y mzλ+ =                        (3.16) 

由(3.16)可解出投影線的方向向量為 
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ByxB

l
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y

 



 

2 2

2 2
ˆ
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⎢ ⎥

+⎢ ⎥
⎢ ⎥
⎢ ⎥=
⎢ ⎥+
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

l                       (3.17) 

投影線的矩則是(3.17)以及比較投影線與原點的距離以及特徵觀察線與原點的距離

所導出[7] 

2 2s

x ym m
λ

=
+

m mG G                       (3.18) 

因此我們可以將(3.17)、(3.18)代入投影線的雙向量 

( )ˆ ,s s s=l l m
�G G                           (3.19) 

通常我們將(3.19)的雙向量的實部以及雙部寫成行向量形式。由於投影線是由特徵

觀察線的矩所構成，所以是 的函數 l
�

( )

2 2

2 2

2 2

ˆ
=
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y

x y

x
s

x y
s

x y

m

m m

m
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m m
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⎢ ⎥
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�
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G

                           (3.20) 

3.3 修正系統狀態方程式 

    實際的座標轉移參數，包括座標轉移的雙四元數、扭轉速度等是無法得知的，

我們僅知各參數的估計值。一般情況下，我們可以假設座標轉移的雙四元數的真

實值是由估計值再進行一次座標轉移，因此(3.1)可以寫成 

*
B B= = Δl q l q q q l q q

� � �� � � � �� �D D D D D D* *Δ�                 (3.21) 

因此我們可知q為 �
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q�= Δq q� � �D                          (3.22) 

所以q的誤差值
� Δq�為 

* 1−Δ = =q q q q q� � � � ��D D �                          (3.23) 

對Δ 微分可以得到 q�

( )
1

1 1d d d d
dt dt dt dt

−
− −Δ

= = +
q qq q q q
� � �� � � �� �D D D q�

           (3.24) 

1
1 1 1d d d d

dt dt dt dt

−
− − −+ = −

q q q qq q q q q q
� � � �� �� � � � � �� � �D D D D D D 1−�            (3.25) 

將上式(3.25)代入雙四元數的運動方程式(2.71) 

1 1 1 1 11 1
2 2

d d
dt dt

− − − − −− = −
q qq q q q s q q q q s q q
� ��� � � � � � � � � � � �� � � � � � �D D D D D D D D D D 1−�      (3.26) 

將(3.26)的右邊代入Δ 的定義可以得到q� Δq�的微分即是 

(1
2

d
dt )Δ

= Δ − Δ
q s q q s
� � � � ��D D                     (3.27) 

若將(3.27)寫成向量形式配合(2.50)、(2.51)的雙四元數左乘、右乘矩陣可得 
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 (3.28) 

扭轉速度誤差的定義是扭轉速度的真實值減掉扭轉速度的估計值 

' ' '

δ
δ
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G G G�
�G G G�                        (3.29) 

由(3.29)可得以下關係 

2
δ
δ

⎡ ⎤ ⎡⎡ ⎤ ⎡ ⎤
+ = +

⎤
⎢ ⎥⎢ ⎥ ⎢ ⎥′ ′ ⎢ ⎥
′ ′⎣ ⎦ ⎣ ⎦⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣

s s s s
s ss s ⎦

G G G� �
G G

G

G G� �                    (3.30) 

將(3.28)以四元數的左乘、右乘矩陣(2.20)展開，並且代入(3.30)以及前述的 矩陣

得到 
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  (3.31) 

而對扭轉速度誤差微分則是 

' ' '

d d d
dt dt dt

δ
δ
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定義雙向量u的誤差為 
�G

δ −u u u
� � �G G G��                           (3.33) 

觀察(3.32)得知，(3.32)等式右邊是(3.33)行向量化的結果。因此 
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根據(3.6)可以得到 的微分是 
TT Tδ δ ′⎡⎣ u uG G ⎤⎦

d
dt
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⎡ ⎤⎡ ⎤
= ⎢ ⎥⎢ ⎥′⎣ ⎦ ⎢ ⎥⎣ ⎦

u 0
u 0

GG
GG                         (3.35) 

    假設雙四元數q 的誤差足夠小，
� Δq�可以根據座標轉移的雙四元數、四元數的

定義(2.27)以及(2.62)近似於 
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將重寫的Δ (3.36)代入微分方程(3.31) q�
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將矩陣 ( )δΩ sG 以定義代入(3.37)得到 
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將(3.38)乘開，得到原式近似於 
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           (3.39) 

在誤差足夠小的情況下，雙四元數Δq�的常數部分會近似於維持定值。因此我們僅

需考慮向量部分。將(3.39)的常數去掉並且左右同乘 2 得到 

3 3d
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              (3.40) 

最後，結合(3.34)、(3.35)以及(3.40)成為一個矩陣微分方程得到 
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         (3.41) 

