Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 土木工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/10312
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor羅俊雄
dc.contributor.authorTing-Yu Hsuen
dc.contributor.author許丁友zh_TW
dc.date.accessioned2021-05-20T21:19:13Z-
dc.date.available2013-01-17
dc.date.available2021-05-20T21:19:13Z-
dc.date.copyright2011-01-17
dc.date.issued2010
dc.date.submitted2010-12-28
dc.identifier.citation1. Akaike H., (1974) “A new look at the statistical model identification.” IEEE Transactions on Automatic Control, 19, 716-723.
2. Aktan A.E., Lee K.L., Chuntavan C., Aksel T., (1994) “Modal testing for structural identification and condition assessment of constructed facilities,” Proceedings of 12th International Modal Analysis Conference, Honolulu, HI, pp.462–468.
3. Allemang R. J., (1980) Investigation of Some Multiple Input/Output Frequency Response Function Experimental Modal Analysis Techniques. Doctor of Philosophy Dissertation, University of Cincinnati, Department of Mechanical Engineering, pp. 141-214.
4. Alampalli S., (1998) “Influence of in-service environment on modal parameters.” Proceedings of the 16th International Modal Analysis Conference (IMAC-XVI), Santa Barbara, California, 1, 111–116.
5. Allemang R. J., (1999) Vibrations: Experimental Modal Analysis, Course Notes, Seventh Edition, Structural Dynamics Research Laboratory, University of Cincinnati, OH.
6. Araujo dos Santos J. V., Mota Soares C. M., Mota Soares C. A., Maia N. M. M., (2005) “Structural damage identification in laminated structures using FRF data.” Composite Structures, 67, 239-249.
7. Askegaard V. and Mossing P., (1988) “Long term observation of RC-bridge using changes in eigenfrequencies.” Nordic Concrete Research, 7, 20-27.
8. Bendat J. S. and Piersol A. G., (1980) Engineering Applications of Correlation and Spectral Analysis. Wiley, New York.
9. Bernal D., (2002) “Load Vectors for Damage Localization,” Journal of Engineering Mechanics, Vol. 128, No. 1, pp. 7-14.
10. Caicedo J. M., (2003) Structural health monitoring of flexible civil structures. PhD Thesis, Washington University
11. Caicedo J.M., Dyke S.J., Johnson E.A., (2004) “NExT and ERA for phase I of the IASC-ASCE benchmark problem.” Journal of Engineering Mechanics (ASCE), 130(1), 49–60.
12. Carden E. P. and Paul F., (2004) “Vibration Based Condition Monitoring: A Review,” Structural Health Monitoring, 3(4), 335-377.
13. Chang C. P., Flatau A. and Liu S. C., (2003) “Review Paper: Health Monitoring of Civil Infrastructure,” Structural Health Monitoring, 2(3), 257-267.
14. Cybenko G., (1989) “Approximation by superpositions of a sigmoidal function.” Math. Control Signals System, 2, 303–14.
15. Doebling S. W., Farrar C. R., Prime M. B., and Shevitz D. W., (1996) Damage identification and health monitoring of structure and mechanical systems from changes in their vibration characteristics: A literature review. Research Rep. No. LA-13070-MS, ESA-EA, Los Alamos National Laboratory, Los Alamos, N.M.
16. Doebling S. W., Hemez F. M., Peterson L. D., and Farhat C. (1997). “Improved damage location accuracy using strain energy based on mode selection criteria.’’ AIAA J., 35(4), 693–699.
17. Ewins D. J., (2000) Modal Testing: Theory, Practice and Application. Research Studies Press, Baldock, Hertfordshire, UK.
18. Farrar C.R. and Doebling S.W., (1999) Damage detection II: field applications to large structures. In: Silva, J.M.M. and Maia, N.M.M. (eds.), Modal Analysis and Testing, Nato Science Series. Dordrecht, Netherlands: Kluwer Academic Publishers.
19. Fox R. L., and Kapoor M. P., (1968) “Rates of Change of Eigenvalues and Eigenvectors,” AIAA J., 6(12), 2426-2429.
20. Friswell M.I. and Penny J.E.T., (1997) “Is damage location using vibration measurements practical?” In: Structural Damage Assessment Using Advanced Signal Processing Procedures, Proceedings of DAMAS’97, University of Sheffield, UK, Sheffield Academic Press Ltd., pp. 351–362.