我們可以把(3.41)視為由主系統狀態變數的誤差所形成的另一個動態方程式。因此
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則(3.41)可以寫成 

d
dt
Δ = Δx D x                         (3.44) 

動態方程式(3.44)是由主系統誤差所形成的系統。若可以準確估測這些誤差，則可

用來補償主系統，使主系統狀態變數的估計值趨近於正確值。因此我們稱(3.44)所

形成的系統為修正系統。 

如同主系統地離散化，將(3.44)離散化後可以得到 

1k k k 1− −Δ = Δx Ψ x                         (3.45) 

我們定義 

( )1
1

k kt t
k e −−
−

DΨ �                         (3.46) 

下節將詳細說明如何估測修正系統的狀態變數並用來修正主系統。 

3.4 利用修正系統修正主系統 

    投影線的估計值是利用雙四元數q 的估計值q 進行轉移後所得到的投影線。因

此是 

� ��
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將投影線以特徵觀察線的估測值為展開點進行泰勒展開 
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             (3.48) 

觀察(3.48)的右半部，有兩個待解決的問題。其一是找出 與前述系統的

狀態變數之間的關係；另一個則是計算一階偏微分。 
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    第一個問題的解決方式是使用(3.1)的矩陣形式，得到 
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則原問題變成 
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             (3.50) 

將(3.36)代入(3.50)，並將雙四元數改以雙向量表示，且利用以下外積性質 

[ ] [ ]× = − ×v w w vG G G G                       (3.51) 

可以得到 
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              (3.52) 

由(3.52)可知，特徵觀察線的真實值與估計值的差可以寫成誤差角度的矩陣關係。

定義矩陣 6 6×η 、 ，並且將誤差角度擴展成修正系統的狀態變數得到 18 18×G
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重新整理(3.53)得到 
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由於投影線得到的是二維資訊，對於三維空間僅有一部分的代表性。所以我們需

要數條投影線解算。假設觀察 m 條特徵觀察線，則(3.54)擴充為 
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    第二個要解決的問題是(3.48)等號右邊的一階偏微分。由線性代數得知偏微分

為 
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觀察(3.17)、(3.18)得知投影線其實是特徵觀察線矩的函數。因此直接以兩式為基礎

對特徵觀察線微分得到 

3 3

ˆ
ˆ ˆ
s s

×

∂ ∂
= =

∂ ∂
l m 0
l l

G
                       (3.57) 

( ) ( ) ( )
( ) ( ) ( )

1.5 0.5 1.52 2 2 2 2 2 2

0.5 1.5 1.52 2 2 2 2 2 2

0
ˆ

0

0 0

x y x y x y y x y

s
x y x x y x y x y

m m m m m m m m m

m m m m m m m m m

− −

− − −

⎡ ⎤+ − + + +
⎢ ⎥

∂ ⎢ ⎥= + − + − +⎢ ⎥∂ ⎢ ⎥
⎢ ⎥⎣ ⎦

l
mG

0

−

(3.58) 

37 
 



 

( )
( ) ( )
( ) ( )
( ) ( )

1.5 1.52 2 2 2 2

0.5 1.5 1.52 2 2 2 2 2 2

1.5 1.52 2 2 2

0

0

0

x x y x y x y

s
x y x y x y y x y

x z x y y z x y

m m m m m m m

m m m m m m m m m

m m m m m m m m

λ λ

− −

− −

− −

−

⎡ ⎤− + − +
⎢ ⎥

∂ ⎢ ⎥= + + − + − +⎢ ⎥∂ ⎢ ⎥
− + − +⎢ ⎥⎣ ⎦

m I
m

G
G  (3.59) 

    我們把量測設為 m 條投影線的量測值與估計值的差，結合(3.48)、(3.55)以及

量測誤差向量 v 可以得到 
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整理(3.60)成為類似(2.78)的形式，在時刻 k 時 

k k k kΔ = Δ +z H x v                         (3.61) 
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    推導至此可以發現(3.45)、(3.61)形成修正系統的動態方程式以及系統輸出。由

於此系統是線性的，因此我們可以使用卡爾曼濾波器估測修正系統的狀態變數。

由於主系統是不偏差的，所以必須假設修正系統的狀態變數估測值也就是主系統
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的誤差均為零，再經由量測更新得到準確的估測值。量測更新前後關係如下 

k
−Δ =x� 0                           (3.63) 
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kΔ = Δx K z�                         (3.64) 
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1− − − −=P Ψ P Ψ Q+                      (3.65) 

    在前面推導為了方便，將雙四元數Δq�寫成(3.36)的常數部分固定形式。然而，

真正的常數部分若如(3.36)是不合理且不符合限制條件的。因此我們必須重新假設

的估計值是 Δq�
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將(3.66)代入限制條件(3.14)得到兩式 
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聯立(3.67)、(3.68)可以解得 x 與 x′為 
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將(3.69)、(3.70)代回(3.66)得到經過量測更新後的轉移雙四元數的誤差估計值，配

合量測更新後的狀態變數估計值(3.62)對主系統狀態變數估計值進行修正如下 
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由於矩陣 是由泰勒展開推導得來，展開點距離真實值越遠則H越沒有代表性，

經由H算出來的卡爾曼增益 越不準確。其中一種解決方式則是如 2.5.2 節提到

的疊代法。經由同一時刻的數次疊代，得到精確的估計值。步驟如下： 

H

kK

1、設定狀態變數估計值的初始值在更新前為零，且設為第零次疊代。

除了(3.65)，計算(3.64)至(3.73)得到量測更新後的估計值。 

2、將(3.64)改成以下形式 

, , 1 ,k n k n k n k n
+ +

−Δ = Δ + Δx x K z� � ,             (3.74) 

重複步驟 1 N 次。其中 n 為疊代次數。因此主系統估測值經過 N 次疊代

修正後會更加趨近真實值，展開點也將更為準確。 

3、疊代 N 次後，以(3.65)前進至下一時刻 k+1。 

我們以流程圖(圖 3.2)方便說明上述疊代步驟 
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圖 3.2 疊代流程圖 

    本節推導了濾波的方法。以(3.69)至(3.71)計算將會符合轉移雙四元數q 的限制

條件，我們稱之為限制型卡爾曼濾波器。下節將重新整理濾波器的濾波流程。 

�

3.5 濾波流程 

    由於以上推導的限制型卡爾曼濾波是複雜遞迴形式，因此需要釐清每步驟之

間的關係。以下將逐步說明濾波步驟 

1、猜測主系統的狀態變數得到狀態變數估測值的初始值。 

2、由主系統估計值的初始值建立修正系統。 

3、修正系統代入卡爾曼濾波器，得到相對應的估計值並且使它們符合

開始 時刻 k

n=0? 

, , 1 , ,k n k n k n k n
+ +

−Δ = Δ + Δx x K z� �

n=N? 

n=n+1 

,0 ,0 ,0k k k
+Δ = Δx K z�  

是 

否 

No 

Yes 

至時刻 k+1 

 



 

限制條件並修正主系統。 

4、重複步驟三疊代數次。 

5、主系統與修正系統經由時間推移關係到達下一時刻。 

6、輸出主系統狀態變數的估計值。 

我們以流程圖(3.3)說明以上的濾波步驟 
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k=0? 猜測估計值 

建立修正系統

建立主系統 

至時刻 k+1 

利用修正系統修正主系統 

疊代數次更新估計值 

否

是 

輸出狀態估計值 

開始 

圖 3.3 限制型卡爾曼濾波器濾波流程 
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3.6 模擬結果與分析 

3.6.1 模擬環境 

    在本章的最後，我們使用電腦軟體 MATLAB 模擬濾波流程。首先說明我們的

模擬環境。初始的座標轉移旋轉軸為 

0.5184
ˆ 0.2074

0.8296

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

n  

旋轉角度為
2.5
πθ = ，位移為 

2
5
20

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

t
G

 

所形成 0q� 。而我們的估計值的初始值為旋轉軸 

0
ˆ 1

0

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

n�  

旋轉角度為 ，位移為 0θ =�

0
0
0

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

t
G�  

形成 0q�� 。物體運動的速度與角速度真實值則分別是 

5
2
5

−⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥−⎣ ⎦

vG  

0.03
0.05

0.2

−⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥−⎣ ⎦

ωG  
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而估計值則分別是 

0
0
0

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

vG�  

0
0
0

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

ωG�  

觀察線則是由六個點所構成。這些點在附體座標系的座標向量分別是

[ ]1 1 3 10 T=pG 、 [ ]2 2 7 14 T=pG 、 [ ]3 3 4 9 T=pG 、 [ ]4 1 5 16 T= −pG 、

[ ]5 2 3 12= −pG T
、 [ ]6 3 4 6 T= −pG 。由 ipG 與 1i−pG 形成直線 。因為有六個點，所

以總共形成五條觀察線。 

il
�

    在演算法的參數方面，我們設定每時刻相距時間 tΔ 為 0.1；初始的誤差共變異

數矩陣 則是 。即使環境是沒有行進雜訊，使用卡爾曼濾波器仍然需要

設定行進雜訊，我們可以想成，沒有雜訊其實是隨機的結果，由白色高斯雜訊的

機率分佈得知其實雜訊等於零的機率是最大的。因此我們設定行進雜訊與量測雜

訊分別是由 13 行與 13 列分割得到的

0
−P 0 =100−P I

0.00001
0.1

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

I 0
0 I

Q 與 0.000004=R I  

    最後，我們將模擬環境整理成(表 3.1)、(表 3.2)與(表 3.3)，如下頁 
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表 3.1 轉移參數真實與估計值 