21. Fritzen C.P. and Jennewein D. (1998). “Damage detection based on model updating methods,” Mechanical Systems and Signal Processing, 12(1), 163–186.
22. Furukawa A., Kiyono J., Iemura H. and Otsuka H., (2005) “Damage identification method using harmonic excitation force considering both modelling and measurement errors.” Earthquake Engineering and Structural Dynamics, 34,1285-1304.
23. Giraldo D. F., (2006) A Structural Health Monitoring Framework for Civil Structures, PhD Thesis, Washington University.
24. Giraldo D. F., Dyke S. J., Caicedo J. M., (2006) “Damage detection accommodating varying environmental conditions.” Structural Health Monitoring, 5, 155-172.
25. Guyan R., (1965), “Reduction of Mass and Stiffness Matrices.” AIAA Journal, Vol. 3, pp. 380.
26. Hermans L., and Van der Auweraer H., (1999) ‘‘Modal testing and analysis of structures under operational conditions: industrial applications,’’ Mech. Syst. Signal Process., 13, No. 2, pp. 193–216.
27. Heylen W., Lammens S., and Sas P., (1997) Modal analysis theory and testing. Department of Mechanical Engineering, Katholieke Universiteit Leuven, Leuven, Belgium.
28. Holland J., (1975) Adaptation in Natural and Artificial Systems, University of Michigan Press, Ann Arbor, MI.
29. Hsu T.Y. and Loh C.H., (2008) “Damage Diagnosis of Frame Structures Using Modified Modal Strain Energy Change Method”, Journal of Engineering Mechanics, Vol.134, No.11, pp.1000-1012. [SCI,EI]
30. Hsu T. Y. and Loh C. H., (2009) “Damage detection using frequency response functions under ground excitation.” Proc. of the 16th Int'l SPIE Symposium on Smart Structures and Materials and Nondestructive Evaluation and Health Monitoring, March 2009, San Diego, CA, USA.
31. Hsu T.Y. and Loh C.H., (2010) “Damage Detection Accommodating Nonlinear Environmental Effects by Nonlinear Principal Component Analysis”, Journal of Structural Control & Health Monitoring, Vol. 17, Issue 3, pp. 338-354. [SCI,EI]
32. Juang J.N., (1996) Applied System Identification. Prentice-Hall, Englewood Cliffs,
33. Kidder R., (1973) “Reduction of Structural Frequency Equations.” AIAA Journal, Vol. 11, No. 6.
34. Kim C.Y. Jung D.S. Kim N.S. & Yoon J.G., (1999) “Effect of vehicle mass on the measured dynamic characteristics of bridges from traffic-induced test.” Proceedings of the 19th International Modal Analysis Conference (IMAC XIX), Kissimmee, FL, pp.1106-1110
35. Kramer M.A., (1991) “Nonlinear principal component analysis using auto-associative neural networks.” AIChE Journal, 37, 233–243.
36. Kullaa J., (2001) “Elimination of environmental influences from damage-sensitive features in a structural health monitoring system.” in: Fu-Kuo Chang (Ed.), Structural Health Monitoring—the Demands and Challenges, CRC Press, Boca Raton, FL, 742–749.
37. Lee U. and Shin J., (2002) “A frequency-domain method of structural damage identification formulated from the dynamic stiffness equation of motion.” Journal of Sound Vibration, 257(4), 615-634.
38. Lim T. W., and Kashangaki T. A. L., (1994) ‘‘Structural damage detection of space truss structures using best achievable eigenvectors.’’ AIAA J., 32(5), 1049–1057.
39. Lin R. M. and Ewins D. J., (1994) “Analytical model improvement using frequency response functions.” Mechanical Systems and Signal Processing, 8(4), 437-458.
40. Lu K.C., Loh C.H., Yang J.N., Lin P.Y., (2008) “Decentralized Sliding Mode Control of Building Using MR-Dampers,” Smart Material and Structures, 17(5), 055006.
41. Lu K.C., Loh C.H., Yang Y.S., Lynch J.P., Law K. HJ., (2008) “Real-time structural damage detection using wireless sensing and monitoring system,” Smart Structures and Systems, Vol. 4, No. 6, 759-778.
42. Lynch J. P. and Loh K. J., (2006) “A Summary Review of Wireless Sensors and Sensor Networks for Structural Health Monitoring,” The Shock and Vibration Digest, 38(2), 91-128.
43. Manson G., (2002) “Identifying damage sensitive, environmental insensitive features for damage detection.” In 3rd Int. Conf. Identification in Engineering Systems, University of Wales Swansea, UK.