參數 真實值 估計值 

旋轉軸 0.5184
ˆ 0.2074

0.8296

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

n
0

ˆ 1
0

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

n�

旋轉角度
2.5
πθ =  0θ =�  

位移 2
5
20

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

t
G

 
0
0
0

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

t
G�

角速度 0.03
0.05

0.2

−⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥−⎣ ⎦

ωG  
0
0
0

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

ωG�

速度 5
2
5

−⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥−⎣ ⎦

vG  
0
0
0

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

vG�

 

表 3.2 觀察點附體座標值 

 觀察點附體座標值

第一點 [ ]1 1 3 10 T=pG  

第二點 [ ]2 2 7 14 T=pG  

第三點 [ ]3 3 4 9 T=pG  

第四點 [ ]4 1 5 16 T= −pG  

第五點 [ ]5 2 3 12 T= −pG  

第六點 [ ]6 3 4 6 T= −pG  
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表 3.3 卡爾曼濾波器參數矩陣 

 矩陣 

誤差共變異數初始值
0 =100−P I  

行進雜訊 
12

3

0.00001
0.1

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

I 0
Q

0 I
 

量測雜訊 0.000004=R I  

 

3.6.2 模擬結果 

    濾波演算法的好壞取決於狀態實際值與估測值之間的誤差。我們使用兩種方

法評估誤差。 

    第一種方法是直接地將各狀態變數真實值與估計值相減再取範數。範數越小

代表估計值越接近真實值。(圖 3.4)是誤差共變異數矩陣的跡與時間的關係；(圖 3.5)

是雙四元數實部q 的誤差範數；(圖 3.6)是雙四元數雙部 ′q 的誤差範數；(圖 3.7)是

扭轉速度實部 的誤差範數；(圖 3.8)是扭轉速度雙部sG ′sG 的誤差範數；(圖 3.9)是 ′uG 的

誤差範數。 
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圖 3.4 模擬實驗誤差共變異數矩陣的跡 
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圖 3.5 模擬實驗轉移雙四元數實部的誤差 
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圖 3.6 模擬實驗轉移雙四元數雙部的誤差 
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圖 3.7 模擬實驗扭轉速度實部誤差 
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圖 3.8 模擬實驗扭轉速度雙部誤差 
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圖 3.9 模擬實驗速度與角速度叉積誤差 

 

第二種評估方法比較間接，但更具物理意義。由於實際值與估計值的誤差雙

四元數是 
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0* qΔ⎡ ⎤
Δ = ⊗ ⎢ ⎥Δ⎣ ⎦

q q q
q

� � G                          (3.75) 

所以他們的角度差是 

( )1
02cos qδθ −= Δ                         (3.76) 

位移方面，由(2.62)得知，兩座標的位移是 

*2 ′= ⊗t q q                           (3.77) 

將實際值與估計值分別以(3.75)、(3.76)及(3.77)計算後可以得到估計值與實際值的

角度誤差 (圖 3.10)以及位移誤差(圖 3.11)。 

    根據扭轉速度的定義(2.66)可知，角速度為扭轉速度的實部。並且可以計算出

速度為 

′= − ×v s t ω
GG GG                          (3.78) 

因此可以由估計值算出的速度及角速度與它們的真實值比較，並且將誤差分別做

圖(圖 3.12)、(圖 3.13)。 

0 0.5 1 1.5 2 2.5
0

10

20

30

40

50

60

70

80

time (sec)

at
tit

ud
e 

er
ro

r (
de

g)

 

圖 3.10 模擬實驗姿態誤差 
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圖 3.11 模擬實驗位移誤差 
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圖 3.12 模擬實驗角速度誤差 
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圖 3.13 模擬實驗速度誤差 

 

    最後，我們分析這些模擬結果做為本章的總結。由(圖3.4)至(圖3.13)可以發現，

各個狀態的誤差都收斂至趨近於零，而在物理意義方面，不論是姿態、位移、角

速度還是速度的誤差也都收斂至趨近於零。換句話說，我們的狀態估計值很快的

會趨近於實際值。而這些狀態也符合限制條件。 

    由於觀察到的量測值只與座標轉移雙四元數有直接關係，與扭轉速度為間接

關係，而與u 的關係則更為間接，所以收斂速度是q 大於
�G � s

�G
大於u 。 

�G

    另一方面，限制型卡爾曼濾波器是基於座標轉移雙四元數誤差不大的情況下

推得，但由我們的初始條件可知一開始的猜測值與實際值相差甚大，但最後仍然

能收斂至正確值，由此可知我們的演算法是有效的，初始值的猜測並無特別的限

制。 
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第四章 實驗 

4.1 實驗方法 

    除了使用電腦軟體模擬驗證演算法外，我們也提出實驗。實驗除了用來驗證

演算法的合理性外也檢驗演算法的實用性。 

    首先在待測物體上設定附體座標系。接著在物體上面選擇ㄧ些觀察點，由於

附體座標系是自行設定的，因此我們可以藉由量測得到附體座標系的觀察點座標。

設定觀察點後，另用上一章模擬的方法得到觀察線。接著對物體拍照。由於真實

的相機成像原理不是簡單的針孔成像，而是經過透鏡的作用，所以存在一定的鏡

頭失真。鏡頭失真可能會使物體的比例改變、影像變型，例如值線變成曲線，利

用鏡頭失真的影像解算則可能會得到錯誤的解。所幸目前已有相關的軟體可以修

正此類問題。 

    接下來則是將影像上的點對應到投影面上。使用影像處理軟體觀察觀察點座

標得到的是以相片元素(pixel)做為單位的數值。而我們需要的是投影面上的實際座

標值，所以需要ㄧ些轉換。經由相機型號等資訊可以得到實際投影面(也就是感光

元件)的大小，再經由相片資訊得到一張相片長寬各多少相片元素，由此計算出相

片元素與長度的比例關係，即可算出相片上的觀察點在實際投影面的座標是多少。

由於我們的相機模型得到的像是上下左右顛導實像，因此必須將相片轉一百八十

度。相片上所得到的觀察線即是前章所述的量測值。經由這些量測值再配合我們

的演算法即可算出物體與相機的相對位置與姿態。 

    因為相機座標系是由相機內部所訂出來的，因此量測實際座標值會發生困難，

如此將會難以驗證演算法的真偽。因此在本文我們採用間接的方法驗證。在本文

我們做兩類實驗，分別驗證位置以及姿態。這兩類各自再做兩種實驗，分別是靜

態實驗與動態實驗。 

    首先做位移的靜態實驗，將物體拍照後，重複使用這張照片當做量測可以算

出物體在像機座標系的位置、姿態、速度以及角速度。之後在物體姿態步改變的
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情況下移動以知的距離，重新拍照，並計算物體的位置以及姿態速度角速度等等。

比較這兩次實驗的位置差異是否跟以知的位置差異符合，若符合則代表我們的演

算法可以有效估測出位移；另外檢查角速度與速度的估測值，由於我們重複使用

同一張照片，因此所算出的角速度與速度應該都是零，若得到的角速度與速度估

測值為零，則代表我們演算法可行。 

    由上一個實驗可以知道我們的演算法可行，在基於這個條件下，我們更進一

步的做模擬動態實驗。模擬動態實驗的方法是，每次移動固定距離，然後在不改

變姿態的條件下拍下數張照片。如此就像物體移動的取樣。最後以這些照片當做

輸出進行濾波解算得到位置、姿態、速度與角速度的估測值。我們將第一張照片

做靜態實驗，得到物體的起始點。由於移動軌跡則是我們可以掌握的，因此觀察

估測位置最後有無收斂至移動軌跡，則可以驗證演算法在位移的可行性。另外由

於速度與角速度均為以知，所以也可以經由比較知道我們的估測值準確與否。 

    接下來我們做判斷姿態的實驗。同樣的我們先做靜態實驗，不同於判斷位置

的實驗，前後兩張照片的位移相同但是姿態不同，由於兩者間的姿態角度差異是

已知的，因此比較兩者姿態的角度差異與已知的角度差異是否相同可以判斷演算

法是否可行。如同位移實驗我們也可以判斷估測角速度與速度是否準確。 

    模擬動態實驗也是同樣的方法，不移動物體而物體每次轉動固定角度並且拍

照，最後將這些照片套用至我們的濾波演算法。物體初始值同樣也是使用第一張

照片的靜態估測位置與姿態，而之後的物體旋轉是我們可以掌握的，因此若兩者

物體姿態角度與旋轉軸接近，則可說我們的演算法在判斷姿態上是可行的。同樣

的，我們也可以由已知的速度與角速度判斷估測值是否準確。 

 而在我們的實驗中，相機的焦段都保持固定。 
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4.2 實驗環境與實驗結果 

4.2.1 實驗環境 

  本節說明實驗的環境。首先我們拿一個方盒子，由盒子的邊緣訂出附體座標系

與觀察點如下 

XB 

YB ZB 

OB 

 

圖 4.1 實驗的附體座標系設定 

我們設定觀察線的產生也如同模擬實驗，由 i 點與 i+1 點所構成，總共使用了八個 

點構成七條線。而這些線在附體座標系的樣式如下 
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圖 4.2 特徵觀察線在附體座標系的樣式 

本文的目的是找出慣性座標系也就是相機座標系與附體與附體標系的相對關係。

而實驗的設備是在有刻度的版子上放相機與物體。使用的相機型號是Canon lxus 70，

鏡頭失真則用 Proxel 公司所出的 Lens Corrector 軟體進行修正。 

XB 

ZB YB 
OB 

Z 
O 

X 

Y 

 

圖 4.3 實驗設備 

本實驗環境下做的實驗將在後面兩小節說明。 
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4.2.2 位移 

位移實驗的部分，第一張照片是 

 

圖 4.4 模擬動態實驗位移部分第一張照片 

中間延著 x 方向每移動一公分拍照一次。為了方便，我們取其中幾張圖片重疊在

一起表示物體的移動。 
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圖 4.5 模擬動態實驗位移部分連續拍照 

經過了十次移動，得到十一張照片，最後一張照片是 

 

圖 4.6 模擬動態實驗位移部分最後一張照片 

第一張與最後一張照片在 x 軸相差了十公分，而我們各自做靜態實驗得到位置分

別 是 (-3.1757,4.8804,26.1157) 以 及 (6.08,5.116,27.6432) ， 兩 位 置 向 量 差 則 是

(9.2557,0.2356 ,1.5275)，而理想實際值則是(10,0,0)。在角速度與速度的部分，我們
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用第一張照片的結果做為代表。角速度估計值是 [ ]0 0.0001 0.0003 0.001 T= −ωG� 因

為是靜態實驗，所以實際值則是 [ ]0 =ω 0 0 0 TG
；速度方面，估計值是

[ ]0 0.0062 0.0031 0.0504 T=vG� 、實際值同樣的則是 [ ]0 0 0 0 T=vG 。 

    接下來則是動態實驗的部分。我們假設取樣時間為 1 秒模擬物體連續移動的

取樣，並可由此算出速度。由於物體的真實位置是未知的而靜態實驗顯示我們的

演算法在靜態具有一定的可信度，所以我們大膽的將第一張照片所算出的位置做

為基準(四捨五入取至小數點第一位)，往 x 軸移動做為物體的實際軌跡。實驗的初

始位置、初始速度、初始角速度的估測值與取樣時間數值列表如下 
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表 4.1 位置判斷實驗環境初始估測值 

初始位置估測值 [ ]0 0 0 0 T=t
G�  

初始角速度估測值 [ ]0 0.3 0.3 0.3 T=ωG�

初始速度估測值 [ ]0 1 1 1 T=vG�  

實際的初始位置、角速度、速度以及移動位移同樣列表如下 

表 4.2 位置判斷實驗環境實際值 

初始位置 [ ]0 -3.2 4.9 26.1 T=t
G

角速度 [ ]0 0 0 T=ωG  

速度 [ ]10 0 0 T=vG  

移動位移 [ ]1 0 0 TΔ =t
G

 

取樣時間 1 (sec)tΔ =  

    我們將實驗結果做圖並且評估結果好壞。(圖 4.7)則顯示共變異數矩陣的跡；(圖

4.8)是位置的誤差；(圖 4.9)、(圖 4.10)則分別表示速度與角速度的誤差。最後，我

們將估計位置與實際位置所行進的軌跡做圖(圖 4.11) 
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圖 4.7 模擬動態實驗位移部分誤差共變異數矩陣的跡 
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圖 4.8 模擬動態實驗位移部分的位置誤差 
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圖 4.9 模擬動態實驗位移部分的角速度誤差 
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圖 4.10 模擬動態實驗位移部分的速度誤差 
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圖 4.11 模擬動態實驗位移部分的軌跡預測值與真實值 

    接下來我們再做一次相同的實驗，但是實驗環境不同。同樣地，我們拍了十

一張照片，第一張照片是 

 

圖 4.12 第二次模擬動態實驗位移部分第一張照片 

最後一張照片則是 
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圖 4.13 第二次模擬動態實驗位移部分最後一張照片 

同樣地，以移動一公分拍一張照片模擬物體移動，我們將數張照片重疊在一起表

示如下 

 

圖 4.5 第二次模擬動態實驗位移部分連續拍照 

第一張與最後一張照片在 x 軸相差了十公分，而我們各自做靜態實驗得到位置分

別是 (4.6882,4.9099,28.3159)以及 (-7.0994,4.4502,27.2391)，兩位置向量差則是
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(-11.7876, -0.4597, -1.0768)，而理想實際值則是(-10,0,0)。在角速度與速度的部分，

第一張圖片的角速度估計值 5 5
0 1.6914 10 1.5010 10 3.1173 10

T− −⎡ ⎤= × − × − ×⎣ ⎦ωG� 因

為這是靜態實驗，所以實際值為 [ ]0 0 0 0 T=ωG ；速度方面，估計值是

[ ]0 0.0015 0.0021 0.0023= −vG� T
、實際值同樣的則是 [ ]0 0 0 0 T=vG 。 

    接下來則是模擬動態實驗的部分。同樣地，我們假設取樣時間為 1 秒模擬物

體連續移動的取樣，並可由此算出速度。由於物體的真實位置是未知的而靜態實

驗顯示我們的演算法在靜態具有一定的可信度，所以我們大膽的將第一張照片所

算出的位置做為基準(四捨五入取至小數點第一位)，往 x 軸移動做為物體的實際軌

跡。實驗的初始位置、初始速度、初始角速度的估測值與第一次實驗相同；初始

位置真實值則設為 [ ]0 4.7 4.9 28.3 T=t
G

。 

我們將實驗結果做圖並且評估結果好壞。(圖 4.14)則顯示共變異數矩陣的跡；(圖

4.15)是位置的誤差；(圖 4.16)、(圖 4.17)則分別表示速度與角速度的誤差。最後，

我們將估計位置與實際位置所行進的軌跡做圖(圖 4.18) 
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圖 4.14 第二次模擬動態實驗位移部分誤差共變異數矩陣的跡 
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圖 4.15 第二次模擬動態實驗位移部分的位置誤差 
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圖 4.16 第二次模擬動態實驗位移部分的角速度誤差 
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圖 4.17 第二次模擬動態實驗位移部分的速度誤差 
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圖 4.18 第二次模擬動態實驗位移部分的軌跡預測值與真實值 
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4.2.3 姿態 

    在判斷姿態的實驗方面。我們同樣拍了十一張照片。第一張照片是 

 

圖 4.19 模擬動態實驗轉動部分第一張照片 

同樣的，以每張照片相差五度拍十一張照片總共轉動了五十度，我們將其中數張

照片重疊在一起顯示連續轉動的取樣。 
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圖 4.20 模擬動態實驗轉動部分連續拍照 

最後一張照片則是 

 

圖 4.21 模擬動態實驗轉動部分最後一張照片 

 

第一張與最後一張算出來的姿態差異比較得到旋轉軸是

[ ]ˆ 0.0166 0.9973 0.0709 Tδ = − −n� ，旋轉角度差異則是 。與實際值41.8023δθ = D�
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[ ]0 1 0 Tδ = −nG 、 。在角速度與速度方面，我們同樣拿第一張照片的靜態

實驗結果做為代表。角速度的估計值是

50δθ = D

[ ]0 0.001 0.0009 0.019 T= −ωG� 、因為是靜

態實驗，所以實際值是 [ ]0 =ωG 0 0 0 T
；在速度方面，估計值則是

[ ]0 0.0703= −vG� 0.0478 0.045 T
，而實際值同樣的是 [ ]0 0 0 0 T=vG 。 

    接下來我們將實驗的初始旋轉角預估值、旋轉軸預估值、初始速度及初始角

速度的預估值列表 

表 4.3 姿態判斷實驗初始估計值 

旋轉角 
0 5.642θ =� 6D  

旋轉軸 
[ ]0ˆ 0.4082 0.4082 0.8165 T= −n�

角速度 
[ ]0.1 0.1 0.1 T=ωG�  

速度 
[ ]0 0 10 T=vG�  

 

由靜態實驗可知我們的演算法在姿態判斷是有效的，所以可以由第一張照片所做

出的靜態實驗當做基準值。由第一張照片所得到的旋轉角以及旋轉軸基準，與已

知的速度與角速度等實驗環境實際值也同樣列表如下 

表 4.4 姿態判斷實驗環境真實值 

旋轉角度 
0 92θ = D  

旋轉軸 [ ]ˆ 0.1395 0.1349 0.981 T= − −n

角速度 [ ]0 0.08727 0 T=ωG  

速度 [ ]0 0 0 T=v  

取樣時間 1 (sec)tΔ =  
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最後將實驗結果做圖以評估效果。(圖 4.22)為誤差共變異數矩陣的跡、(圖 4.23)

為實際姿態與估測姿態的角度誤差、(圖 4.24)與(圖 4.25)分別為角速度的誤差與速

度的誤差。最後為了顯示估測結果，我們將沿著附體座標系Ｙ軸的向量在相機座

標系的座標向量做圖並評估估測值與實際值的差異(圖 4.26)。 
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圖 4.22 模擬動態實驗轉動部分共變異數矩陣的跡 
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圖 4.23 模擬動態實驗轉動部分的姿態誤差 
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圖 4.24 模擬動態實驗轉動部分的角速度誤差 
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圖 4.25 模擬動態實驗轉動部分的速度誤差 
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圖 4.26 模擬動態實驗轉動部分的 Yb 向量 

如同位移的實驗，我們也做了第二次的轉動實驗。同樣地，我們拍了十一張照片，

每張旋轉五度，總共旋轉了五十度。第一張照片是 

 

圖 4.27 第二次模擬動態實驗轉動部分第一張照片 

最後一張照片則是 
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圖 4.28 第二次模擬動態實驗轉動部分最後一張照片 

我們將幾張照片重疊在一起以突顯轉動的效果。 

 

圖 4.29 第二次模擬動態實驗轉動部分連續拍照 

在第二次轉動實驗中，我們的初始姿態、速度、角速度的估計值設定都與第一次

實驗相同。而初始姿態的真實值則由第一張圖片靜態實驗結果設定為 、0 92θ = D
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[ ]ˆ 0.4809 0.4685 0.7411 T= − −n 。 