44. Mayes R.L., (1995) “An experimental algorithm for detecting damage applied to the i-40 bridge over the Rio Grande,” Proceedings of the 13th International Modal Analysis Conference, Nashville, TN, February 13–16, pp.219–225.
45. Marple Jr. S.L., (1987) Digital Spectral Analysis with Applications. Prentice Hall, Englewood Cliffs, Chapter 8.
46. Orfanidis S.J., (1996) Optimum Signal Processing: An Introduction. 2nd Edition, Prentice-Hall, Englewood Cliffs, NJ.
47. O’Callahan J., Avitabile P. and Riemer R., (1989) “System Equivalent Reduction Expansion Process (SEREP),” IMAC VII, pp. 29–37.
48. Pandey A.K., Biswas M. and Samman M.M., (1991) “Damage detection from changes in curvature mode shapes,” Journal of Sound and Vibration, 145(2), 321–332.
49. Peeters B. and De Roeck G., (2001) “One-year monitoring of the Z24-Bridge: environmental effects versus damage events.” Earthquake Engineering and Structural Dynamics, 30, 149-171.
50. Peeters B. and Ventura C. E., (2003) “Comparative Study of Modal Analysis Techniques for Bridge Dynamic Characteristics,” Mechanical Systems and Signal Processing, 17(5), 965-988.
51. Ren W. X. and Roeck G. D., (2002) “Discussion of “Structural damage detection from elemental modal strain energy change” by Z. Y. Shi. S. S. Law, and L. M. Zhang.” J. Eng. Mech., Vol. 128, No. 3, 376–377.
52. Reynders E. and De Roeck G., (2008) “The Local Flexibility Method for Vibration-based Damage Localization and Quantification.” In Proceedings of the 26th International Modal Analysis Conference (IMCA XXVI), Orlando, FL, February 4~7.
53. Reynders E. and De Roeck G., (2010) “A Local Flexibility Method for Vibration-based Damage Localization and Quantification.” Journal of Sound and Vibration, Volume 329, Issue 12, pp. 2367-2383.
54. Ricles J. M., and Kosmatks J. B., (1992) “Damage detection in elastic structures using vibratory residual forces and weighted sensitivity.” AIAA J., 30(9), 2310–2316.
55. Rohrmann R.G., Baessler M., Said S., Schmid W., Ruecker W.F., (2000) “Structural causes of temperature affected modal data of civil structures obtained by long time monitoring.” Proceedings of the 18th international modal analysis conference, Sun Antinio, TX, USA, 1–7.
56. Rushton A, Pearson A.J., Roberts G.P., (1999) Brite-EuRam project SIMCES, task 1, environmental monitoring of Z24-Bridge. Technical Report AM3548/R004, WS Atkins, Bristol, UK.
57. Rytter A. (1993) Vibration based inspection of civil engineering structures. PhD. Thesis, Alborg University, Denmark.
58. Shi Z. Y., Ding X. H., and Gu H. Z., (1995) ‘‘A new model reduction and expansion method.’’ Proc., Int. Conf. on Struct. Dyn., Vibration, Noise and Control, 847–852.
59. Shi Z. Y., Law S. S., and Zhang L. M., (1998) ‘‘Structural damage localization from modal strain energy change.’’ J. Sound Vib., 218(5), 825–844.
60. Shi Z. Y., Law S. S., and Zhang L. M., (2000) ‘‘Structural damage detection from elemental modal strain energy change.’’ J. Eng. Mech., 126(12), 1216–1223.
61. Shi Z. Y., Law S. S., and Zhang L. M., (2002) ‘‘Improved Damage Quantification from Elemental Modal Strain Energy Change.’’ J. Eng. Mech., 128(5), 521–529.
62. Sohn H., Dzwonczyk M., Straser E.G., Kiremidjian A.S., Law K.H., Meng T., (1999) “An experimental study of temperature effect on modal parameters of the Alamosa Canyon Bridge.” Earthquake Engineering and Structural Dynamics, 28, 879–897.
63. Sohn H., Worden K., Farrar C.F., (2001) “Novelty detection under changing environmental conditions.” SPIE’s Eighth Annual International Symposium on Smart Structures and Materials, Newport Beach, CA. (LA-UR-01-1894).
64. Sohn H., Farrar C.R., Hemez F.M., Shunk D.D., Stinemates D.W., Nadler B.R., (2004) “A review of structural health monitoring literature: 1996–2001”, Report LA-13976-MS, Los Alamos National Laboratory, Los Alamos, NM.
65. Sohn H., Park G., Wait J. R., Limback N. P. & Farrar C. R., (2003) “Wavelet-based active sensing for delamination detection in composite structures.” Smart Mater. Struct. 13, 153–160.
66. Stubbs N., and Kim J. T., (1996). ‘‘Damage localization in structures without base-line modal parameters.’’ AIAA J., 34(8), 1644–1649.
67. Toksoy T. and Aktan A.E., (1994) “Bridge-condition assessment by modal flexibility, Experimental Mechanics, 34(3), 271–278.
68. Teughels A., De Roeck G., Suykens J.A.K., (2003) “Global optimization by coupled local minimizers and its application to FE model updating,” Computers and Structures, 81 (24–25), 2337–2351.
69. Thomas R. S., Charles J. C. Joanne L. W. Howard M. A. (1988). “Comparison of Several Methods for Calculating Vibration Mode Shape Derivatives.” AIAA J., 26(12), 1506–1511.
70. Van Overschee P. and De Moor B., (1996) Subspace Identification for Linear Systems: Theory - Implementation - Applications, Kluwer Academic Publishers, Dordrecht, The Netherlands.
71. Wahab M.M.A. and De Roeck G., (1999) “Damage detection in bridges using modal curvatures: applications to a real damage scenario,” Journal of Sound and Vibration, 226(2), 217–235.
72. Wang Y., Lynch J.P. and Law K.H., (2005) 'Wireless structural sensors using reliable communication protocols for data acquisition and interrogation,' Proceedings of the 23rd International Modal Analysis Conference (IMAC XXIII), Orlando, FL, January 31 - February 3.
73. Wang Y., (2007) Wireless Sensing and Decentralized Control for Civil Structures: Theory and Implementation. Ph. D. Thesis, Stanford University.
74. Wang Z., Lin R. M., Lim M. K., (1997) “Structural damage detection using measured FRF data.” Computer Methods in Applied Mechanics and Engineering, 147, 187-197
75. Watson D.K. and Rajapakse R.K.N.D., (2000) “Seasonal variation in material properties of a flexible pavement.” Canadian Journal of Civil Engineering, 27(1), 44-54.
76. Weng J.H., Loh C.H., Lynch J.P., Lu K.C., Lin P.Y., Wang Y., (2008) “Output-Only Modal Identification of a Cable-Stayed Bridge Using Wireless Monitoring Systems,” J. of Engineering Structure, 30 (2), 1802-1830.
77. Weng J.H., (2010) Application of Subspace Identification in System Identification and Structural Damage Detection, Ph.D. Dissertation, National Taiwan University.
78. Wood M. G., (1992) Damage analysis of bridge structures using vibrational techniques. PhD. Thesis, Department of Mechanical and Electrical Engineering, University of Aston, Birmingham, UK.
79. Xia Y., Hao H., Zanardo G., Deeks A., (2006) “Long term vibration monitoring of an RC slab: Temperature and humidity effect.” Engineering Structures, 28, 441-452.
80. Xiao H., Bruhns O. T., Waller H. Meyers A., (2001) “An input/output-based procedure for fully evaluating and monitoring dynamic properties of structural systems via a subspace identification method.” Journal of Sound and Vibration, 246(4), 601-623.
81. Yan A.M., Kerschen G., De Boe P., Golinval J.C., (2005a) “Structural damage diagnosis under changing environmental conditions—Part I: A linear analysis.” Mechanical Systems and Signal Processing, 19, 847-864.
82. Yan A.M., Kerschen G., De Boe P., Golinval J.C. (2005b) “Structural damage diagnosis under changing environmental conditions—Part II: local PCA for non-linear cases.” Mechanical Systems and Signal Processing, 19, 865-880.