如同第一次實驗，我們將結果做圖以顯示效果。(圖4.30)為誤差共變異數矩陣的跡、

(圖 4.31)為實際姿態與估測姿態的角度誤差、(圖 4.32)與(圖 4.33)分別為角速度的

誤差與速度的誤差。最後為了顯示估測結果，我們將沿著附體座標系Ｙ軸的向量

在相機座標系的座標向量做圖並評估估測值與實際值的差異(圖 4.34)。 
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圖 4.30 第二次模擬動態實驗轉動部分共變異數矩陣的跡 
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圖 4.31 第二次模擬動態實驗轉動部分姿態誤差 
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圖 4.32 第二次模擬動態實驗轉動部分角速度誤差 
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圖 4.33 第二次模擬動態實驗轉動部分速度誤差 
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圖 4.34 第二次模擬動態實驗轉動部分的 Yb 向量 

 

4.3 實驗結果分析 

    由 4.2 節的實驗結果可以看出來我們的濾波方法即使初始估測離真實值很遙

遠，仍然可以收斂至真實值附近；並且在第二、三張相片就逼近真實的軌跡。而

速度與角速度估測則相對較不準確且收斂速度較慢，這是由於觀測值與物體的位

置姿態直接相關，而與角速度及速度關係較為間接。這些特性與 3.6 節的模擬結果

頗為相近。 

    在實驗中僅考慮到相片的鏡頭變形問題，未能更深入的考慮到各照片變焦的

關係，以及處理變形有一定程度的失真；另一方面，由於慣性座標系是由相機所

定出來的，在拍照的時候相機些微的晃動造成估測仍然有一定的誤差。 
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第五章 結論與未來展望 

5.1 結論 

    本文提出了一個新的濾波方法，以座標轉移雙四元數做為狀態變數，並且透

過物體的鏡面投影做為量測，估測出物體的位置與姿態。 

    利用四元數與雙四元數相似的特性，以雙四元數座標轉移運動方程式和假設

轉移雙四元數估測值與實際值相去不遠的條件下建立修正系統，進而修正主系統

以符合座標轉移雙四元數的限制條件。另一方面，由於引入了扭轉速度以及座標

轉移運動方程式，使的雙四元數不需要如以往的方法拆成旋轉以及位移兩部分分

別處理，保留了雙四元數同時處理座標轉移的特性。 

    在模擬方面，我們假設附體座標系的位置和姿態實際值與初始估計值相差甚

遠。代入我們所設計的濾波器後，可以很快的估測出物體的位置與姿態。由於速

度與角速度與量測關係較為間接，因此估測速度較為緩慢，但仍然有不錯的估測

效果，同樣十分接近實際值。因此我們可以得到的結論除了演算法的正確外，另

一個重點是即使演算法是由假設誤差不大的情況下推導而來，實際上在初始誤差

很大的情況下仍然適用。因此，我們設計的濾波器在使用上並無太大限制。 

    由於在實際情況中，狀態的真實值是我們無法掌握的，因此實驗的初始估測

值只能隨意猜測，因此具有一定的誤差。實驗結果雖然存在誤差，但仍然收斂至

一定範圍內，証明我們設計的濾波器在估測位置與姿態上有實際應用的可能。而

其他特性則如同模擬結果，位置與姿態估測值收斂較快，在前幾張圖片就可以明

顯看到誤差大幅降低；而角速度與速度等間接估測到的資訊收斂速度則緩慢許

多。 

5.2 未來展望 

    本論文仍有ㄧ些地方需要改進，本節將提出須改進的部分並嘗試提出可能的

做法。 
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    首先是最先面對的問題，在真實世界中，物體的運動模式未必是等速度與等

角速度。在等加速度與等角加速度的情況下，我們可以擴展狀態變數，利用等加

速度與等角加速度微分為零的特性，類似於本文的方法繼續推導。 

    由於我們的量測是二維空間的投影，但是二維投影將無法完整的表達三維空

間的資訊。因此我們必須同時觀察許多線，藉由這些線經過同樣轉移的性質以求

得三維資訊。然而本文僅使用經驗法則以及參考以往論文決定使用的線數目。未

來應對此問題的數學性質做深入的探討。 

    本文的推導並無考慮行進雜訊與量測雜訊的對物體運動的影響，僅在濾波時

加入行進雜訊與量測雜訊矩陣。若將雜訊造成的物體運動一併考慮，則本文的推

導在數學上將更具備完整性。 

    本文雖名為限制型卡爾曼濾波器，然而僅適用於此類姿態與位置判斷的問題。

未來仍可以嘗試找尋適合所有帶有限制條件系統的卡爾曼濾波器，並且比較其與

我們所設計的濾波器適用性、效果好壞等等。 

    在實驗方面，我們的鏡頭失真直接使用軟體修正，並未仔細尋找合適的演算

法。採用軟體後照片將會有一定程度的變型與大小改變，將影響實驗的品質。此

外，本文在模擬動態實驗中，並無考慮每張照片變焦的問題，這也會影響量測值

進而影響我們的實驗結果。 

    未來希望能使用攝影機並且配合載具，進行動態實驗。如此將能進一步說明

我們的限制型卡爾曼濾波器具有實際應用的價值。  
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