83. Zhang Z. and Aktan A.E. (1995) “The damage indices for the constructed facilities,” Proceedings of the 13th International Modal Analysis Conference, Nashville, TN, February 13–16, pp.1520–1529.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/10312-
dc.description.abstract本論文之目標在於發展可偵測土木結構損壞位置與損壞程度的方法,並考慮結構受到環境的非線性影響。本論文所欲偵測之結構損壞係指結構勁度折減之情形。
本論文改進「模態應變能改變法」(modal strain energy change method),以克服其應用於三維鋼構建築結構所遭遇之困難,改進的部分包括:(1) 於識別方程式中加入特徵值與模態應變能改變之關係,以增加求解識別方程式之數值穩定性;(2) 由偵測「桿件概損程度」擴充至「桿件斷面性質概損程度」;(3) 於每步迭代時根據上一步之結果更新迭代之目標;(4) 利用未取絕對值之模態應變能變化來決定可能的損壞桿件;(5) 利用動力擴展法來擴展自由度不完全之模態形狀;(6) 藉由設置門檻值避免桿件模態應變能過低造成之數值問題。改進後之模態應變能改變法係利用上述三維鋼構建築結構之數值案例與實驗案例進行驗證。
本論文提出「頻率響應函數變化法」(frequency response function change method)來偵測結構損壞的位置與程度,該法須使用的資訊包括結構破壞前受地表激振下之頻率響應函數、破壞後受地表激振下之頻率響應函數,以及結構破壞前之系統矩陣。頻率響應函數變化法係利用六層鋼構建築結構之數值案例與實驗案例進行驗證。
此外,本論文將頻率響應函數變化法與無線感測系統進行整合。將頻率響應函數變化法所需之演算法植入無線感測元件,發揮無線感測系統分散運算之優勢,同時大幅節省無線感測元件之耗電量。此一透過無線感測系統之線上(on-line)自動化偵測損壞位置與損壞程度的概念,已成功應用於上述六層樓鋼構建築結構之實驗案例。
本論文亦探討「局部柔度法」(local flexibility method)應用於建築結構損壞偵測之可行性,其應用案例包括低樓層剪力型建築與高樓層柔性建築之數值模型及上述六層樓鋼構建築結構之實驗案例。此外,亦比較運用兩種不同演算法所得之柔度矩陣於局部柔度法損壞偵測之結果。
在工程實務上,結構損壞偵測必須克服環境影響而造成的困難,因此本論文提出一處理識別之桿件損壞程度受到環境影響的方法,並強調可在不量測環境變數下處理非線性的環境影響。該法係藉由訓練自相關類神經網路(auto-associative neural network)來進行非線性主成分分析(nonlinear principal component analysis),以萃取環境變數的影響方式。之後,藉由所提出之預測模式可更精確的識別桿件損壞程度。
zh_TW
dc.description.provenanceMade available in DSpace on 2021-05-20T21:19:13Z (GMT). No. of bitstreams: 1
ntu-99-D93521024-1.pdf: 2026690 bytes, checksum: 7151a28ab94cc7d2a20c4af46e8d2e6e (MD5)
Previous issue date: 2010
en
dc.description.tableofcontents口試委員會審定書 I
ACKNOLEDGEMENTS II
ABSTRACT III
中文摘要 V
CONTENTS VII
LIST OF TABLES X
LIST OF FIGURES XII
1. INTRODUCTION 1
1.1. Damage Detection of Civil Structures 2
1.2. Environmental Effects in Civil Infrastructure 3
1.3. Classification of Vibration-based Damage Detection Techniques 5
1.4. State-of-the-art of Vibration-based Damage Detection Techniques 7
1.4.1. Methods Based on MSE 8
1.4.2. Methods Based on FRF 9
1.4.3. Methods Based on Dynamic Flexibility Matrix 11
1.4.4. Methods Treating Environmental Effects 12
1.5. Remaining Challenges 14
1.6. Focus and Outline of the Thesis 16
2. MODAL IDENTIFICATION TECHNIQUES 20
2.1. Data-Driven Subspace Identification Technique 21
2.1.1. Stochastic Subspace Identification 22
2.1.2. Combined Deterministic - Stochastic Subspace Identification 26
2.1.3. Determining Stiffness and Damping Matrices 30
2.1.4. Determining Flexibility Matrices 32
2.2. Linking Experimental and Analytical Data 35
2.2.1. Modal Assurance Criterion 35
2.2.2. Mean Phase Deviation 35
2.2.3. Expansion and Reduction 38
2.2.3.1. Static and Dynamic Expansion and Reduction 38
2.2.3.2. System Equivalent Reduction and Expansion Process 39
3. DAMAGE DETECTION METHODOLOGY 40
3.1. Modal Strain Energy Change Method 41
3.1.1. Original Modal Strain Energy Change Method 41
3.1.1.1. Damage Localization 41
3.1.1.2. Damage Quantification 42
3.1.2. Modified Modal Strain Energy Change Method 44
3.1.2.1. Modification for Damage Localization 44
3.1.2.2. Including Sensitivity of Eigenvalue 45
3.1.2.3. Expansion of Element Stiffness 46
3.1.2.4. Iteration Process 48
3.1.2.5. Convergence Criterion 50
3.2. Frequency Response Function Change Method 50
3.2.1. Methodology 51
3.2.2. Integrated with wireless sensing systems 57
3.3. Local Flexibility Method 60
3.3.1. General Principle 61
3.3.2. Application to Bending Stiffness of Beam Structures 63
4. VERIFICATION OF DAMAGE DETECTION METHODOLOGY 66
4.1. Modal Strain Energy Change Method 66
4.1.1. Target Structure Description 67
4.1.1.1. Experimental Setup 67
4.1.1.2. Identified Modal Parameters of the Target Structure 70
4.1.1.3. FE Model of the Target Structure 71
4.1.2. Numerical Validation 72
4.1.2.1. Preliminary Study on MSECR 73
4.1.2.2. Preliminary Study on Modal Expansion Methods 75
4.1.2.3. Preliminary Study on a 3D Frame Structure for MSECR 77
4.1.2.4. Comparison between Original and Modified MSEC Method 79
4.1.2.5. Comparison between Original and Modified Iteration Process 84
4.1.2.6. Study of the Effect Caused by Modal Expansion with Limited Measurement of the Target Structure 86
4.1.3. Experimental Validation 89
4.1.3.1. Modified MSEC Method 89
4.1.3.2. Original MSEC Method 93
4.2. Frequency Response Function Change Method 96
4.2.1. Numerical Validation 96
4.2.1.1. Test Structure Description 96
4.2.1.2. Effects of Measurement Noise 97
4.2.1.3. Effects of Modeling Error 100
4.2.2. Experimental Validation 103
4.2.2.1. Test Structure Description 103
4.2.2.2. Damage Cases 105
4.2.2.3. Excitation and Measurement 106
4.2.2.4. Data Preparing for FRFC Method 107
4.2.2.5. Damage Detection Results of FRFC Method 109
4.2.3. Experimental Validation of Integration with Wireless sensing systems 111
4.2.3.1. Wireless Sensing Unit 111
4.2.3.2. Experimental Setup 113
4.2.3.3. Imbedded Algorithms in the Wireless Sensing Unit 115
4.2.3.4. Quality of the Wireless Sensor Data 116
4.2.3.5. Damage Detection Results of FRFC Method Integrated with WSU 118
4.2.3.6. Energy Efficiencies Gained from Integrating FRFC Method with WSS 120
4.3. Local Flexibility Method 124
4.3.1. Numerical Validation 124
4.3.1.1. A 6-story shear building 124
4.3.1.2. A 50-story flexible building 126
4.3.2. Experimental Validation 128
5. DAMAGE DETECTION ACCOMMODATING NONLINEAR ENVIRONMENTAL EFFECTS 142
5.1. Methodology 143
5.1.1. Nonlinear Principal Component Analysis 143
5.1.2. Prediction Model 146
5.2. Numerical Validation 148
5.2.1. The Identification Model 148
5.2.2. Synthetic Environmental Effects 149
5.2.3. Damage Cases 149
5.2.4. Numerical Results 151
6. CONCLUSIONS AND FUTURE WORKS 154
6.1. Conclusions 154
6.2. Future work 159
REFERENCE 161
CURRICULUM VITAE 166
dc.language.isoen
dc.title土木基礎結構損壞偵測技術:含非線性環境影響之考慮zh_TW
dc.titleDamage Detection of Civil Infrastructures
Including Treatment of Nonlinear Environmental Effects
en
dc.typeThesis
dc.date.schoolyear99-1
dc.description.degree博士
dc.contributor.oralexamcommittee張國鎮,蔡克銓,林其璋,呂良正,黃震興,卿建業
dc.subject.keyword健康診斷,損害識別,系統識別,非線性環境影響,模態應變能,頻率響應函數,柔度矩陣,zh_TW
dc.subject.keywordstructural health monitoring,damage detection,system identification,nonlinear environmental effects,modal strain energy,frequency response function,flexibility matrix,en
dc.relation.page166
dc.rights.note同意授權(全球公開)
dc.date.accepted2010-12-29
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept土木工程學研究所zh_TW
顯示於系所單位:土木工程學系

文件中的檔案:
檔案 大小格式 
ntu-99-1.pdf1.98 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved