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ABSTRACT 

The objective of this thesis is to develop techniques to localize and quantify damage in 

civil structures under nonlinear environmental effects. The damage that is aimed at to 

detect in this thesis is the damage that causes stiffness reduction in a structure. 

The modified modal strain energy change (MSEC) method is developed to overcome 

some difficulties when applying MSEC method to a 3D steel building structure. The 

modifications include: (i) adding sensitivity equations between eigenvalue and 

elemental stiffness variation ratios to the damage identification equation which contains 

only sensitivity equations between MSEC and elemental stiffness variation ratios; (ii) 

expanding these sensitivity equations from “elemental stiffness variation ratios” to 

“elemental sectional property variation ratios”; (iii) a new iteration process which 

updates the targets in every iterating step; (iv) using the non-absolute MSEC ratio while 

selecting suspected damage elements; (v) using dynamic expansion to obtain mode 

shapes with complete degree of freedoms (DOFs) from the meausred imcomplete mode 

shapes; (vi) setting thresholds to avoid elements causing abnormal results. The 

feasibility of the modified MSEC method is verified through numerical studies and 

experimental studies. 

The frequency response function change (FRFC) method to detect damage locations and 

extents based on the change of the frequency response functions (FRFs) of a structure 

under ground excitation is proposed in this thesis. The system matrices of the intact 

system and the FRFs both prior and posterior to an occurrence of damage are required 

for the FRFC method. The feasibility of the FRFC method is verified by numerical 

studies and experimental studies of a 6-story steel building structure with several 

damage cases.  

Besides, an operational scheme for integrating the FRFC method with wireless sensing 

systems is developed. By imbedding algorithms necessary for the FRFC method into 

wireless sensing units, the advantage of collocated computing resources of wireless 

sensing systems is taken effect and at the same time the energy consumed by wireless 

sensing units is greatly reduced. The on-line automatic damage localization and 

quantification of the 6-story steel building structure is successfully accomplished. 
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The feasibility of the local flexibility method (LFM) to detect damage of a shear-type 

low-rise building structure and a flexible high-rise building structure is studied with 

numerical and experimental cases. The comparison of using flexibility matrices 

constructed by two different algorithms to detect damage using the LFM is also 

conducted. 

The stiffness variation of the structural components is identified from the measured data 

within a short duration where environmental factors are assumed nearly constant. In 

practice, the stiffness variations identified at different time fragments always fluctuate 

with environmental factors. The stiffness variation caused by damage may be smeared 

by these environmental effects. A new method which deals with environmental effects 

on the identified damage extent of each component without measuring the 

environmental factors is proposed, especially for nonlinear environmental effects. This 

is achieved by training an auto-associative neural network (AANN) to perform 

nonlinear principal component analysis (NPCA) to extract the underlying environmental 

trend. Then the damage extent can be estimated more accurately by a proposed 

prediction model.  
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中文摘要 

本論文之目標在於發展可偵測土木結構損壞位置與損壞程度的方法，並考慮結構

受到環境的非線性影響。本論文所欲偵測之結構損壞係指結構勁度折減之情形。 

本論文改進「模態應變能改變法」(modal strain energy change method)，以克服其應

用於三維鋼構建築結構所遭遇之困難，改進的部分包括：(1) 於識別方程式中加入

特徵值與模態應變能改變之關係，以增加求解識別方程式之數值穩定性；(2) 由偵

測「桿件概損程度」擴充至「桿件斷面性質概損程度」；(3) 於每步迭代時根據上

一步之結果更新迭代之目標；(4) 利用未取絕對值之模態應變能變化來決定可能的

損壞桿件；(5) 利用動力擴展法來擴展自由度不完全之模態形狀；(6) 藉由設置門

檻值避免桿件模態應變能過低造成之數值問題。改進後之模態應變能改變法係利

用上述三維鋼構建築結構之數值案例與實驗案例進行驗證。 

本論文提出「頻率響應函數變化法」(frequency response function change method)來

偵測結構損壞的位置與程度，該法須使用的資訊包括結構破壞前受地表激振下之

頻率響應函數、破壞後受地表激振下之頻率響應函數，以及結構破壞前之系統矩

陣。頻率響應函數變化法係利用六層鋼構建築結構之數值案例與實驗案例進行驗

證。 

此外，本論文將頻率響應函數變化法與無線感測系統進行整合。將頻率響應函數

變化法所需之演算法植入無線感測元件，發揮無線感測系統分散運算之優勢，同

時大幅節省無線感測元件之耗電量。此一透過無線感測系統之線上(on-line)自動化

偵測損壞位置與損壞程度的概念，已成功應用於上述六層樓鋼構建築結構之實驗

案例。 

本論文亦探討「局部柔度法」(local flexibility method)應用於建築結構損壞偵測之

可行性，其應用案例包括低樓層剪力型建築與高樓層柔性建築之數值模型及上述

六層樓鋼構建築結構之實驗案例。此外，亦比較運用兩種不同演算法所得之柔度

矩陣於局部柔度法損壞偵測之結果。 

在工程實務上，結構損壞偵測必須克服環境影響而造成的困難，因此本論文提出

一處理識別之桿件損壞程度受到環境影響的方法，並強調可在不量測環境變數下

處理非線性的環境影響。該法係藉由訓練自相關類神經網路(auto-associative neural 
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network)來進行非線性主成分分析(nonlinear principal component analysis)，以萃取

環境變數的影響方式。之後，藉由所提出之預測模式可更精確的識別桿件損壞程

度。 
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1. INTRODUCTION 

Structural health monitoring (SHM) makes structures alive by endowing mechanisms 

with sensing and reacting ability. One of the main purposes of SHM is to monitor the 

performance of an engineering structure/system under construction or operation. The 

observed information can be useful to control the construction process, to assist with 

maintenance of structures, to characterize loads in situ and to validate structural design 

philosophy/parameters. The other main purpose of SHM is to detect damage. Issuing an 

alarm before the damage reaches a critical Level-Increases the safety to the public. 

Detecting damage in its early stage can reduce the costs and down-time associated with 

repair of damage. This thesis focuses on developing damage detection techniques and 

mainly relates to the second main purpose of SHM. 

Generally, damage detection techniques can be categorized as global or local. Local 

techniques concentrate on a small part of the structure due to limited sensing range. The 

non-destructive testing (NDT) based on eddy currents, magnetic fields, radiography, 

X-rays etc. falls into this category. Because these techniques are often time consuming 

and expensive, only critical components of a structure are evaluated by NDT with a 

relatively long period, e.g. every 2 years, unless a suspected damaged region has been 

identified. Other local techniques based on electro-mechanical impedance, guided 

waves, acoustic emission and local strain etc. use relatively small sensors which are 

possible to be instrumented on part of a structure; hence some critical regions of a 

structure can be monitored in a continuous way using these local damage detection 

techniques. On the other hand, global techniques measure the response of a structure to 

determine the integrity of the whole structure. While a few researches use response due 

to static loads, the majority interests in the vibration-based damage detection technique 

which assumes that local damage may change dynamic response of a whole structure. 

The damage to a structure may be detected through the variation of the structural 

features such as eigenfrequencies, modal damping, mode shapes, modal strain energy, 

frequency response functions (FRFs), stiffness and flexibility matrices, etc. A 

continuous and automatic global monitoring of a structure is usually desired to identify 

damage in the structure while it is in service as well as after a major event.  

Damage detection can be classified as four levels as described in Rytter (1993): 
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 Level-I  -  Detection: Is there damage in the system? 

 Level-II  -  Localization: Where is the damage in the system? 

 Level-III  -  Quantification: How severe is the damage? 

 Level-IV  -  Prediction: What is the remaining service life of the system? 

 

Global damage detection techniques try to detect and to localize the damage of a 

structure, and to give a roughly idea of how severe is the damage. With the help of 

localization of damage using global damage detection techniques, local damage 

detection techniques especially NDT can achieve Level-III damage detection with much 

less effort and give more information about how severe is the damage. Therefore, global 

and local damage detection techniques are both necessary and can complement each 

other. To achieve Level-IV damage detection, estimation of future loading and usually 

an analytical model are necessary to predict the remaining service life of the system.  

 

1.1. Damage Detection of Civil Structures 

Aerospace and offshore oil industries made considerable effort to develop 

vibration-based damage detection techniques during the late 1970s and early 1980s 

(Farrar and Doebling 1999). Civil engineering community followed rapidly since the 

early 1980s. The majority of the literature focuses on bridges, while others concentrate 

on wind turbines and buildings etc. Unlike the successful experience of damage 

detection on rotary machinery, damage detection of civil structures faces significant 

challenges due to environmental and condition variability in situ, as well as physical 

size, diversity and material variability of a civil structure. More efforts are still needed 

to find a reliable, fast and cost-efficient damage detection technology.  

Currently, damage detection methods for civil structures are either visual inspection or 

NDT methods. Visual inspection is costly, time consuming and affected by subjective 

judges. NDT methods require that the location of damage is known in advance, and are 

also costly and time consuming. The time required by these methods makes prompt 

evaluation of critical civil infrastructures, e.g. bridges, hospitals and nuclear power 
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plants, not possible after a catastrophic event. Unfunctionality or unnecessary closure of 

these critical civil infrastructures not only impact on economy but also damage the 

resilience of the disaster area. The period of inspecting the civil structures using these 

methods is usually several years; hence early warning before collapse of a structure is 

not possible. Early detection of damage can prevent loss of human life and reduce 

maintenance costs of civil structures. The need to develop a cost-effective, reliable and 

real-time damage detection technology is evident for civil engineering community. 

 

1.2. Environmental Effects in Civil Infrastructure 

Many studies had reported that the variations of structural features due to varying 

environmental conditions can be much larger than those caused by structural damage. 

The environmental conditions concerned in this section include temperature, humidity, 

loading conditions, and the change of boundary conditions of structural systems. 

Many field tests reported that the temperature was the major factor that affects the 

eigenfrequencies of structures. Therefore, most of the previous studies were interested 

in developing the relationship between structural eigenfrequencies and temperature. 

Generally, as reported by Rohrmann et al. (2000) and Askegaard and Mossing (1988), it 

is believed that temperature change may affect the eigenfrequencies of concrete bridges 

about 10%. Xia et al. (2006) performed an experimental study of a reinforced concrete 

slab and the result indicated that the eigenfrequencies decrease by 0.13% to 0.23% 

when temperature increases by 1 C° . The elastic modulus of asphalt is also affected by 

temperature. Peeters and De Roeck (2001) had reported that the asphalt contributed to 

the stiffness of the Z-24 Bridge significantly if the temperature was under 0°C and the 

effect was nonlinear (see Figure 1-1). The nonlinear relationship between Young’s 

modulus of asphalt pavement and temperature was confirmed by an experimental test 

(Watson and Rajapakse 2000). As for wood, it was also reported by Kullaa (2001) that 

the eigenfrequencies of wooden bridges were affected by the change of temperature. 

The boundary conditions may also be altered during the changing environmental 

conditions, especially due to the change of temperature. Alampalli (1998) reported that 
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about 50% to 70% change of eigenfrequencies is observed due to the frozen hinge and 

roller supports of a bridge. Rushton et al. (1999) also reported that even in the warm 

period, the eigenfrequencies may increase as the expansion joint squeezes because of 

expanding of decks caused by temperature-raising. The scouring around the bridge piers 

during the flood caused by hurricanes changes the boundary conditions and affects the 

dynamic properties of the bridge. The relationship between the structural parameters 

and the boundary conditions may be nonlinear and remains further studies. 

The humidity and the loading conditions including traffic, wind, rainfall, snow, flood etc. 

may affect the dynamic properties of structures. Wood (1992) reported that Concrete 

bridges in United Kingdom absorbed considerable amount of moisture during damp 

weather, thus the mass of the bridges increased and the structural eigenfrequencies were 

altered. Bendat and Piersol (1980) also reported that the bridges absorbed considerable 

amount of moisture and the mass of bridge increased approximately by 3% to 6%. Sohn 

et al. (1999) believed that approximate 1.6% of mass was increased due to moisture and 

rainfall in the Alamosa Canyon Bridge in America. However, Peeters and De Roeck 

(2001) concluded that the humidity had no relation to eigenfrequencies for the 

Z24-bridge. The effect of humidity to structural features seems to be case-dependent. 

The experimental study of a RC slab conducted by Xia et al. (2006) showed that the 

eigenfrequencies decrease only by 0.03% when relative humidity increases by 1%. 

Totally approximately 2% decrease of eigenfrequencies when the relative humidity 

ranges from 25% to 90%. Besides, Kim et al. (1999) reported that the eigenfrequencies 

of a simply supported bridge decreased by 5.4% due to heavy traffic. 

In summary, some of the above mentioned environmental effects on structural 

parameters have been massively studied, e.g. the temperature effect on eigenfrequencies 

of a RC bridge. The nonlinear environmental effect of temperature on the influence of 

eigenfrequencies of a RC bridge covered with asphalt had been reported. However, 

most of the above mentioned studies focus on the environmental effects on 

eigenfrequencies of a structural system, which is only part of the structural features 

relating to damage.  
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Figure 1-1: The 1st eigenfrequency vs. asphalt layer temperature of the Z24 bridge.  

(from Peeters and De Roeck 2001). 

 

1.3. Classification of Vibration-based Damage Detection 
Techniques 

In order to distinguish between damaged and intact structures using measured response, 

feature extraction is a key process which tries to extract damage-sensitive features from 

the measurement. According to the properties of extracted structural features, damage 

detection techniques can be classified as time-domain, frequency-domain and 

modal-domain.  

Time-domain damage detection methods focus on the time-history measured by a 

variety of sensors, e.g. accelerometers and strain-gauges etc. Although no information is 

lost because no converting from time-domain data to frequency-domain or 

modal-domain data is necessary, usually feature exaction is still conducted. The 

methods based on empirical mode decomposition, wavelet transform, wave propagation 

and autocorrelation of time history etc. belong to time-domain methods.  

Time-domain data can be converted to frequency-domain data using Fourier transform 

algorithm. Modal-parameters can be extracted in frequency-domain data or directly 

from time-domain data. As reported by many researchers, the frequency-domain 
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damage detection algorithms may have some advantages over the modal-domain ones. 

First, the extraction of modal parameters leads to errors and omissions, while there is 

little loss of information between time and frequency domains (Friswell and Penny 

1997). Furthermore, the increased modal density at high frequencies can pose a problem 

for damage detection (Araujo dos Santos et al. 2005). The close modes within a narrow 

frequency band may not easy to be identified. Second, the FRFs in frequency-domain 

can provide much more information in a desired frequency range than modal data 

because modal data are extracted mainly from a very limited number of FRF data round 

resonance (Lin and Ewins 1994). Third, more equations can be obtained at different 

frequencies in frequency-domain while the use of modal data usually leads to fewer 

equations. Consequently, better results may be obtained when the number of unknown 

parameters or updating parameters is increased (Araujo dos Santos et al. 2005). 

Probably because eigenfrequencies, damping ratio and mode shapes are easily 

interpreted than other features extracted in time-domain and frequency-domain, the 

majority of the damage detection methods in literature belong to the modal-domain. 

However, as reported by Doebling et al. (1996), there is disagreement among 

researchers about whether the sensitivity of features in modal domain is sufficient or not 

for damage detection. Since modal information is a reflection of the global system 

properties while damage is a local phenomenon, some modal-domain features, e.g. 

eigenfrequencies, are not sensitive to damage (Carden and Fanning 2004). Researchers 

also tried to find a sensitive modal-domain feature, e.g. mode shape curvature and 

modal strain energy (MSE), and to develop corresponding algorithms for damage 

detection.  

Damage detection techniques can also be classified based on the dependence of an 

analytical model as model-based and non-model-based, also called parametric and 

non-parametric, respectively.  

Finite element (FE) model updating is one typical model-based damage detection 

method. The parameters of a model are updated by minimizing the difference between 

analytical features computed with the model and measured features. Usually, the 

model-domain features, e.g. eigenfrequencies and mode shapes, are used. However, the 

optimization problem of model updating process is often non-convex, which may result 
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in a non-uniqueness solution, even though global iterative optimization methods such as 

coupled local minimizers (Teughels et al. 2003) and genetic algorithms (Holland 1975) 

can help reduce this problem. Furthermore, the use of large number of updating 

parameters, coupled with limited amount of measured features, may lead to difficulties 

in convergence of the optimization problem (Carden and Fanning 2004). In addition, the 

results of the optimization problem may be very sensitive to the measured modal 

parameters, thus the obtained parameters are consistent with the measured modal data, 

but they may be unrelated to their true values (Reynders and De Roeck 2010). Another 

type of model-based methods assume that an analytical model of the structure with 

acceptable accuracy is obtained, and damage detect can be conducted according to the 

analytical model. However, as pointed out by Chang et al. (2003), availability of data to 

obtain an accurate analytical model for civil structures is often not possible. Modelling 

errors of the model-based method are inevitable, which make model-based damage 

detection of civil structures a challenge. 

On the other hand, non-model based damage detection methods do not need a detailed 

model of the structure; hence the above-mentioned difficulties about optimization 

problem and modelling errors in model-based methods can be circumvented. Most of 

the non-model-based damage detection methods are based on changes in 

eigenfrequencies, mode shapes, mode shape curvatures or dynamically measured 

flexibilities assembled from the measured modes. However, without the help of an 

analytical model, the ability to perform Level-III and Level-IV damage detection is 

limited. 

 

1.4. State-of-the-art of Vibration-based Damage 
Detection Techniques 

Doebling et al. (1996) presented an extensive literature review of modal-domain 

damage detection methods before 1996. Another two profound literature review of 

global damage detection methods and vibration-based damage detection methods were 

presented by Sohn et al. (2004) and Carden and Fanning (2004), respectively. These 

reviews gave an overall summary of the state-of-the-art of vibration-based damage 
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detection methods. Therefore, this chapter only focuses on the discussion of the damage 

detection methods based on modal strain energy (MSE), frequency response function 

(FRF), dynamic flexibility matrix and the damage detection methods treating 

environmental effects. 

 

1.4.1. Methods Based on MSE 

Modal strain energy (MSE), i.e., a function of mode shape and elemental stiffness, has 

been adopted initially as an indicator for modal selection, and has later been considered 

as a damage indicator. Moreover, the sensitivity of the modal strain energy change 

(MSEC) with respect to the local damage is derived, and is applied to identify the 

location and quantity of damage.  

Lim and Kashangaki (1994) employed modal strain energy to select the candidate 

elements before applying the best achievable eigenvectors to detect damage location 

and magnitude. For an eight-bay space truss structure, only 50 struts among 104 struts 

had modal strain energy over 1% for the first five modes, therefore the other 54 struts 

with small MSE were considered undetectable for damage detection. 

Doebling et al. (1997) employed modal strain energy to select a subset of identified 

structural vibration modes to be used in FE model correlation and structural damage 

detection. The results indicate that using the maximum modal strain energy over the 

entire structure as a criterion provides more accurate update results than using the 

minimum modal frequency. This phenomenon was explained that the modes that yield 

the highest value of strain energy are the modes that tend to “stretch” the stiffness 

matrix the most. 

Stubbs and Kim (1996) proposed a damage index based on modal strain energy to 

locate damage and also to estimate the extent of damage. The feasibility of damage 

detection using this damage index without baseline modal parameters was also studied, 

based on the assumption that an analytical model had already been updated to fit the test 

structure. A two-span continuous aluminum beam with only one damage location was 

used as the test structure. It was claimed that damage can be localized by using very few 
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modes by this method, while the damage extent was overestimated. 

A two-step modal strain energy change (MSEC) damage detection algorithm was 

proposed by Shi et al. (2000). In the first step, the change in modal strain energy before 

and after damage was used to locate the damage. Next, the extent of damage was 

quantified by employing the calculated sensitivities of the modal strain energy based on 

an analytical model in intact state. The information necessary for this method included 

the measured mode shapes in damage state, the intact analytical mode shapes, and the 

intact analytical elemental stiffness matrix. Because the calculation of MSE in each 

element relied on the analytical mode shapes and analytical elemental stiffness matrix, 

the MSEC method was evidently a highly model-based method. The MSEC method was 

applied to a 2-story portal steel frame structure with dense measurement. The results 

indicated that damage localization and quantification were detected successfully while 

the quantification of damage was noise-sensitive. The MSEC method was later 

improved by reducing the modal truncation error in the computation (Shi et al. 2002). 

The modal truncation errors as well as the finite-element modeling error in higher 

modes were reduced. 

 

1.4.2. Methods Based on FRF 

The FRFs had been applied to damage detection for various structures. Wang et al. 

(1997) proposed a damage detection algorithm based on nonlinear perturbation 

equations of receptance FRF data and applied it to a frame structure. Both an analytical 

model of structure and FRF data measured prior and posterior to damage for structural 

damage detection were used. Damage location and extent were detected based on 

complete measurement of the receptance matrix at many frequencies. Because complete 

measurement at all DOFs is not possible in practice, analytical receptance matrix at 

unmeasured DOFs was used. From experimental study of a 3-bay frame structure with 

two slot cuts, damage location and extent were detected with errors attributed to 

inaccurate modeling of the joint elements and inaccurate representation of slot cut 

damage. 

Lee and Shin (2002) presented a damage detection algorithm applied to an analytical 
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cantilever beam and improved the effectiveness with a reduced-domain based method. 

The dynamic stiffness matrix of the structure in intact state and the FRF data measured 

from the damaged structure were required for the damage detection algorithm. 

Experimental studies were conducted for a cantilevered beam with damage caused by 

introducing three slots of different depths. Damage was fairly well located and 

quantified, and the effects using different excitation frequency and different 

measurement DOFs were studied. 

Araujo dos Santos et al. (2005) proposed a FRF sensitivities based damage detection 

algorithm to an analytical laminated rectangular plate. The change between measured 

FRFs and the analytical FRFs of the intact structure were utilized to detect damage 

locations and extent. The influence of the number of eigenfrequencies and mode shapes 

used to compute the FRF, as well as the frequency range, the excitation location and the 

number of measured DOF were studied. The damage detection equations were solved 

by the bounded-variables least-squares algorithm, and it was claimed that the proposed 

method presented better results than those obtained when using a technique based on 

modal data sensitivities. 

Furukawa et al. (2005) utilized FRFs from a harmonic excitation force to detect damage 

location and extent. The damage detection equation required the structural parameters of 

the analytical baseline model and the FRF of the real structure. Both the variation of 

damping and stiffness of each element were obtained from the damage detection 

equations, thus Level-III damage detection was achieved. A statistical procedure based 

on bootstrap method was employed to cope with uncertainty due to measurement noise 

and modelling errors in the baseline model. This technique was verified by an 

experimental study on a three-story steel frame structure with damage simulated by 

removing 2 bracings. 

All the above-mentioned FRF-based damage detection approaches must generate 

artificial vibration by exciters or actuators. Although artificial excitation is controllable 

and accurate, for a civil engineering structure, it is usually expensive or impractical 

because of the large scale. Natural excitations such as an earthquake or traffic are free 

and seem to be a possible alternative provided the amplitude of the ground excitation is 

much larger than the other excitation sources. Besides, a finite element model is always 
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required for the FRF-based methods; this makes the FRF-based method highly 

model-based. 

 

1.4.3. Methods Based on Dynamic Flexibility Matrix 

Dynamic flexibility matrix can be computed from the measured data without reference 

to an analytical model of the structure. It was found as a better indicator for damage 

localization comparing to eigenfrequencies, damping ratio and mode shapes (Toksoy 

and Aktan 1994). The location of damage of a reinforced concrete bridge subjected to a 

progressive damage test was successfully identified by comparing the deflections 

obtained from a combination of a measured flexibility matrix with a loading before and 

after damage. Many similar algorithms were proposed and applied to real bridges or 

beams (Mayes 1995; Aktan et al. 1994; Zhang and Aktan 1995). However, the 

theoretical background of these algorithms was not clear. 

Bernal (2002) developed the damage locating vector (DLV) approach based on changes 

in measured flexibility with solid theoretical background. The damage was localized by 

finding the null space of the change in flexibility matrix. The physical meaning is that if 

a load configuration exists for which the displacements before and after damage are the 

same, the stress caused by the loading are zero in the damaged zones.  

The above-mentioned techniques based on dynamic flexibility matrix are valid for 

damage detection (Level-I) and localization (Level-II), but not for damage 

quantification (Level-III). Reynders and De Roeck (2010) proposed a local flexibility 

method (LFM) to not only localize damage but also to quantify damage. A virtual 

displacement was obtained by combining dynamic flexibility matrix with a virtual load 

that caused stresses only in a local region. For a linear elastic structure, it was derived 

that the ratio of a linear combination of the virtual displacements before and after 

damage equaled to the inverse local stiffness ratio based on the principle of virtual work. 

Theoretically, this general principle was applicable to any structures. The applicability 

of LFM was illustrated using beam structures. The LFM was validated by numerical 

simulation beams, a laboratory beam structure and a real bridge. For a simple supported 

beam structure with a single damage location, only the lowest mode was enough to 
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estimate damage accurately. The number of modes needed to detect damage was found 

dependent on the properties of the structure (boundary conditions, stiffness distribution, 

etc.), density of the measurement grid and the location, type and extension of the 

damage. One of the advantages of the LFM was that the requirement of 

mass-normalized mode shapes may be circumvented supposed that the mass of the 

structure was approximately equally distributed. 

 

1.4.4. Methods Treating Environmental Effects 

The damage of structure may be detected through the variation of the structural features 

such as eigenfrequencies, modal damping, mode shapes, damage indexes, stiffness 

matrices, etc. However, in most of the previous studies, these identified structural 

features were assumed under a constant environmental or operational condition. Many 

studies had reported that the variations of structural features due to varying 

environmental conditions, e.g. temperature, humidity, loading conditions, and boundary 

conditions, can be much larger than those caused by structural damage. The variation of 

the identified structural features may smear the changes caused by structural damages 

due to the varying environmental conditions; therefore, cause false damage diagnosis. 

There are three situations of damage detection of a structure under environmental 

effects. The first one is that the structural features are sensitive to environmental factors 

and the trend of structural features due to change of environmental factors is analogous 

with the trend of structural features due to damage. The second situation is that the 

structural features are still sensitive to environmental factors but the trend of structural 

features due to change of environmental factors is distinct from the trend of structural 

features due to damage. The third situation is that the structural features are not 

sensitive to environmental factors but sensitive to damage.  

On the other hand, there are three kinds of approaches to detect damage of a structure 

under environmental effects. The first kind of approach is to establish the correlation 

between the structural features and the environmental factors; therefore the 

environmental factors which affect the structural features should be recognized and 

measured. This approach can solve the first two situations. Peeters and De Roeck (2001) 
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used a black-box model to describe the variations of eigenfrequencies as a function of 

temperature. The damage can be detected if the eigenfrequency of the new data exceeds 

certain confidence intervals of the model. Sohn et al. (1999) constructed a linear 

adaptive model to discriminate the changes of eigenfrequencies due to temperature 

changes from those caused by structural damage or other environmental effects. These 

approaches need to measure the varying environmental factors and establish the 

correlation between the environmental factors and structural features. As mentioned by 

Yan et al. (2005a), these methods face many practical issues. Firstly, the researchers 

need to define the environmental factors which affect the structural features. Secondly, 

once the correlation between the environmental factors and the measured features has 

been established, the failure of any of the sensors that measure the environmental 

factors may cause problems for structural damage detection afterwards.  

The second kind of approach is to extract the trend of the structural features under 

varying environmental conditions without measuring the environmental factors. This 

approach can only solve the second situation, e.g. it assumes that the variation of 

structural features due to damage behaves in different manner from those due to varying 

environmental conditions. Yan et al. (2005a) proposed the principal component analysis 

(PCA) to extract the intrinsic environmental factors, and then adopted the novelty 

analysis to detect structural damage. This approach is limited to only linear or 

nearly-linear case, and further expanded to deal with piecewise-linear case (Yan et al. 

2005b). If the environmental effect is highly nonlinear, Sohn et al. (2001) proposed to 

train an auto-associative neural network (AANN) to perform nonlinear principal 

component analysis (NLPCA). The existence of damage can then be successfully 

detected based on outlier analysis. However, these methods are only limited to perform 

“Level-I” damage detection. Giraldo et al. (2006) had further shown that the “Level-II” 

and “Level-III” damage detection under environmental effect is possible provided that 

the environmental effects are linear or nearly linear. They applied the technique 

developed by Caicedo et al. (2004) to identify the stiffness of structural components, 

and a 3-steps technique was proposed to obtain the stiffness loss under nearly linear 

environmental effect. 

The last kind of approach is a special case which deals with mainly the third situation 

by identifying the features which are sensitive to damage but insensitive to 
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environmental factors without measuring the environmental factors. Manson (2002) 

developed a novelty detection method for damage identification of a composite plate 

with Lamb-wave propagation data. A temperature-insensitive feature was found by 

projecting the original feature space on to a reduced feature space using minor principal 

components corresponding to the smallest singular values. Sohn et al. (2003) developed 

a damage detection algorithm based on wavelet transform of lamb wave propagation 

data to extract features that are less sensitive to temperature variations. However, Note 

that these techniques which had found the environmental-insensitive structural features 

were limited to Lamb-wave propagation data of specific thin-plate structures. 

 

1.5. Remaining Challenges 

Based on the review of state-of-the-art of vibration-based damage detection algorithms 

in the last section, and also some review papers about damage detection and SHM in the 

literature (Carden & Fanning 2004; Chang et al. 2003; Sohn et al. 2004; Doebling et al. 

1996), some remaining challenges for vibration-based damage detection are 

summarized here.  

First of all, no universal algorithm applicable to any type of damage in any type of 

structure has yet been proposed, which implies the algorithms proposed in the literature 

are case-dependent. Although many modal-domain approaches were claimed promising 

for damage localization and quantification for some cases, the sensitivity and 

measurability of the modal parameter shifts due to localized damage seems still an issue 

argued in the research community. More efforts are needed to develop algorithms for 

damage localization and quantification using vibration signals. The Level-IV damage 

detection, i.e. prediction of the remaining service life of the structure, is clear a 

remaining challenge because little attempt was made in the research community. 

One of the objectives of structural health monitoring is to ascertain if damage is present 

or not based on measured features of a structure, and then take necessary reactions in 

time. In reality, structures are subject to changing environmental conditions such as 

temperature, humidity, loading conditions, and boundary conditions etc., as well as 



 

 

15 

operational conditions such as traffic load and human activities etc., that affect 

measured signals. For simplicity, the term “environmental condition” in the following 

content becomes a general term which refers to both environmental conditions and 

operational conditions. Subtle changes of structural features caused by damage can 

often be masked by the changes due to these ambient variations of the structure, and 

then false damage diagnosis may be concluded. In the existing literature, many 

approaches successfully detect damage of a numerical model under the assumption of a 

constant environmental condition. Lots of damage detection approaches are verified 

using laboratory tests where environmental conditions and structural state remains 

steady. Only a few damage detection approaches are applied to a real structure which is 

subjected to changing environmental conditions. The unbalance among the amount of 

algorithms verified by real-structure tests, laboratory tests and numerical simulations 

implies that the environmental effects is still a challenge to face by the research 

community. It is also concluded by the above-mentioned review papers that filtering 

environmental effects from measured features for SHM purpose has not been tackled 

comprehensively in the literature; therefore the method for damage detection to 

accommodate environmental conditions needs further investigation. 

Cost of sensors has been a limitation on the number of sensors instrumented on a 

structure. In the past, only one to three accelerometers on a structure was common 

practice. Today, thanks to new technology and lower price, hundreds of sensors are 

possible to be instrumented on a single structure. Ultimately, it is foreseeable that 

sufficient number of sensors on a structure can make global monitoring approach local 

monitoring, and leads to a greater success in SHM. Follow this trend, wireless sensing 

technology for SHM becomes an emerging interesting research topic in the last decades 

which tries to make sensors inexpensive, easy to install and smart. While wireless 

sensing systems (WSS) eradicates extensive lengths of coaxial wires in a structure, 

which lower both the cost and labor of installation, the collocated computational 

resources for processing data in wireless sensing units endow the wireless sensing 

systems intelligence. However, a summary review of wireless sensing technology 

(Lynch and Loh 2006) indicates the wireless sensing technology, in some respects, is in 

its infancy. More research is needed to use the advantage of collocation of 

computational power of wireless sensing systems. 
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1.6. Focus and Outline of the Thesis 

The objective of this thesis is to develop techniques to localize and quantify damage in 

civil structures, including the treatment of environmental effects. Similar to the majority 

in the literatures of vibration-based damage detection, the damage that is aimed at to 

detect in this thesis is the damage that causes stiffness reduction in a structure. In other 

words, the methodologies in this thesis are limited to stiffness variation identification. 

The main original contributions of the thesis are the following: 

 A new frequency-domain, Level-III damage detection approach is developed in 

this thesis, called Frequency Response Function Change (FRFC) method. It is 

derived from the motion of equations of a linear system subjected to a ground 

motion both before and after damage. The system matrices of the intact system 

and the FRFs both prior and posterior to an occurrence of damage are required 

for the FRFC method. The feasibility of the FRFC method is verified using a 

6-story steel building structure with several damage cases in a laboratory. (Hsu 

and Loh 2009) 

 An operational scheme for integrating the FRFC method with wireless sensing 

systems is developed. By imbedding algorithms necessary for the FRFC method 

into wireless sensing units, the advantage of collocated computing resources of 

wireless sensing systems is taken effect and at the same time the energy 

consumed by wireless sensing units is greatly reduced. The on-line damage 

localization and quantification of the 6-story steel building structure is 

successfully accomplished. 

 A new method which deals with environmental effects on the identified 

damage extent of each component without measuring the environmental factors 

is proposed, especially for nonlinear environmental effects. This is achieved by 

training an auto-associative neural network (AANN) to perform nonlinear 

principal component analysis (NPCA) to extract the underlying environmental 

trend. Then the damage extent can be estimated more accurately by a proposed 

prediction model, which is achieved by solving an optimization problem. The 
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approach is verified using a synthetic bridge model. (Hsu and Loh 2010) 

 The modified MSEC method is developed by adding sensitivity equations 

between eigenvalue and elemental stiffness variation ratios to the damage 

identification equation which contains only sensitivity equations between 

MSEC and elemental stiffness variation ratios as well as by expanding these 

sensitivity equations from “elemental stiffness variation ratios” to “elemental 

sectional property variation ratios”. A new iteration process which updates the 

targets in every iterating step is also proposed. Some difficulties while applying 

the original and modified MSEC methods to a 3D steel building structure are 

solved by suggesting the non-absolute MSEC ratio while selecting suspected 

damage elements, by using dynamic-expanded mode shapes and by setting 

thresholds to avoid elements causing abnormal results. (Hsu and Loh 2008) 

 The local flexibility method (LFM) has been successfully applied to detect 

damage of beam structures and a real bridge (Reynders and De Roeck 2010). 

Therefore, the feasibility of LFM to detect damage of a shear-type low-rise 

building and a flexible high-rise building is studied. The comparison of using 

flexibility matrices constructed by two different algorithms to detect damage 

using LFM is also conducted. A suggestion is proposed to use one of the 

algorithms to avoid ill-posed problem while constructing a flexibility matrix. 

Furthermore, it is also suggested to construct the flexibility matrix for LFM 

with non-mass-normalized mode shapes using the same algorithm to 

circumvent the troublesome work of obtaining a mass matrix by establishing a 

finite element model. 

 

The content of the chapters in this thesis is briefly described here: 

Chapter 1: The introduction of SHM and the orientation of vibration-based damage 

detection in civil structures are described at first. Next, the environmental effects in civil 

structures in the existing literature are summarized. The classification of damage 

detection techniques is discussed and the state-of-the-art of the damage detection 

techniques is summarized, especially the methods based on MSE, FRF and dynamic 

flexibility matrices as well as the methods treating environmental effects. Finally the 

remaining challenges of damage detection in civil structures and the focus of this thesis 
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are derived. The main original contributions and content of the thesis are listed lastly. 

Chapter 2: The theoretical basis of the modal identification techniques utilized in this 

thesis is summarized. The data-driven stochastic subspace identification (SSI) method 

or combined deterministic-stochastic subspace identification (CSI) method which 

identifies modal parameters of a structure using output-only or input-output data 

respectively are described at first. The algorithm to identify stiffness matrices and 

damping matrices directly from the system matrix and the output matrix identified by 

SSI or CSI techniques is introduced. The theoretical bases to obtain flexibility matrices 

from modal parameters based on three different algorithms are summarized. The 

algorithms to estimate the reliability of the identified mode shapes and to perform 

expansion and reduction of mode shapes and system matrices are also described. 

Chapter 3: The algorithms of damage detection methods are explained in detail. In the 

first section, the methodologies of the original MSEC method and the proposed 

modified MSEC method are described. In the second section, the methodology of the 

proposed FRFC method is introduced. The operational scheme to integrate FRFC 

method with wireless sensing systems is also presented. Finally, the methodology of the 

LFM is summarized in the third section. 

Chapter 4: The damage detection algorithms introduced in Chapter 3 are verified 

through numerical and experimental studies. The modified MSEC method is mainly 

verified by a full-scaled 3-story steel building structure with a damage simulated by 

cutting the flanges of the columns in the 1st story which made the stiffness reduction 

ratio of the column different in DOFs. Besides numerical studies, the FRFC method and 

LFM are mainly verified by a 1/4-scaled 6-story steel building structure with several 

damage cases simulated by replacing or removing special-designed connecting plates 

between bracings and floors. The operational scheme for integrating the FRFC method 

with wireless sensing systems is also realized by imbedding necessary algorithms in 

wireless sensing units installed in the 1/4-scaled 6-story steel building structure. 

Chapter 5: The proposed method to treat environmental effects is presented in this 

chapter. The methodology of NPCA and the optimization problem for applying the 

prediction model of NPCA are introduced and the concept is explained using a simple 
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example. The efficiency of the proposed approach is illustrated using a synthetic bridge 

model with designated element stiffness reductions and also the element stiffness 

changes due to varying environmental conditions including temperature, gradient of 

temperature, humidity and frozen of supports. 

Chapter 6: The work done in this thesis is summarized at first. The results derived from 

the implementation of the methodologies and algorithms in Chapter 4 and Chapter 5 are 

concluded. Finally, some possibilities for future research in the area of damage detection 

for civil structures are provided. 
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2. MODAL IDENTIFICATION TECHNIQUES 

Modal identification techniques intend to understand global modal parameters of a 

structure (i.e. eigenfrequencies, damping ratios and mode shapes) from vibration data. 

Because modal identification is a necessary step for most of the structural health 

monitoring techniques, the accuracy of identified modal properties becomes an essential 

issue for SHM of a structure. Classically, an artificial and measurable excitation is 

inputted to the system and both the input excitation and output responses are measured. 

From these measurements, the experimental model can be obtained by a variety of 

parameter estimation methods. Many existing textbooks provide an extensive overview 

of input-output modal parameter estimation methods (Heylen et al. 1997; Ewins 2000; 

Allemang 1999). However, in the world of civil engineering, it is very difficult and 

expensive to excite the bridges and buildings to the vibration levels that exceed the 

vibrations due to traffic or wind. Perhaps except occasional earthquake excitations, one 

has to rely upon available ambient excitation sources which are practically almost 

impossible to measure. In this case, the output-only modal analysis (operational modal 

analysis) is useful to identify the modal parameter of a system. The overview and the 

application of the output-only modal analysis techniques can be found in (Peeters and 

De Roeck 2001; Hermans et. al. 1999). In the output-only modal analysis, the input is 

assumed as white noise. This theoretical assumption is not too strict in practical 

applications as long as the input spectrum is quite flat. 

The International Modal Analysis Conference (IMAC) organized a special session with 

the objective to compare the modal analysis techniques applied to the Z24-Bridge, a 

three-span reinforced concrete bridge in Switzerland. Three data sets with different 

types of excitation source including ambient vibration, drop weight and shakers were 

provided for the research community. Many papers were published by using their 

preferred methods and excitation types, thus resulted in a fair comparison for different 

modal analysis algorithms. Based on results of these conference papers, a comparative 

study of the modal analysis techniques was conducted (Peeters and Ventura 2003). In 

this paper, both the frequency domain and time domain modal analysis techniques 

which are usually employed by 6 different research teams are compared. One of the 

conclusions of this study is that the subspace identification technique applied to all data 

sets yields the most complete and consistent modal parameter estimates. Beside this 
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comparative study, another statistical comparative study compared three most popular 

time-domain output-only modal identification techniques in an entirely automated 

environment. Both analytical simulated data and experimental acceleration records from 

a scaled four-story steel frame were used. It was concludes that subspace identification 

technique is both user friendly and highly robust to sensor noise (Giraldo 2006).  

As a result, according to the conclusions above and the author’s experience, the 

subspace identification technique is chosen as the modal identification technique to 

obtain the modal parameters of the structures in this thesis. Although subspace 

identification technique is a general name of the approaches which identify the 

state-space model and involve a singular value decomposition truncation step, the 

subspace identification method in this thesis mainly refers to the data-driven stochastic 

subspace identification (SSI) and combined deterministic-stochastic subspace 

identification (CSI) method summarized in the book (Van Overschee and De Moor 

1996). The methodologies to construct the stiffness matrices, damping matrices and 

flexibility matrices from subspace identification results are also introduced. After the 

modal parameters of a structure are identified, there can be still a gap between the 

experimental results and the analytical model of the structure. Therefore, some relating 

techniques which are helpful for linking experimental and analytical data such as modal 

assurance criterion (MAC) and mean phase deviation (MPD) of an identified mode 

shape as well as modal expansion/reduction are also briefly introduced in this chapter. 

 

2.1. Data-Driven Subspace Identification Technique 

In the first two subsections in section 2.1, the data-driven stochastic subspace 

identification technique and combined deterministic and stochastic subspace 

identification technique summarized in the book (Van Overschee and De Moor 1996) 

are introduced. The techniques to obtain the stiffness matrices, damping matrices and 

flexibility matrices of the identified system are also introduced in the last two 

subsections. 
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2.1.1. Stochastic Subspace Identification 

Consider a 1n  degrees of freedom (DOF) physical system consisting of mass 

connected through springs and dampers as described by the following matrix 

differential equation: 

1 1( ) ( ) ( ) ( ) ( )t t t t t+ + = =Mx C x Kx f B u�� �  (2-1) 

where 1( ) nt ∈x R  is the displacement vector at continuous time t ; 1 1
1, , n n×∈M C K R  

represent the mass, damping and stiffness matrices; A dot over a time function denotes 
the derivative with respect to time; The vector 1( ) nt ∈f R  is the excitation force. 

Afterward the force vector is represented by a vector 1( ) mt ×∈u R describing the m  
inputs on the DOFs designated according to the transfer matrix 1

1
n m×∈B R . Eq. (2-1) 

can be transformed into the state form: 

( ) ( ) ( )c ct t t= +s A s B u�  (2-2) 

where  

1( )
( )

( )
nt

t
t

×⎛ ⎞
= ∈⎜ ⎟
⎝ ⎠

x
s

x�
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1

1 1
1

0 n n n
c

×
− −

⎛ ⎞
= ∈⎜ ⎟

− −⎝ ⎠

I
A

M K M C
R  and 

1
1

0 n m
c

×
−

⎛ ⎞
= ∈⎜ ⎟
⎝ ⎠

B
M B

R  

Eq. (2-2) is called state equation, ( )ts  is the state vector, cA  is the state matrix and 

cB  is the input matrix. The number 12n n=  is the order of the system which is also 

the number of independent elements of the state space vector. 

It is always known that not all the DOFs of the system are monitored and assume that 
there are only l  DOFs measured. These sensors can be acceleration, velocity or 
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displacement types and then the output vector 1( ) lt ×∈y R  would be defined: 

( ) ( ) ( ) ( )a v dt t t t= + +y C x C x C x�� �  (2-3) 

where 1, , l n
a v d

×∈C C C R  are the output matrices for acceleration, velocity, 

displacement. The output vector ( )ty  is related to the state and input vector in 

state-space from Eq. (2-3): 

( ) ( ) ( )t t t= +y Cs Du  (2-4) 

where  

1 1
1   l n

d a v a
− − ×⎡ ⎤= − − ∈⎣ ⎦C C C M K C C M C R  and 1

1
l m

a
− ×= ∈D C M B R  

Eq. (2-4) is called observation equation, C  is the output matrix and D  is the direct 

transmission matrix. Since both the input and output data can be measured at discrete 

time instants only, Eq. (2-2) and Eq. (2-4) should be rewritten as the discrete-time 

state-space model: 

1k k k

k k k

+ = +
= +

s As Bu
y Cs Du

 (2-5) 

where  

exp( ) n n
c tΔ ×= ∈A A R  and [ ] 1 n m

c c
− ×= − ∈B A I A B R  

A  is called the discrete state matrix, B  is the discrete input matrix, ( )k k tΔ=s s  is 

the discrete time state vector, tΔ  is the sample time and k ∈N . Eq. (2-5) is also 
called deterministic model which means that the input ku  and output ky  can be 

measured exactly. In fact, it is not possible to measure them without any noise. The 

approximate way to model the systems is to make some assumption for the noises and 

take the noises into account for consideration as the following equation which is known 

as discrete-time combined deterministic-stochastic state-space model: 
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1k k k k

k k k k

+ = + +
= + +

s As Bu w
y Cs Du v

 (2-6) 

where 1n
k

×∈w R  is the process noise due to disturbances or modelling error and 
1l

k
×∈v R  is the measurement noise due to disturbances or sensor error. The noise 

vectors are both unmeasurable vector signals assumed to be zero mean, white and with 

covariance matrices: 

( )p T T
q q pqT

p
Ε δ
⎡ ⎤⎛ ⎞ ⎛ ⎞

=⎢ ⎥⎜ ⎟ ⎜ ⎟
⎢ ⎥ ⎝ ⎠⎝ ⎠⎣ ⎦

w Q S
w v

v S R
 (2-7) 

where Ε  is the expected value operator; pqδ  is the Kronecker delta. 

Now consider a special case of Eq. (2-6) with no external input ( 0ku ≡ ). This case is 

called discrete-time stochastic state-space model: 

1k k k

k k k

+ = +

= +

s As w

y Cs v
 (2-8) 

The main steps to identify the system matrices, A  and C , and the modal parameters 
of the system from the output measurements ky  using Stochastic Subspace 

Identification (SSI) method are given below: 

1. Construction of the Hankel matrix: Using output measurement data, the Hankel 

matrix, H , can be constructed: 
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R  (2-9) 
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where i  is a user-defined index and must be larger than the order n  of the system. 
Since there are l  DOFs measured, the output vector ky  contains l  rows and the 

matrix H  contains 2li  rows. Here, j  corresponds to the number of columns of the 
Hankel matrix. To ensure all of the r  time samples of the output vector ky  populate 

the Hankel matrix, the number j  can be equal to 2 1r i− + . According to the 
expression of Eq. (2-9), the Hankel matrix is divided into the past, li j

p
×∈Y R , and the 

future, li j
f

×∈Y R , parts. 

2. Row space projections: The orthogonal projection of the row space of the matrix pY  

on the row space of the matrix fY  is defined as t
iO  which can be calculated by the 

following formula: 

†( )t T T li j
i f p f p p p p

×= ≡ ∈Ο Y Y Y Y Y Y Y R  (2-10) 

where “ ” denotes the projection operator, T  denotes the transpose operator and †  

denotes the pseudo-inverse operator. The projection operator can also be computed 

quickly by using QR-decomposition (Van Overschee and De Moor 1996).  

3. Singular value decomposition (SVD) of the orthogonal projection t
iO : Choose the 

system order n  and split the singular vectors and the singular values in two parts: 

( ) 1 1
1 2 1 1 1

2 2

T
t T T
i T

⎛ ⎞⎛ ⎞
= = ≈⎜ ⎟⎜ ⎟

⎝ ⎠ ⎝ ⎠

S 0 V
Ο USV U U U S V

0 S V
 (2-11) 

in which 1S  contains the first n  singular values. 

4. Calculate the extended observability matrix, iΓ : 

1 2
1 1

1

li n
i

i

×

−

⎡ ⎤
⎢ ⎥
⎢ ⎥= ≡ ∈
⎢ ⎥
⎢ ⎥
⎣ ⎦

C
CA

Γ U S

CA
#

R  (2-12) 

which contains information of the system matrix, A . 
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5. Calculate the system parameter matrices A  and the output matrix C  from iΓ : 

†
i i=A Γ Γ  (2-13) 

where ( 1)l i n
i

− ×∈Γ R  denotes iΓ  without the last l  rows and ( 1)l i n
i

− ×∈Γ R  denotes 

iΓ  without the first l  rows. The matrix C  can be determined from the first l  rows 

of iΓ  as shown in Eq. (2-12). 

6. Calculate the modal parameters of the system: Determine the un-damped 
eigenfrequencies if , the damping ratios iξ  and the mode shapes iφ  of the structure 

from the following equations: 

1−=A ΨΛΨ , ( ) n n
idiag λ ×= ∈Λ ^ , 1, ,i n= …  (2-14) 

ln( )c
i i tλ λ Δ= , 1, ,i n= …  (2-15) 

2 2c
i i if λ π ω π= =  (2-16) 

( )c c
i i irealξ λ λ= , 1, ,i n= …  (2-17) 

Φ = CΨ , 1( )n=Φ φ φ…  (2-18) 

where ⋅  denotes the taking absolute value; iλ  denotes the discrete-time complex 

eigenvalue of the thi  mode; c
iλ  denotes the continuous-time complex eigenvalue of 

the thi  mode. 

 

2.1.2. Combined Deterministic - Stochastic Subspace 
Identification 

Similar to the discrete-time stochastic state-space model, the discrete-time combined 

deterministic-stochastic model as shown in Eq. (2-6) can also be used to identify the 

parameter matrices. It is different from the stochastic model by using not only the 
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output data ky  but also the input data ku . Similar to the output Hankel matrix, the 

input Hankel matrix can be constructed using the input data ku  as:  

0 1 1 0 1 1
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 (2-19) 

where mi j
p

×∈U R  is the past input Hankel matrix and mi j
f

×∈U R  is the future input 

Hankel matrix. The matrices ( )1m i j
p

+ ×+ ∈U R  and ( )1m i j
f

− ×− ∈U R  are defined by shifting 

the border between pU  and fU  one block row down. The shifted output Hankel 

matrices, ( )1l i j
p

+ ×+ ∈Y R  and ( )1l i j
f

− ×− ∈Y R , are defined in the same way. The main steps 

to identify the system matrices, A , C  and the modal characteristics from the system 

input and output measurements are given below: 

1. Construction of the Hankel matrices consisting of inputs and outputs as: 

( ) ( )2,   p pm l i j m l i j
p p

p p

+
+ × + + ×+

+

⎡ ⎤ ⎡ ⎤
≡ ∈ ≡ ∈⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

U U
Z Z

Y Y
R R  (2-20) 

2. Compute the oblique projections: The oblique projection of the row space of fY  

along the row space of fU  on the row space of pZ is defined as b
iO  which can be 

calculated by the following formula: 

†( / )( / )/ f

b li j
i f p f f f p p f p

×= ≡ − − ∈UΟ Y Z Y Y U Z Z U Z R  (2-21) 

3. Singular value decomposition (SVD) of the oblique projection b
iO : Choose the 

system order n  and split the singular vectors and the singular values in two parts: 
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( ) 1 1
1 2 1 1 1

2 2

T
t T T
i T

⎛ ⎞⎛ ⎞
= = ≈⎜ ⎟⎜ ⎟
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S 0 V
Ο USV U U U S V

0 S V
 (2-22) 

4. Calculate the system parameter matrices A , the output matrix C  and the modal 

parameters of the system by Eq. (2-12) to (2-18). 

One of the advantages of the state-space description is that the contributions of the 

different modes to the total response of the system can be easily decoupled. This starts 

with similarity transform of the system matrix A  as: 

1
m m m
k k k

m m
k k k

+ = +

= +

s As B u

y C s Du
 (2-23) 

where  

1−=A ΨΛΨ , 1m
k k

−=s Ψ s , 1m −=B Ψ B  and m =C CΨ . 

The parametric estimation of the FRF matrix of the system can be calculated from the 

identified system matrices by taking the Fourier transform of Eq. (2-8) and eliminating 

the states (Juang 1996) as: 

1( ) ( )z −= − +H C I A B Dω , i tz e ωΔ=  (2-24) 

From Eq. (2-4), it is clear that if the measurement outputs are displacement or velocity, 

the Eq. (2-24) can also be represented in the modal coordinates as: 

1

1 1
( ) ( )

m mn n
j j j jm m

j jj j

z
z zλ λ

−

= =

= − = =
− −∑ ∑

c b φ b
H C I Λ Bω , i tz e ωΔ=  (2-25) 

with m
jc  the j th column of mC  and m

jb  the j th row of mB . If the measurement 

outputs are accelerations, the Eq. (2-24) can be decoupled as (Reynders and De Roeck, 

2010): 
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( )1 1

1

( 1)
( ) ( ) ( )

( 1)( )

mn
j jm m

j j j

z
z

zλ λ
− −

=

−
= − + − =

− −∑
φ b

H C I Λ Λ I Bω , i tz e ωΔ=  (2-26) 

For a mechanical system, the receptance matrix ( )rH ω , FRF between nodal 

displacement and nodal forces, of the measurement grid can be decomposed into the 

contribution of the different modes as: 

/2

1
( )

T Hn
j j j j j j

r
j j j

q q
i iλ λ=

= +
− −∑
φ φ φ φ

H ω
ω ω

 (2-27) 

with •  the complex conjugate, H•  the Hermitian transpose and jq  the modal 

scaling factor of mode j . When at least one output DOF measurement coincides with 

an input DOF, the modal scaling factor can be determined. If the measurement outputs 

are displacements, the modal decompositions of Eq. (2-25) and Eq. (2-27) should 

match: 

T m
j j je j j

j j

q
i zλ λ

=
− −

φ φ φ b
ω

, i tz e ωΔ=  (2-28) 

with e•  selecting only the excitation DOFs. If the measurement outputs are velocities, 

the modal decompositions of Eq. (2-25) should match the modal decomposition of the 
receptance in Eq. (2-27), weighted by iω : 

T m
j j je j j

j j

q i
i zλ λ

=
− −

φ φ φ bω
ω

, i tz e ωΔ=  (2-29) 

If the measurement outputs are accelerations, the modal decompositions of Eq. (2-26) 

should match the modal decomposition of the receptance in Eq. (2-27), weighted by 
2−ω : 

2 T m
j j je j j

j j

q
i zλ λ

=
− −

φ φ φ bω
ω

, i tz e ωΔ=  (2-30) 
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The decomposition procedure is very robust because different modes do not influence 
each other in the estimation. The modal mass of each mode jmm  can be calculated 

from (Heylen et al. 1997): 

1
2j

j j

mm
q i

=
ω

 (2-31) 

with jω  the un-damped circular eigenfrequency obtained from Eq. (2-16). This 

formula also allows the mode shapes iφ  of the structure to be scaled to the mass matrix. 

Rescaling the mode shapes is performed by putting the modal mass equal to unity.  

For a mechanical system under ground excitation, the input vector and the transfer 
matrix in Eq. (2-1) is ( ) ( )gt u t=u ��  (for uni-axis ground excitation) and 1 1= −B ML , 

respectively. The FRF between nodal displacement and ground acceleration of the 

measurement grid can be decomposed into the contribution of different modes as: 

/2

/
1

( )
g

n
j j j j

x x
j j j

q q
i iλ λ=

= +
− −∑
φ φ

H ω
ω ω��  (2-32) 

The modal scaling factor can also be determined by comparing Eq. (2-25) and Eq. (2-32) 

as: 

m
j j j j

j j

q b
i zω λ λ

=
− −

φ φ
, i tz e Δ= ω  (2-33) 

with m
jb  as a scalar for uni-axis ground excitation. However, it should be noted that the 

mass-normalized mode shape cannot be obtained under ground excitation because the 

FRF between nodal displacement and ground acceleration under ground excitation is 

independent of the modal mass. 

 

2.1.3. Determining Stiffness and Damping Matrices 

Once the system parameter matrix A  and output matrix C  have been obtained from 
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the SSI algorithm or CSI algorithm with output-only data or input-output data, 

respectively, the system damping and stiffness matrices can also be obtained by the 

technique proposed by (Xiao et al. 2001) for acceleration sensing as: 

[ ] 1
1

−= −K C MCR , 
2

1

−

−

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

CA
R

CA
 (2-34) 

For velocity sensing or displacement sensing, similar equations in (Xiao et al. 2001) can 

be utilized.  

This technique needs a reasonable system mass matrix which can be obtained from the 

finite element model of the system. However, when the system mass matrix is not 

available, the mass-normalized system damping and stiffness matrices can also be 

obtained as (Weng 2010): 

1 1 1
1

− − −⎡ ⎤ = −⎣ ⎦KM C M CR , 
2

1

−

−

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

CA
R

CA
 (2-35) 

The mass-normalized system damping and stiffness matrices may be useful for the 

damage detection if the system mass matrix is assumed unchanged after the system is 

damaged.  

It should be noted that the dimension of the estimated system damping and stiffness 

matrices equals to the number of the physical modes obtained from the SSI or CSI 

algorithms. In practice, the higher modes of the structure are not easy to be identified, 

hence only the lower modes can be identified from the experimental data. As a result, 

the dimension of the system damping and stiffness matrices are restricted. Moreover, the 

value of the stiffness matrix is proportion to eigenvalue of A , which means the value 

in the stiffness matrix is controlled by higher modes with larger eigenvalue. 

Unfortunately, the accuracy of identified higher modes is generally worse than the one 

of identified lower modes. As a result, highly reliable stiffness matrix with larger 

dimension is not easy to access; this also restricts the dimension of the system stiffness 

matrix even when higher modes are identified from the experimental data. 
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2.1.4. Determining Flexibility Matrices 

Consider the linear physical system in Eq. (2-1) again:  

1( ) ( ) ( ) ( )t t t t+ + =Mx C x Kx f�� �  (2-36) 

The orthogonal property of mode shapes with respect to the mass and stiffness matrix 

leads to 

T=M Φ MΦ�  and T=K Φ KΦ�  (2-37) 

where M�  and K�  is the mass matrix and stiffness matrix in the modal coordinate, 

respectively. The square of the un-damped eigenfrequency of the system can be 

expressed in matrix sense as 

2 1−=ω M K� �  (2-38) 

Combining Eq. (2-37) and Eq. (2-38) leads to 

T T 2− =Φ KΦ Φ MΦω 0  (2-39) 

If the mode shapes are already mass-normalized, i.e. T =Φ MΦ I , then based on Eq. 

(2-39) the stiffness matrix can be expressed as 

T 1 2 1( )− −=K Φ ω Φ  (2-40) 

Therefore, the flexibility matrix can be derived from the relationship between stiffness 

matrix and flexibility matrix as 

1 2 T− −= =H K Φω Φ  (2-41) 

If only the first n  modes are available, then the flexibility matrix is truncated. Note 

that the contribution of the modes in the flexibility is proportional to 2−ω , the influence 
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of the higher modes is much smaller than the one of lower modes.  

Before applying Eq. (2-41) to obtain the flexibility matrix, the mode shapes need to be 

normalized by a known mass matrix. In practice, the mass matrix can be calculated 

approximately by constructing the numerical model of the structure, e.g. a FE model. 

However, if a non-model based damage detection method is preferred, Eq. (2-41) cannot 

be used directly. The other way to obtain the flexibility matrix can be achieved by the 

modal analysis from the measurement directly. This quasi-static flexibility matrix is 

obtained by evaluating the dynamic flexibility matrix, also called receptance matrix or 

force-displacement FRF matrix, at zero frequency. The estimation of the quasi-static 

flexibility matrix can be obtained from force or ambient vibration tests directly, as 

summarized in (Reynders and De Roeck 2010). 

 

Obtaining Quasi-static Flexibility Matrix from Forced Vibration Tests 

Remind Eq. (2-27) again that for a mechanical system, the receptance matrix can be 

represented as the modal decomposition form as (Heylen et al. 1997): 

1
( ) ( )

T Hn
j j j j j jm

j j j

q q
i iλ λ=

≈ = +
− −∑
φ φ φ φ

H Hω ω
ω ω

 (2-42) 

with n  the number of measured modes. The quasi-static flexibility matrix can be 

obtained at 0=ω . The approximation in Eq. (2-42) is due to the fact that the number of 

measured modes n  is limited, i.e. the modal truncation takes place. Using the CSI 

technique described in Section 2.1.2, the quasi-static flexibility matrix can be obtained 

directly from the force vibration tests. The construction of a finite element model to 

obtain mass matrix of a structure is not necessary. Note that the mass-normalized mode 

shapes cannot be obtained in the ground excitation case as described in Section 2.1.2. 

 

Obtaining Quasi-static Flexibility Matrix from Ambient Vibration Tests 

Take a Fourier transform of Eq. (2-2) and Eq. (2-4) with considering the displacement 
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measurement at first, one has the following expression for the receptance matrix: 

1(0) d c c
−= −H C A B  (2-43) 

From differentiation of the left equation of Eq. (2-4), it can be shown that (Bernal 2007) 

2p c =H B L D  with d c
p

d

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

C A
H

C
 and 2

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

I
L

0
 (2-44) 

in case of displacement measurements. Solving this equation for cB  in a least-square 

sense and substituting the results in Eq. (2-25) yields 

1 1
2(0) ( )T T

d c p p p
− −= −H C A H H H L D  (2-45) 

If D  is diagonal, which is a good assumption for almost all practical cases, and if the 

structure’s mass is approximately equally distributed, one has 

(0) (0)mm= −H H  with 1 1
2(0) ( )m T T

d c p p p
− −=H C A H H H L  (2-46) 

Where m  is an unknown mass-dependent constant. The eigenvalue decomposition of 

cA  leads to the state space model in modal coordinates as 

( ) ( ) ( )m m m
c ct t t= +s Λ s B u�  (2-47) 

( ) ( ) ( )mt t t= +y Φs Du  (2-48) 

where 

1
c c

−=A ΨΛΨ , 1( ) ( )m t t−=s Ψ s , 1m
c c

−=B Ψ B  

Considering the state space model in modal coordinates, (0)mH  can be written as 

1 1(0) ( )m H H H H H
c c c c
− −= − +H ΦΛ Λ Φ ΦΛ Φ Φ Λ Φ  (2-49) 
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Therefore from only the knowledge of the system poles and the non-mass-normalized 
mode shapes, (0)mH  can be calculated. If the assumptions of lumped mass and equal 

mass distribution are not valid, the measured modes could be scaled using the analytical 

mass matrix. 

 

2.2. Linking Experimental and Analytical Data 

2.2.1. Modal Assurance Criterion 

The modal assurance criterion (MAC) originally developed at the University of 

Cincinnati, Structural Dynamics Research Lab (Allemang 1980) is defined as a scalar 

constant relating the degree of consistency (linearity) between one mode shape and 

another reference mode shape as follows: 

2H
i j

ij H H
i i j j

MAC =
φ φ

φ φφ φ
 (2-50) 

The modal assurance criterion can be used to verify or correlate an experimental mode 

shape with respect to an analytical mode shape. This can be done by computing the 

modal assurance criterion between the mode shapes estimated from experimental data 

and the mode shapes estimated from a finite element analysis evaluated at common 

DOFs. This process results in a rectangular modal assurance criterion matrix with 

values that approach unity whenever an experimental mode shape and an analytical 

mode shape are consistently related. 

 

2.2.2. Mean Phase Deviation 

The mean phase deviation (MPD) algorithm is originally proposed in (Heylen et al. 

1997). The MPD is a measurement of an identified mode shape about how much a mode 

shape looks like a straight line cross the zero point. As the components of a mode shape 

lie closer to the straight line, the mode is closer to a “real” mode. MPD value of a mode 
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can be thought as the standard deviation of the distances between the modal components 

and the mean phase of the mode. As a mode is closer to a “real” mode, the MPD of the 

mode is close to zero. 

The main axis of a mode shape is estimated as the mean of the phase of every 
component of mode m : 

1

1

N

jm jm
j

m N

jm
j

w
MP

w

ϕ
=

=

=
∑

∑
 (2-51) 

where 

( )arctan Re( ) / Im( )jm jm jm=θ φ φ  if ( )arctan Re( ) / Im( ) 0jm jm ≥φ φ  

( )arctan Re( ) / Im( )jm jm jm= +θ φ φ π  if ( )arctan Re( ) / Im( ) 0jm jm <φ φ  

jw : a weighting factor (e.g. = 1, or = jmφ ) 

After the MP is determined, the mean phase deviation (MPD) is estimated as the 

standard deviation of the difference between the phase of every component and the MP 
of mode m : 

2

1

1

N

jm jm
j

m N

jm
j

w
MPD

w

=

=

=
∑

∑

θ�

 (2-52) 

where jm jm mMP= −θ θ� . The original algorithm performs very well if the mode shape is 

close to the real axis and the mode shape is quite “real” (which means the components 

of a mode shape lie on a straight line cross the zero point). However, this algorithm will 

estimate a wrong MP if the modes shape is not so real and the main axis of the mode 
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shape is not close to the real axis, especially when the main axis of a mode shape is 

close to the imaginary axis. Wrong estimation of MP inevitably induces wrong 

estimation of MPD using Eq. (2-52).  

Because of a unreliable estimation of the MP and MPD could be obtained using the 

original algorithm as mentioned above, another modified algorithm is proposed. The 

MP is estimated simply by the curve fitting of a straight line cross the zero by solving 

mMP  by the following equation in a least square sense: 

Im( ) Re( ) tan( )R
m m mMPϕ ϕ=� �  (2-53) 

where m mj mjwϕ ϕ=�  and R
mMP  means the mean phase starts from the positive real axis. 

However, when the main axis of a mode shape is very close to the imaginary axis and 
the mode shape is not quite “real”, the estimation of the mMP  has a numerical problem. 

This can be easily solved by calculating another mean phase from the imaginary axis as 

Re( ) Im( ) tan( )I
m m mMPϕ ϕ=� �  (2-54) 

where I
mMP  means the mean phase starts from the positive imaginary axis. Then the 

final mean phase can be decided by choosing between R
mMP  and I

mMP  with smaller 

absolute value. 

Remember that the mean phase needs to be transformed to the same definition of phase 

as in the original algorithm, i.e. start from the positive imaginary axis with clockwise 
positive and within 0 to π , before it is used to calculate MPD. If I

mMP  is chosen, then 

/ 2 I
m mMP MP= −π . If R

mMP  is chosen and it is minus, then I
m mMP MP= +π . 

When calculating the MPD using Eq. (2-52), one needs to be careful not to overestimate 
the absolute value of jmθ�  because sometimes it can be greater than / 2π  or smaller 

than / 2−π . The following equations should be considered: 

jm jm mMP= − −θ θ π�  if / 2jm mMP− >θ π  (2-55) 
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jm jm mMP= − +θ θ π�  if / 2jm mMP− < −θ π  (2-56) 

 

2.2.3. Expansion and Reduction 

When performing damage detection for a structure, sometimes a finite element model is 

constructed and the damage can be detected according to the finite element model. 

While a real structure has infinite number of DOF, a finite element model has finite 

number of DOF. In practice, the number of measured DOF is usually smaller than the 

number of DOF of the finite element model. However, all the DOF of the mode shape 

of a finite element model may be necessary to conduct the damage detection. In this 

case, the measured mode shapes need to be expanded by the modal expansion method 

(while the reversal way is the modal reduction). Several modal expansion/reduction 

method, e.g. static, dynamic, hybrid and SEREP (System Equivalent Reduction and 

Expansion Process), had been developed. In this thesis, only static, dynamic and SEREP 

expansion/reduction methods are implemented and introduced. Note that these 

expansion and reduction method may also be implemented to expand or reduce the mass 

matrix and stiffness matrix. 

 

2.2.3.1. Static and Dynamic Expansion and Reduction 

The static expansion (Guyan et al. 1965) and dynamic expansion (Kidder 1973) are 

well-known reduction and expansion algorithm. The transform matrix between the 

master DOFs (measured DOFs) and slave DOFs (unmeasured DOFs) of the static 

expansion algorithm is 

1ˆ
ss sm
−= −t K K  (2-57) 

where subscript m  denotes master DOFs (measured DOFs), and subscript s  denotes 

slave DOFs (unmeasured DOFs). An experimental mode shape with full DOFs can be 

obtained by expanding a mode shape with incomplete measured DOFs according to the 

following equation 
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ˆ
ˆ m m

⎡ ⎤
= =⎢ ⎥
⎣ ⎦

I
φ φ Tφ

t
 (2-58) 

Similarly, the transform matrix between the master DOFs and slave DOFs for the i th 

mode shape of the dynamic expansion algorithm is 

2 1 2ˆ ( ) ( )i i ss i sm
−= − − −t K M K Mω ω  (2-59) 

The i th experimental mode shape with full DOFs can be obtained by expanding the i th 

experimental mode shape with incomplete measured DOFs according to the following 

equation 

, ,
ˆ

ˆi m i i m i
i

⎡ ⎤
= =⎢ ⎥
⎣ ⎦

I
φ φ Tφ

t
 (2-60) 

The static expansion algorithm can also be used inversely to perform reduction of the 

stiffness matrix and mass matrix as 

ˆ ˆ

ˆ ˆ

T
r

T
r

=

=

M T MT

K T KT
 (2-61) 

2.2.3.2. System Equivalent Reduction and Expansion Process 

The System Equivalent Reduction Expansion Process (SEREP) (O’Callahan et al. 1989) 

is a very useful method for modal expansion and reduction. The slave (unmeasured) 

DOFs of the experimental mode shapes can be expressed according to the reference 

analytical mode shapes and the master (measured) DOFs of the experimental mode 

shapes as 

1( ) ( )r r T r r T
s s m m m m

−=Φ Φ Φ Φ Φ Φ  (2-62) 

where superscript r  denotes reference analytical mode shapes. 
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3. DAMAGE DETECTION METHODOLOGY 

As point out in Section 1.5, the research community of SHM is still investigating the 

feasibility of damage detection algorithms using change of structural features due to 

damage. In this chapter, three Level-III vibration-based damage detection algorithms 

using different strategies are introduced. Similar to the majority in the literatures of 

vibration-based damage detection, the damage that is aimed at to detect in this thesis is 

the damage that causes stiffness reduction in a structure. In other words, the 

methodologies in this thesis are limited to stiffness variation identification. 

The first algorithm is the MSEC method originally developed by (Shi et al. 2000), 

classified as a modal-domain, Level-III and highly model-based approach. With the help 

of a finite element model, detailed damage characteristics could be recognized by this 

method. The original MSEC method is further modified in this thesis to improve the 

performance of damage detection in practice.  

The second method is the FRFC method developed by the author. This method is 

classified as a frequency-domain, Level-III and model-based approach. Efforts are 

devoted to reduce the dependence of a FE model for the FRFC method. One of the 

advantages of this method is the potential to be integrated with wireless sensing systems. 

Because only some segments of measured frequency spectra of each sensor are 

necessary to detect the damage by the FRFC method, the whole measured time-history 

is not necessary to be transmitted wirelessly. While taking the advantage of collocated 

computing resources of wireless sensing systems, the energy consumed by wireless 

sensing units is saved at the same time. 

The third one is the local flexibility method developed by Reynders and De Roeck 

(2010), classified as a modal-domain, Level-III and rarely model-based approach. 

Because the dynamic measured flexibility matrix is dominated by the lowest modes of a 

structure which can be easily measured with high reliability comparing to higher modes, 

this method reveals the feasibility in practice. 

These three damage detection algorithms are later verified via numerical and 

experimental cases in Chapter 4. 
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3.1. Modal Strain Energy Change Method 

The original modal strain energy change method developed by (Shi et al. 2000) can 

both detect the location and extent of the damaged elements. Before quantifying damage 

extent, the suspected damaged elements need to be selected in advance owing to the 

nature of the ill-posed problem when solving the inverse problem. Therefore, the first 

step of MSEC method is to select the candidates based on the ratio of MSEC in each 

element. The next step is to calculate the damage extent based on its sensitivity to the 

MSEC in each element. The information necessary for this method includes the 

measured mode shapes in damage state, the intact analytical mode shapes, and the intact 

analytical elemental stiffness matrix. Because the calculation of MSE in each element 

relies on the analytical mode shapes and analytical elemental stiffness matrix, the 

MSEC method is evidently a highly model-based method.  

In order to overcome some difficulties when applying MSEC method to a 3D steel 

building structure (as introduced in Section 4.1.1), several modifications of the original 

MSEC method are proposed. The main modifications proposed are: (i) including the 

sensitivity equations of eigenvalue respect to elemental stiffness change in the damage 

identification equations; (ii) considering elemental stiffness loss contributed by different 

elemental sectional properties; and (iii) a new “target-updated” iteration process. 

3.1.1. Original Modal Strain Energy Change Method 

3.1.1.1. Damage Localization 

The basic idea of MSE is the product of the elemental stiffness matrix and the second 
power of the mode shape component (Doebling et al. 1997). For the j th element in the 

i th mode, the MSE before and after the occurrence of a damage is given by 

T
ij i j iMSE = φ K φ     and    ,d d T d

ij i j iMSE = φ K φ  (3-1) 

where iφ  denotes the i th mode shape of intact state; jK  denotes the intact elemental 

stiffness of j th element; superscript T  denotes the transpose, and the superscript d  
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denotes the damage state. In the modal strain energy of damaged case, d
ijMSE , the 

stiffness of damaged case d
jK  is approximated by jK  since the damaged stiffness 

matrix is not known in advance. The MSECR (Shi et al. 1998) is defined as 

d
ij ij ij ijMSECR MSE MSE MSE= −  (3-2) 

If a total of m  modes are considered at the same time, then the average normalized 
modal strain energy change ratio for the j th element may also be utilized as the damage 

localization indicator, and it is defined as 

,max
1

m

j ij i
i

MSECR MSECR MSECR m
=

= ∑  (3-3) 

which denotes the average of MSECR normalized with respect to the largest value of 

MSECR for each mode. The MSECR is the damage indicator to select the candidate 

damaged elements to be quantified the damage extent. 

 

3.1.1.2. Damage Quantification 

The MSEC method assumes that damage only affects the stiffness matrix of the system. 

The relationship between the damaged stiffness matrix of the system dK  and the lump 
value of the stiffness loss jKΔ  of the j th element after the damage is introduced can 

be expressed as 

1 1

L L
d

j j j
j j= =

= + = + = +∑ ∑K K K K K K KΔ Δ α  ( 1 0)jα− < ≤  (3-4) 

where jα  denotes the reduction factor in stiffness of the j th element, and L  denotes 

the total number of elements in the system. The first-order modal strain energy change 
of j th element in the i th mode due to the variation of mode shape is defined as (Shi et 

al. 1998) 

2 2 ( )T T d
ij i j i i j i iMSEC = = −φ K φ φ K φ φΔ  (3-5) 
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If the variation of mode shape is assumed to be the linear combination of the mode 

shapes, then it can be derived from the equation of motion as (Thomas et al. 1988) 

1
( )

n
T

i r i r i r
r=

= − −∑φ φ Kφ φΔ Δ λ λ   where r i≠  (3-6) 

where iλ  denotes the eigenvalue of the i th mode of the intact system. Note that the 

mode shapes are mass-normalized. Substituting KΔ  in Eq. (3-6) into Eq. (3-5), 
ijMSEC  can be expressed as 

1
2 ( )

n
T T

ij i j r i r i r
r

MSEC λ λ
=

⎛ ⎞
= − −⎜ ⎟

⎝ ⎠
∑φ K φ Kφ φΔ   where r i≠  (3-7) 

Finally, by substituting Eq. (3-4) into Eq. (3-7), the relationship between ijMSEC  and 

jα  is then obtained 

1 1
2 ( )

L n
T T

ij p i j r p i r i r
p r

MSEC
= =

⎛ ⎞
= − −⎜ ⎟

⎝ ⎠
∑ ∑φ K φ K φ φα λ λ   where r i≠  (3-8) 

Define the sensitivity coefficient as 

1
2 ( )

n
T T

jp i j r p i r i r
r=

⎛ ⎞
= − −⎜ ⎟

⎝ ⎠
∑φ K φ K φ φβ λ λ  where r i≠ , 1, 2,...,j J= , 1, 2,...,p P= .

 (3-9) 

For the i th mode, the ijMSEC  in Eq. (3-8) can be expressed as follows 

1 11 12 1 1

2 21 22 2 2

1 2

...

...
... ... ... ... ... ...

...

i P

i P

iJ J J JP P

MSEC
MSEC

MSEC

⎧ ⎫ ⎡ ⎤ ⎧ ⎫
⎪ ⎪ ⎢ ⎥ ⎪ ⎪
⎪ ⎪ ⎪ ⎪⎢ ⎥=⎨ ⎬ ⎨ ⎬⎢ ⎥⎪ ⎪ ⎪ ⎪⎢ ⎥⎪ ⎪ ⎪ ⎪⎩ ⎭⎩ ⎭ ⎣ ⎦

β β β α
β β β α

β β β α

 (3-10) 

where J  denotes the size of the group covering the selected elements for calculating 

the MSEC, which may or may not include the suspected damaged elements with J P≥ , 
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and P  denotes the number of suspected damaged elements.  

The vector on the left side of Eq. (3-10) denotes the MSEC of all J  elements in the 

i th mode, which can be calculated from Eq. (3-5) by utilizing the identified mode 

shapes of the damaged and intact state from measured data. The sensitivity coefficient 
jpβ  can be computed from Eq. (3-9) by employing the analytical modal information 

and elemental stiffness matrices of the intact state. However, the direct solution of Eq. 

(3-10) would yield poor results owing to the nature of the ill-posed problem, 

particularly when the data contain noise. Hence, to reduce the effect of the ill-posed 

problem, the number of suspected damaged elements should be appropriately 

determined in the previous damage localization stage. Additionally, it is recommended 

to include several modes when solving Eq. (3-10). The number of equations of Eq. 
(3-10) increases to dimension of m J×  when m  modes are employed to estimate the 

damage. 

 

3.1.2. Modified Modal Strain Energy Change Method 

3.1.2.1. Modification for Damage Localization 

The MSECR is originally defined as the absolute change ratio of the MSE of each 

element for a mode, which implies that the variation of the MSE of the damaged 

element is bigger than the variation of the other elements both in increasing or 

decreasing way. However, since damage always makes the damaged element with 

smaller stiffness value, intuitively, damaged element may deform more under the same 

load. It was also concluded in the literature that if a structure is damaged at some points, 

the modal curvatures in the neighborhood of that point tend to increase (Pandey et al. 

1991; Wahab and De Roeck 1999). These concepts imply that the MSE of damaged 

elements may increase after damage, not decrease after damage for most of the lower 

modes. Therefore, in order to select the candidate damaged elements more efficiently 

with considering difference between increasing and decreasing of MSE, the MSECR is 

modified as 

( )d
ij ij ij ijMSECR MSE MSE MSE= −  (3-11) 
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without taking absolute value in the numerator.  

In addition, because the element with a small MSE inevitably leads to an abnormal 

MSECR value, especially when applied to a 3D structure, a criterion for eliminating the 
possibility of resulting in an abnormal MSECR is proposed. The j th element in i th 

mode will be removed if 

1

L

ij MSE ij
j

MSE C L MSE
=

< ×∑  (3-12) 

where MSEC  is defined as the threshold of MSE; L is the number of total elements. 

Another reason to remove the elements of a small MSE is that the corresponding 

sensitivities of such elements maybe too small, thus producing abnormal results when 
solving the inverse problem. By setting an appropriate MSEC  value, the null hypothesis 

of damage location and the abnormal results of damage quantification can both be 

circumvented. 

The advantage of modified MSECR and introducing the threshold of MSE will be 

illustrated in the numerical studies in Section 4.1.2. 

 

3.1.2.2. Including Sensitivity of Eigenvalue 

For many cases, the estimation of system eigenfrequencies can be more accurate than 

the estimation of mode shapes. Therefore, Eq. (3-10) can be expanded to incorporate the 

change of system eigenvalue together with the MSEC. The sensitivity equation on the 

variation of eigenvalue can be expressed as (Fox and Kapoor 1968): 

1

P
d T T

i i i i i i i p i
p=

= − = = ∑φ Kφ φ K φΔλ λ λ Δ α  (3-13) 

This sensitivity equation of eigenvalue is added to Eq. (3-10), where d
iλ  denotes the 

measured eigenvalue of the i th mode of the damaged system, and iλ  denotes the 

measured eigenvalue of the i th mode of the intact system. Hence Eq. (3-10) becomes 
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 (3-14) 

Note that Eq. (3-14) is valid within small disturbance otherwise the truncation error is 

introduced. Fortunately, the truncation error could be reduced by introducing iteration 

process which will be explained in detail in Section 3.1.2.4. Moreover, including 

eigenvalue in Eq. (3-14) adds an equation hence lower the possibility of an ill-posed 

sensitivity equation. This benefit is discussed in the numerical studies in Section 4.1.2. 

 

3.1.2.3. Expansion of Element Stiffness 

Previous studies on damage diagnosis mainly concentrated on the lump value of the 

damage extent of elements for simplification. In practice, when structure is damaged, 

equally reduction of stiffness in different DOFs of elements cannot happen unless the 

element is removed or completely damaged. Furthermore, diverse lump damage extent 

of an element could be obtained using different directional modes since the damage 

extent of different DOFs of the elements may be distinct. Consequently, obscure extents 

of damage of an element are obtained. The original MSEC method is modified further 

to identify the stiffness loss of elements contributed by different sectional properties. 

The stiffness of a beam element is directly related to its sectional properties. By 
considering the elemental stiffness matrix of the j th element as the combination of 

stiffness matrices contributed by different sectional properties, the stiffness matrix for 
the j th element can be expressed as 

y xz I IIA
j j j j j= + + +K K K K K  (3-15) 

where superscript A  denotes the cross sectional area; superscript zI  or yI  denotes 

the moment of inertia about the local z-axis or y-axis, respectively, and superscript xI  

denotes the torsional constant. Accordingly, the variation of the stiffness matrix for the 
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j th element can be expressed as 

y y x xz z I I I II IA A
j j j j j j j j j= + + +K K K K KΔ α α α α  (3-16) 

Similarly, the MSECR can also be represented by the ratio contributed by different 
sectional properties of the elements. The reduction factor jα  of the stiffness of the j th 

element can be expanded as 

{ }{ } y xz
TI IIA

j j j j j=α α α α α  (3-17) 

Therefore, the ijMSEC contributed by variation of mode shapes with different sectional 

properties is expressed as 
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And the sensitivity coefficient jpβ  is modified as 

y xz

z y z xz z z

y y z y y y x

x yx x z x x

AI AIAIAA
jp jp jp jp

I I I II A I I
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 (3-19) 

in which the typical component of sensitivity coefficient jpβ  is expressed as 

1
2

z

z

ITn
r p iAI T A

jp i j r
r r i=

⎛ ⎞
= − ⎜ ⎟⎜ ⎟−⎝ ⎠

∑
φ K φ

φ K φβ
λ λ

  where r i≠  (3-20) 

where the superscript A  and zI  can be replaced by any other combination of A , zI , 

yI , and xI . Each sensitivity equation of variation of eigenvalue for i th mode and p th 
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element, T
i i p iφ K φα , is also expanded as 

 { }{ }y yx xz z
TI II II IT A T T T A

i p i i p i i p i i p i i i i iφ K φ φ K φ φ K φ φ K φ α α α α  (3-21) 

Finally, Eq. (3-17) to (3-21) are substituted into Eq. (3-14) to solve for the stiffness 

reduction factor of different sectional properties of each element. Similar to the original 

MSEC method, all the stiffness reduction factor of sectional properties not suspected as 

being damaged are assumed to be zero, and hence are not considered in Eq. (3-14). 
Although J  can be chosen different from P  in Eq. (3-14), for simplicity, the 

sensitivity coefficients in Eq. (3-14) only relates to the number of suspected damaged 

elements or sectional properties. Therefore, if there are l  suspected damaged elements 
or sectional properties, the dimension of sensitivity matrix in Eq. (3-14) is ( 1)l l+ × . 

 

3.1.2.4. Iteration Process 

Because the relationship between MSEC and damage reduction factor α  is nonlinear 

when sufficient damage has occurred to cause the shift of the system modal information, 

iteration is necessary to improve the accuracy of the assessment of damage severity. The 

original MSEC method utilizes an iteration process identical to the one proposed by 

(Ricles and Kosmatka 1992) to handle the nonlinearity as illustrated in Figure 3-1(a), 
where the superscripts 0, 1, and 2 refer to the iteration number during updating, and 0Ω  

and dΩ  denote arrays containing modal parameters, including the eigenvalue and MSE 

of the intact and damaged system, respectively. The difference between 0Ω  and dΩ  is 

actually the left side of Eq. (3-14). In the i th step, the stiffness reduction factor array 
iα  is calculated by Eq. (3-14), which considers the current structural state rather than 

the intact structural state. Finally, the accumulated stiffness reduction factor array α  is 

obtained by summing up the stiffness reduction factor array iα .  

The target of the iteration process is dΩ , which is assumed to be “fixed” during the 

iteration. The eigenvalue in dΩ  is directly measured in the damaged state, which is 

definitely fixed. However, the other target, MSE in the damaged state, is obtained by 

expanding the measured damaged mode shape according to the “intact” stiffness matrix. 
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Hence the MSE remains unchanged during the iteration in the original iteration process. 

In this thesis, the author proposes to expand the measured damaged mode shape 

according to the updated “damaged” stiffness matrix based on the results of the previous 

step, meaning that the target MSE becomes “updated” during the iteration process. 

Figure 3-1(b) depicts the modified iteration process. 

(a) Original iteration scheme 

dΩ

0Ω

0β

1α

1
1β

11
2β

2α 0α
α

Fixed
Target

Structural 
Parameter

= Updated Linearization Point

 

(b) Modified iteration scheme 

0
dΩ

0Ω

α

1
dΩ

2
dΩ

0β
1β

2β

1α2α 0α

 

Figure3-1: Iteration process of MSEC method (a) original; (b) modified 
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3.1.2.5. Convergence Criterion 

In practice, the true damage state is unknown. Therefore, a criterion is required to 

evaluate the results obtained by the modified MSEC method. It is proposed to observe 

an objective which includes the MAC values between each pair of the measured 

damaged mode shape and the updated analytical mode shape. The objective is defined 

as: 

1j j
i iOb MAC= −  (3-22) 

where j
iMAC  denotes the MAC between the i th measured damaged mode shape and 

the i th updated analytical mode shape in the j th iteration. The iteration process can be 

terminated when 

1

1 1
0

N N
j j

i i
i i

Ob Ob −

= =

− >∑ ∑  (3-23) 

 

3.2. Frequency Response Function Change Method 

All the FRF-based damage detection approaches summarized in Section 1.4.2 must 

generate artificial excitations at one or some DOFs on the structure. However, artificial 

excitations for a civil engineering structure are usually expensive or impractical because 

of the large scale. Ground excitations powered by an earthquake or traffic seem to be a 

possible alternative provided the amplitude of the ground excitation is much larger than 

the other excitation sources. 

In this section, the Frequency Response Function Change (FRFC) method which can 

detect the location and extent of damage is derived from the motion of equations of a 

linear system subjected to a ground motion both before and after damage. The system 

matrices of the intact system, i.e. mass matrix, damping matrix and stiffness matrix, and 

the FRFs both prior and posterior to an occurrence of damage are required for the 

proposed method. This method is classified as a frequency-domain and Level-III 

damage detection approach. The intact system matrices could be obtained using a finite 
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element model, which makes the FRFC method model-based. Alternatively, these 

matrices could be obtained from the measured signals and an analytical mass matrix 

using the subspace identification technique introduced in Section 2.1.3. Furthermore, 

for a shear building with a diagonal mass matrix, it is derived that the stiffness reduction 

ratio can be obtained even though the value in the mass matrix is not known. The 

circumvention of establishing a FE model to obtain an analytical mass matrix 

transforms the FRFC method from a highly model-based method to a rarely 

model-based method. 

Experience shows that when solving an inverse problem, poor results could be obtained 

due to the nature of ill-posed problem, especially when the data are polluted by noise 

(Fritzen et al. 1998). Therefore, a least-squares method is usually implemented and 

more redundancy is preferred to obtain estimation with better accuracy. Unlike the 

modal-domain methods where only some identified lower modes can be used, the FRFC 

method allows plenty of FRFs with different frequencies to be used to solve the inverse 

problem. 

Initially motivated to reduce the cost of sensors instrumented in a structure, wireless 

sensing technology for SHM becomes an emerging research topic in the last decades. As 

discussed in Section 1.5, the research community is still trying to discover the potential 

contributed by computational power collocated in wireless sensing systems. Because the 

FRFC method requires only some segments of measured frequency spectra of each 

sensor to detect the damage of a structure, it represents its potential to integrate with the 

wireless sensing systems to take advantage of collocated computing resources and 

reduce the energy consumption at the same time. The operational scheme to integrate 

the proposed FRFC method and wireless sensing systems is also introduced in this 

section. 

 

3.2.1. Methodology 

Let ( )U ω��  be the Fourier spectrum of the measured ground acceleration vector. The 

equation of motion with n  degrees of freedom under a ground excitation ( )U ω��  in 

frequency domain is 
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2
1( ) ( ) ( )i− + + = −M C K X MLUω ω ω ω��  (3-24) 

where ( )X ω  is the Fourier spectrum of displacement response vector; M , 1C  and 

K  represents the n n×  mass, damping and stiffness matrices, respectively; L  

represents the loading vector. The displacement vibration response can be represented as 

( ) ( ) ( )=X T Uω ω ω��  (3-25) 

where ( )T ω  denotes the frequency response function matrix between the input ground 

excitation vector and the response displacement vector for the intact system as 

2 1
1( ) ( )i −= − − + +T M C K MLω ω ω  (3-26) 

It is assumed that the mass and damping matrices are unchanged after the system is 
damaged. Therefore the frequency response function matrix ( )dT ω  for the damaged 

system is 

2 1
1( ) ( )d di −= − − + +T M C K MLω ω ω  (3-27) 

where dK  is the stiffness matrix of the damaged structure. Multiply both sides of Eq. 

(3-26) and Eq. (3-27) by 2
1i− + +M C Kω ω  and 2

1 di− + +M C Kω ω , respectively. 

And then subtracts Eq. (3-27) from Eq. (3-26), Eq. (3-28) is obtained as 

2
1( ) ( ) ( )( ( ) ( ))d d diω − + − + − =KT K T M C T T 0ω ω ω ω ω  (3-28) 

The change in the stiffness matrix and the change in FRFs due to damage are defined as 

d= −K K KΔ  (3-29) 

and 

( ) ( ) ( )d= −T T TΔ ω ω ω  (3-30) 
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, respectively. Substituting Eq. (3-29) and Eq. (3-30) into Eq. (3-28) yields the damage 

identification equation 

2
1( ) ( ) ( )d i Δ= − + +KT M C K TΔ ω ω ω ω  (3-31) 

Let ( )R ω  denotes the right hand side of the damage identification equation as: 

2
1( ) ( ) ( )i Δ= − + +R M C K Tω ω ω ω  (3-32) 

Therefore Eq. (3-31) becomes 

( ) ( )dΔ =KT Rω ω  (3-33) 

The term KΔ  is the variation of stiffness matrix and can be represented as a sum of 

each elemental matrix multiplied by a reduction factor (
1

L

j j
j=

= ∑K KΔ α ). However, such 

a representation needs that the element matrices are known or well-updated. In order to 

circumvent the troublesome model updating procedures to obtain a finite element model 

with acceptable accuracy, the author tries to solve the variation of element stiffness 

matrices by only assuming the geometry relationship between the elemental matrices 

and the system matrix, without assuming the value of each elemental matrix. 
Considering an one-dimensional shear building with n  degrees of freedom for 

example, the system stiffness matrix is assumed to be the form 

1 2 2

2 2 3

1
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0
n n n

n n

k k k
k k k

k k k
k k

−

+ −⎡ ⎤
⎢ ⎥− +⎢ ⎥
⎢ ⎥=
⎢ ⎥+ −⎢ ⎥
⎢ ⎥−⎣ ⎦

K
%

%
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 (3-34) 

Because we have specified the form of the stiffness matrix, the left hand side of Eq. 

(3-33) can be rearranged to allow the variation of elemental stiffness components to be 

assembled in a vector and then be rewritten as 
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( ) ( )d d=τ κ KTω Δ Δ ω  (3-35) 

where 

1 2[ ]T
nk k k=κΔ Δ Δ Δ…  (3-36) 

and 

1 1 2

2 1

( 1) ( 2) ( 1)
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 (3-37) 

where ( )dpT ω  presents the p th component in ( )dT ω . Substituting Eq. (3-35) into Eq. 

(3-33) and separating the complex FRF into real and imaginary parts, Eq. (3-33) 

becomes 

( ) ( )
( ) ( )

d

d

ℜ ℜ⎡ ⎤ ⎡ ⎤
Δ =⎢ ⎥ ⎢ ⎥ℑ ℑ⎣ ⎦⎣ ⎦

τ R
κ

τ R
ω ω
ω ω

 (3-38) 

For a certain frequency jω , there are 2n  equations with n  unknowns to be solved. To 

reduce the noise effects and ill-posed problem, one may use m  different frequencies 

and get 2n m×  equations and then solve them by a least-squares approach. Solving Eq. 

(3-38) gives the variations of elemental stiffness components without assuming the 

value of the baseline elemental stiffness matrices. The procedure to obtain Eq. (3-35) 

can be automated in a way similar to the development of the finite element model of the 

system (Caicedo 2003). 

After the variations of elemental stiffness components in Eq. (3-36) are obtained by 
solving Eq. (3-38), the stiffness reduction ratio of the thi  element can be obtained as 

i

i

k
k
Δ . Note that because ik  is not known analytically if no FE model is constructed, 
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here the components in the identified stiffness matrix using Eq. (2-34) can be utilized to 

calculate the stiffness reduction ratio. 

The displacement FRF ( )T ω  can be calculated by the FRF between the ground 

acceleration time-history and the response acceleration time-history and then divided by 

the square of the circular frequencies. Similarly, it can be calculated by the FRF 

between the ground velocity time-history and the response velocity time-history and 

then divided by the circular frequencies. The FRF can be obtained by one of the most 

commonly used FRF estimators which assumes that only the noise is present on the 

outputs and the noise is uncorrelated with the input signals as given by the following 

equations (Heylen 1997): 

1
yf ff

−=Ρ G G  (3-39) 

where ffG  is the auto-power spectra of the inputs and yfG  is the cross-power spectra 

between the inputs and outputs given by 

, ,
1

1( )
bN

H
ff k b k b k

bb

G F F
N =

= ∑ω  (3-40) 

, ,
1

1( )
bN

H
yf k b k b k

bb

G Y F
N =

= ∑ω  (3-41) 

with bN  the number of blocks by which the time data is divided and the input spectra 

,b kF  and output spectra ,b kY  given by the Discrete Fourier Transform (DFT) in 

combination with a window nw  as: 

1

, ,
0

1 N
n

b k n b n k
n

F w f z
N

−
−

=

= ∑  (3-42) 

1

, ,
0

1 N
n

b k n b n k
n

Y w y z
N

−
−

=

= ∑  (3-43) 

with 2 /i k N
kz e π=  and ,b nf , ,b ny  the time samples of the input and output signals for 
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block b  at simple time n tΔ  ( tΔ  the sample period). The total number of time 

samples is N. 

In summary, the FRFs of the system prior and posterior to damage as well as the system 

matrices including the mass matrix, damping matrix and stiffness matrix of the 

undamaged structure are required to solve Eq. (3-38). However, to obtain all the 

well-estimated or well-updated system matrices individually is not an easy task. 
Alternatively, one can obtain the well-estimated system matrix (i.e. 2

1i− + +M C Kω ω ) 

instead of to obtain the well-estimated mass matrix, damping matrix and stiffness 

individually. In other words, the individual mass matrix, damping matrix or stiffness 

matrix is not necessary to be close to the true one, but only the system matrix composed 

of these matrices is necessary to be close to the true one. This can be achieved by using 

the subspace identification technique as described in Section 2.1.3 to evaluate the 

system matrix with acceptable accuracy. The feasibility of this technique is discussed in 

Section 4.2. 

It is worth to be mentioned that for a shear building with diagonal mass matrix which is 

a good assumption in many practical cases, the mass matrix is not necessary to be 

known for the FRFC method. Multiplying the inverse of the mass matrix in both side of 

Eq. (3-31), Eq. (3-32) can be derived as: 

2 1 1
1( ) ( ) ( )i − −= − + +R I M C M K Tω ω ω Δ ω�  (3-44) 

Following similar procedures, Eq. (3-28) can be derived as 

( ) ( )
( ) ( )

d

d

ℜ ⎡ ⎤⎡ ⎤ ℜ
Δ = ⎢ ⎥⎢ ⎥ℑ ℑ⎣ ⎦ ⎣ ⎦

τ R
κ

τ R
ω ω
ω ω

�
� �  (3-45) 

where 

1 2

1 2

[ ]Tn

n

kk k
m m m

=κ ΔΔ Δ
Δ � …  (3-46) 

The mass normalized damping and stiffness matrices in Eq. (3-44) can be obtained 
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using Eq. (2-35) assuming that the damping and stiffness matrices are symmetric. The 

components in the identified mass-normalized stiffness matrix using Eq. (2-35) can be 
utilized to calculate the stiffness reduction ratio. The stiffness reduction ratio of the thi  

element can still be obtained as i i i

i i i

k k m
k k m

=
Δ Δ . 

 

3.2.2. Integrated with wireless sensing systems 

Since the mid-1990s, a number of research teams in both academia and industry have 

proposed an impressive array of wireless sensing unit prototypes to be implemented for 

SHM (Lynch and Loh 2006). The essential part of a wireless sensing systems (WSS) is 

the wireless sensing unit (WSU) which generally consists of three or four functional 

subsystems: sensing interface, computational core, wireless transceiver and, for some, 

an actuation interface. A benefit of wireless structural monitoring systems is that they 

are inexpensive to install because extensive wiring is no longer required between 

sensors and a central data acquisition system. However, wireless sensing network is not 

simply a substitute for traditional tethered monitoring systems but also a decentralized 

architecture offering parallel processing of measured data. The collocated computational 

power endows wireless sensing systems great potential for research community to 

discover. 

To date, wireless sensor networks are still in their infancy in many respects (Lynch and 

Loh 2006). One of the remaining limitations of current wireless sensing systems is the 

finite energy sources used to power devices in the field. Besides expecting the maturing 

of battery technology for the mobile devices, the research community has proposed 

several approaches to addressing the limitation of current battery technologies: (i) 

maximizing the time sensors are placed in sleep mode; (ii) pursuit of duty cycle usage 

schemes; (iii) designing the wireless sensor hardware to be as low power as possible; 

and (iv) power harvesting by converting ambient energy sources into usable and 

storable electrical energy. In addition, since wireless radio consumes more electrical 

energy than the computational core, energy can be saved by minimizing the use of the 

wireless communication channel. Therefore, minimizing the need to transfer long 

time-histories of structural response data, by programming wireless sensing units to 
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locally interrogate their data first, seems an appropriate solution.  

The FRFC method answers to this idea and can be integrated with wireless sensing 

systems to take advantage of the collocated computational power and also save energy 

consumption of wireless sensing units. This is contributed by the advantage of the 

FRFC method where enough equations to obtain the least squares solution in Eq. (3-38) 

can be acquired by using FRFs at a few frequencies. The FRF estimation can be 

calculated by Eq. (3-39) which only needs the frequency spectrum segments calculated 

by fast Fourier transform (FFT) algorithm for measurement in each sensing unit. 

Without transmitting the whole time-history, only a short array composed of selected 

frequency spectrum segments is transmitted between the wireless sensing networks. The 

frequency spectrum segments can be selected as the frequencies close to the 

eigenfrequencies of the system since the signal to noise ratio of these Fourier spectra is 

much higher than others. This suggestion will be further discussed in Section 4.2 using 

some analytical case studies. 

The operational scheme of the integration of FRFC with WSUs is illustrated in the flow 
chart in Figure (3-2). After the acceleration (or velocity) time-history ( )iy t  is 

measured in the thi  WSU, the Fourier spectrum ( )iY ω  is calculated by the embedded 

FFT algorithm. A set of m  eigenfrequencies of the structure in the thi  WSU, 

1 2[ , , , ]i i i im=ω ω ω ω" , is determined by an embedded peak-picking algorithm which 

selects the peaks of the Fourier spectrum smoothed by an embedded smoothing 
algorithm. The frequency set iω  selected in each WSU is then transmitted wirelessly 
to the host computer. The most probable set of the system eigenfrequencies systemω  is 

decided in the host computer and then broadcasted to all the n  WSUs. The thi  WSU 
then transmit a set of Fourier spectrum ( )i systemY ω� �  back to the host computer. Note that 

the frequencies set systemω�  can contain not only the system eigenfrequencies systemω  

but also some adjacent frequencies around them. After the host computer receives the 

selected frequency spectrum segments from all the WSUs, the FRF segments are 

estimated using Eq. (3-39). The variations of elemental stiffness matrices κΔ  can be 

calculated using these FRF segments by Eq. (3-38). 

Since the necessary information for FRFC method to detect damage of the structure 

could be accessed automatically right after a ground excitation, i.e. a train passing or an 
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earthquake, on-line damage detection could be achieved by this operational scheme. 

The realization of the operational scheme in a laboratory test is presented in Section 4.2. 

The benefit of saving energy by integrating FRFC method with WSUs is also discussed 

in the same section. 

1( )y t 2 ( )y t ( )ny t

1( )Y ω 2 ( )Y ω ( )nY ω

1 11 12 1[ , , , ]mω ω ω"=ω

1ω

2ω
nω

1 2[ , , , ]system mω ω ω"=ω

systemω

1 2[ , , , ]system mω ω ω=ω� � � �"

2 21 22 2[ , , , ]mω ω ω"=ω 1 2[ , , , ]n n n nmω ω ω"=ω

1 2[ , , , ]system mω ω ω=ω� � � �" 1 2[ , , , ]system mω ω ω=ω� � � �"

1( )systemY ω� � 2 ( )systemY ω� � ( )n systemY ω� �

1( )systemY ω� �

2 ( )systemY ω� �

( )n systemY ω� �

1 2[ , , , ]n=Y Y Y Y� � � �"

1 2[ , , , ]pk k kΔ = Δ Δ Δκ …  

Figure 3-2: Operational scheme of the FRFC method integrated with WSUs. 
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3.3. Local Flexibility Method 

The local flexibility method which not only localizes but also quantifies the damage of a 

structure has been developed by Reynders and De Roeck (2010). This method tries to 

obtain the quasi-static flexibility matrix by making use of the dynamic flexibility matrix 

evaluated at zero frequency. Based on the principle of virtual work, provided the 

stress-strain relationship is proportional, the ratio of virtual work done by some virtual 

force before and after a change in stiffness has occurred equals the inverse stiffness ratio. 

The virtual force can be selected to make the structure consist of nonzero stress only in 

a “local” region; by doing so, the change of local stiffness can be quantified. This is 

probably the reason that the method is called “local” flexibility method. 

Because the construction of the quasi-static flexibility matrix requires only the modal 

parameters (eigenfrequencies, damping ratios and mode shapes), the local flexibility 

method can be classified as a rarely model-based method if a mass-normalized mode 

shape is used. The dependence of the model of the structure is quite limited. 

Furthermore, if the assumptions of lumped mass and equally mass distribution are valid, 

the non-mass-normalized mode shapes can be implemented and hence the local 

flexibility method approaches a non-model based method. The model-independence is 

one of the advantages of this method.  

Another advantage of this method is common for all the methods using flexibility 

matrices, instead of using stiffness matrices. Due to the nature that, observing equations 

(2-40) and (2-41), while the influence of the modes on stiffness matrices increases with 
2ω , the influence of the modes on flexibility matrices decreases with 2−ω . As a results, 

the number of truncated modes need to approximate a non-truncated flexibility matrix is 

much smaller than the ones need to approximate a non-truncated stiffness matrix. This 

benefits the application cases where only lower modes can be identified with good 

accuracy.  

Although the concept of local flexibility method is a general principle applicable to 

linear elastic structures, all the applications in the literature are limited to beam-like 

structures such as reinforced concrete beams in the laboratory and a prestressed concrete 

bridge. The feasibility of application to building structures needs to be investigated, 
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especially for the low-rise buildings with lower flexibilities. The local flexibility method 

is summarized in this section, and the application of this method to building structures is 

discussed in Section 4.3. 

 

3.3.1. General Principle 

Consider a structure with Volume   and boundary Γ  which is subjected to the 

Dirichlet boundary conditions =x x  along part of the boundary as shown in Figure 
3-3. A first load system 1f  is applied at a limited number of l  DOFs where response 

can be measured. The first load system is chosen such that the induced stress field 1σ  

(1) can be calculated from the loading without knowledge of the structure’s stiffness and 
(2) consists of nonzero stresses in a small volume p  only. The stiffness within p  

is assumed constant.  

 

 

p 
0=σ

0≠σ

=x x

1=f f

 

Figure 3-3: A structure subjected to load system 1f  that causes nonzero stresses in 

p  only. 

(modified from Reynders and De Roeck 2010) 

 

The virtual work principle states that 

T T Td d d
Γ

ρ δ δ Γ δ+ =∫ ∫ ∫b x t x σ ε
  

   (3-47) 
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Where 3 1×∈b \  is the vector with body forces, 6 1×∈t \  the vector with applied 

tractions, 6 1×∈σ \  the corresponding stress vector, 3 1δ ×∈x \  a virtual displacement 

field that obeys the Dirichlet boundary conditions and 6 1δ ×∈ε \  the corresponding 

virtual strain vector. If the virtual displacement field is chosen as the one that is induced 
by the first load system 1f  and the forces and the stresses are due to the second load 

system 2f  which obeys the boundary condition of the system, one has that 

2 1 2 1

1
( )

p

l
T

j j p
j

f x d
=

=∑ ∫ σ ε
 

  (3-48) 

where 1
jx  is the displacement at DOF j  corresponding to the first load system. This 

equation shows that 1x  is only dependent on the stress-strain relationship inside p . 

Assume that the structure is linear elastic and that 1σ  is proportional to 1ε  with 

stiffness constant K . For example, for a linear elastic isotropic structure where K  
equals the elastic modulus E , 1σ  is proportional to 1ε  with stiffness constant K  as 

long as Poisson’s ratio is constant since 
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 (3-49) 

If 2 1

1

l

j j
j

f x
=
∑  is calculated before and after damage has occurred, one has 
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 (3-50) 

where KΔ  is the change in the stiffness parameter in p  due to damage. It is 

assumed that KΔ  is constant within p . 
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3.3.2. Application to Bending Stiffness of Beam Structures 

Although the theoretical basis above is general to any structure type, here the general 

principle is applied to the estimation of changes of bending stiffness of isostatic and 

hyperstatic beams. The stiffness parameter K  of Eq. (3-50) is substituted by EI  
where E  is the elastic modulus in volume p  and I  is the moment of inertia in 

volume p  with beam’s cross-section with respect to the transversal axis.  

Consider a beam structure under the load configuration 1f  as shown in Figure (3-4). If 

shear deformation can be neglected and EI is constant between equidistant points 2j −  

and 2j + , the force configuration of Figure (3-4) causes nonzero stresses between 

points 2j −  and 2j +  only, whatever the beam is isostatic or hyperstatic. This can be 

proved if 

(1) The vector sum of all forces of Figure (3-4) is zero; 

(2)  The resulting moment of all forces of Figure (3-4) at points 2j −  and 2j +  

is zero. 

(3) The relative rotation between points 2j −  and 2j + , due to the force 

configuration, is zero. 

 

1/ 8 1/ 8
3 / 4

1/ 2 1/ 2  

Figure 3-4: A beam structure with load configuration that causes virtual stresses and 

strains around one particular measurement DOF j only. 

(modified from Reynders and De Roeck 2010) 
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1/ 8 1/ 8
3 / 4

1/ 2 1/ 2

 

Figure 3-5: Bending moments due to the load configuration of Figure 3-4. 

(modified from Reynders and De Roeck 2010) 

 

Checking the first two conditions is trivial, and the moment diagram is shown in Figure 

(3-5). The third condition can be easily checked by means of the virtual work principle 
with applying a virtual unit moment pair at points 2j −  and 2j + .  

The second load configuration can be chosen as any configuration that obeys the 

boundary conditions, like for example the configuration of Figure (3-6). 

1

1/ 2 1/ 2  

Figure 3-6: A beam structure with possible second load configuration. 

(modified from Reynders and De Roeck 2010) 

 

Following Eq. (3-48), with applying load configuration 1f  as shown in Figure (3-4) 

and applying load configuration 2f  as shown in Figure (3-6), one has that 

1
1 1 1 2

1 1
1 ( )
2 p

j j j p
Mx x x M d
EI− +− + = ∫   (3-51) 

It follows from (3-50) that 
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It should be noted that for isostatic beams, as an alternative to the load configuration 
1f  of Figure (3-4), the force configuration of Figure (3-6) can be applied. The proof is 

trivial since for isostatic structures, it is not necessary that the relative rotation between 
points 1j −  and 1j +  be zero in order to have nonzero stress between theses points 

only. 

The displacement vector 1x  under the first load system 1f  can be obtained using the 

following equation 

1 1=x Hf  (3-53) 

where H  is the flexibility matrix which can be obtained using the approaches 

introduced in Section 2.1.4. Note that normally the mass-normalized mode shapes can 

be obtained by normalizing the measured mode shapes with the analytical mass matrix 

constructed by a FE model or can be obtained by identifying from a forced-vibration 

test using CSI technique described in Section 2.1.2. Afterwards, the mass-normalized 

mode shapes can be used to obtain the flexibility matrix using Eq. (2-41) or Eq. (2-42). 

Alternatively, suppose the mass of a structure is equally distributed and can be 

approximated as a lumped mass matrix, a non-mass-normalized mode shape identified 

from an ambient vibration test (output-only identification) can be used to obtain the 

flexibility matrix using Eq. (2-46) and Eq. (2-49). 
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4. VERIFICATION OF DAMAGE DETECTION 
METHODOLOGY 

In this section, the damage detection algorithms introduced in Chapter 3 were verified 

through numerical and experimental studies. In Section 4.1, several numerical studies 

were conducted to validate the modified MSEC method. Afterwards, the modified 

MSEC method was verified by a full-scaled 3-story steel building structure 

experimentally. The damage was simulated by cutting the flanges of the columns in the 

1st story which made the building un-symmetric. Cutting flanges of an H-shape column 

also made the stiffness reduction ratio of the column different in DOFs, which is 

suitable for verifying modified MSEC method. However, this destructive simulation of 

damage was permanent and was not easy to conduct; hence only one damage simulation 

was made. In Section 4.2, the feasibility of the proposed FRFC method for damage 

localization and quantification was studied through a numerical simulation of a 2D 

6-story shear building. Both the effects of measurement noise and modeling error were 

considered. Afterwards, the FRFC method was verified by a 1/4-scaled 6-story steel 

building structure experimentally. Several damage cases were simulated by simply 

replacing or removing special-designed connecting plates between bracings and floors. 

The idea of integrating FRFC method with wireless sensing systems as proposed in 

Section 3.2.2 was also validated using the same 6-story steel building structure. In 

Section 4.3, because former numerical and experimental verifications of the LFM 

focused on the beam structures and bridge structures, the feasibility of the LFM applied 

to building structures were discussed. The LFM was verified by numerically studies and 

the same 6-story steel building structure experimentally. 

 

4.1. Modal Strain Energy Change Method 

The ability of original MSEC method to identify the damage location and quantity of a 

structure was verified by an analytical beam structure and also an experimental portal 

frame structure (Shi et al. 2000). However, these simulation and experimental studies 

for original MSEC method solely focused on 2D structures. Therefore, one of the main 

purposes of this section is to investigate the feasibility of application of original and 
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modified MSEC method to a 3D steel building structure (target structure).  

Both numerical and experimental study of the target structure was conducted to examine 

the advantage of damage detection of the proposed MSEC method over the original 

MSEC method. The experimental study of the MSEC method of the target structure was 

performed on a shaking-table in NCREE. It is worth to be mentioned that very limited 

DOFs were measured during the experimental test, as is common in civil engineering 

structures. Less measurement increase the difficulty of vibration-based damage 

detection, which will be discussed via a numerical study in this section. 

Because the MSEC method is highly model-based, a FE model of the target structure 

with acceptable accuracy is necessary. Therefore, in the beginning of this section 

(Section 4.1.1), the experimental setup as well as the FE model of the target structure 

are both described. 

In the section of numerical study (Section 4.1.2), besides the validation of the original 

and modified MSEC method, three preliminary numerical studies were performed to 

verify some proposed modifications of procedures when applying MSEC method 

(Section 4.1.2.1 to Section 4.1.2.3). Afterwards, the numerical studies of the proposed 

modified MSEC method and also the difficulty caused by relatively sparse measurement 

of the target structure are presented (Section 4.1.2.4 to Section 4.1.2.6). 

 

4.1.1. Target Structure Description 

4.1.1.1. Experimental Setup 

The target structure for validating the proposed modified MSEC method was a full-scale 

3D benchmark model in the laboratory of National Center for Research Center on 

Earthquake Engineering (NCREE). It was a 1-bay × 1-bay × 3-story steel building 

structure (Figure 4-1). The dimension of the target structure was 2m, 3m and 9m in X, Y 

and Z direction, respectively (Figure 4-2). The dimension of the beams and columns 
was H150×150×7×10 mm and the floor plate was 25 mm thick. The dead load was 

simulated by lead-block units fixed on the steel plate of each floor, and the total mass of 

each floor of the target structure was 5,943 kg.  
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To imitate the damaged state, which was like the plastic hinge of the column, the 

flanges of the bottom of two of the first story columns were sliced with 2 cm wide and 

20cm long for both sides (Figure 4-1 and Figure 4-2). According to the numerical study 

of the entire damaged column of the first floor by SAP2000 commercial software, the 

force required to achieve 1 unit deformation in each DOF on the top of the 

designated-damaged columns (i.e. the point No. 5 and 6 in Figure 4-2) was deducted to 

different extents, as summarized in Table 4-1. 

 

 

Figure 4-1: Photo of the 3D experimental target structure in NCREE’s lab. 

XY

Z
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Figure4-2: The FE model of the 3D target structure and detail of cross section reduction 

in elements 1 and 2.  

 

Table 4-1: Stiffness reduction of the sliced column in each DOF. 
Global

Coordinate
Reduced
Quantity

Z -2.5%
X 20.3%
Y -5.5%

Rotation of Z -3.1%
Rotation of X -6.8%
Rotation of Y -25.2%  

 

The target structure was subjected to excitations simulated by the shaking-table in 

NCREE. Bi-lateral excitation tests of El Centro earthquake with peak ground 

acceleration (PGA) 0.1 g were conducted both before and after the “damage” was 

introduced into the target structure. The acceleration responses during the tests were 

measured only at points 6, 8, 11, 13, 16, and 18 in X direction, and points 7, 8, 12, 13, 

17, and 18 in Y direction.  

In order to have a roughly idea about the density of measured DOFs of the target 

structure, the Coefficient of Measurement Density (CMD), defined as (measured 

number of DOFs)/((number of elements)×(number of DOFs per node)), is calculated. 

The CMD of the target structure is (12)/(36×6)=1/18, while that of the experimental 
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case study of the original paper (Shi et al. 2000) is (16)/(18×3)=8/27, which is more 

than 5 times the CMD of the target structure, thus indicating that only very limited 

DOFs are measured on the target structure. Accordingly, damage detection is likely to 

be much more difficult for this target structure. 

 

4.1.1.2. Identified Modal Parameters of the Target Structure 

Before identifying the modal parameters of the target structure, the measured 

time-history was observed. Figure 4-3 depicts the typical measured acceleration 

time-history in X and Y directions at point 18 of the intact and damaged structure. The 

figure reveals that the period of the response in X direction was prolonged after damage 

was introduced. 
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Figure 4-3: Comparison on the measured acceleration response at point 18 of the target 

structure in intact state and damaged state: (a) X direction; (b) Y direction 
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The un-damped eigenfrequencies, damping ratio and mode shapes were identified using 

the stochastic subspace identification technique introduced in Section 2.1.1 with only 

the measured response acceleration time-histories. The mean phase deviation (MPD) of 

each identified mode shapes was calculated using the proposed modified algorithm 

introduced in Section 2.2.2 to estimate the complexity of the identified mode shapes. 

The un-damped eigenfrequencies, damping ratio and MPD of the target structures in 

both intact and damaged states are listed in Table 4-2. The quality of the identified 
modes are good because their MPD are less than 5° and their damping ratios are 

reasonable. The eigenfrequencies after the target structure was damaged were smaller 

than the ones of the intact target structure, which corresponds to the observation in 

time-history. 

 

Table 4-2. Modal parameters of the target structure in both intact and damaged states. 
(X: x-direction, Y: y-direction, T: torsion) 

Mode 
Experimental 

Analytical 
Intact Damaged 

(fi)I ξI MPDI (fi)D ξD MPDD (fi)A (fi)A/(fi)I-1 MAC 
(Hz) (%) (°) (Hz) (%) (°) (Hz) (%) (-) 

X1 1.094 1.5 3.2 1.067 1.8 4.4 1.116 2.02 1.000 
Y1 1.370 1.9 4.3 1.363 1.9 4.5 1.417 3.44 0.999 
T1 2.090 0.2 0.3 2.043 0.6 3.3 2.100 0.47 1.000 
X2 3.321 0.2 1.1 3.262 0.2 0.6 3.304 -0.51 0.999 
Y2 4.611 0.2 0.5 4.588 0.2 0.9 4.587 -0.50 0.997 
X3 5.180 0.2 1.5 5.148 0.2 0.7 5.123 -1.10 0.999 
T2 6.498 0.0 0.6 6.428 0.1 0.6 6.423 -1.15 0.995 
Y3 8.193 0.2 1.0 8.174 0.2 0.8 7.980 -2.60 0.998 
T3 10.819 0.2 0.8 10.773 0.2 0.7 10.459 -3.33 0.996 

 

4.1.1.3. FE Model of the Target Structure 

Figure 4-2 shows the details of the geometrical and physical information of FE model of 

the target structure, which consists of 36 beam-column elements. Each point has 6 

DOFs, making a total of 90 DOFs. The axial stiffness of the elements No. 9~12, 21~24, 

33~36 are magnified 1000 times to simulate the stiffness contribution of the steel plate 
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and lead block units, while the bending and torsion stiffness of the same elements were 

reduced to 1/100. The distribution of mass of each joint in each floor is manually 

adjusted to fit the experimental modal results. The mass distribution of the structure is 

assumed unchanged due to damage. 

Table 4-2 lists the eigenfrequencies of the analytical FE model and the differences 

between the analytical and experimental eigenfrequencies. To evaluate the analytical 

mode shapes of the FE model, the modal assurance criterion (MAC) was utilized to 

verify the similarity between the analytical and experimental mode shapes. Table 4-2 

also lists the diagonal values of the MAC between the experimental (structure in intact 

state) and analytical mode shapes. In summary, the differences between the analytical 

and experimental eigenfrequencies were all less than 4%, and the diagonal values of the 

MAC were all larger than 0.995. These findings reveal that the FE model can represent 

the target structure well. With the well-estimated FE model ready, the experimental 

mode shapes can be mass-normalized according to the analytical mass matrix, and can 

be expanded according to stiffness and mass matrices using dynamic expansion 

algorithm as introduced in Section 2.2.3. The stiffness matrix of each element can be 

used to calculate the stiffness reduction factors using the MSEC method. 

 

4.1.2. Numerical Validation 

Before verifying the feasibility of application of the original and modified MSEC 

method to the target structure, three preliminary numerical studies (Sections 4.1.2.1 ~ 

4.1.2.3) were performed to verify some proposed modifications of procedures when 

applying MSEC method. Firstly, the MSECR while selecting the suspected damaged 

elements is determined “without” taking absolute MSEC value rather than taking 

absolute MSEC value. Secondly, dynamic expansion algorithm is utilized to expand the 

incomplete measured DOFs instead of the SEREP utilized in the original paper (Shi et 

al. 2000). Thirdly, a threshold of MSE when selecting suspected damaged elements is 

proposed to make sure that damage locations can be identified clearly without the 

interference caused by the elements with little MSE, especially for a 3D structure. For 

better illustration and explanation, a fixed beam, the same as the numerical example of 

the original paper, is chosen as the test structure for the first two preliminary numerical 
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studies. A simple 3D test structure is chosen for the third preliminary numerical studies 

for the same reason. 

Another three numerical studies of the target structure (Sections 4.1.2.4 ~ 4.1.2.6) were 

performed to verify the effectiveness of the modified MSEC method and the modified 

iteration process on damage detection. The FE model of the target structure was utilized 

in these sections. The original and modified MSEC methods were compared in Section 

4.1.2.4, while the original and modified iteration processes were compared in Section 

4.1.2.5. Owing to the very limited measurements of the target structure, the numerical 

study of the effect of modal expansion was performed in Section 4.1.2.6. Consequently, 

there are six subsections of numerical case studies in this section.  

 

4.1.2.1. Preliminary Study on MSECR 

When calculating MSECR for damage localization, taking absolute value of MSEC may 

obscure the damage locations (Ren and De Roeck 2002) especially in lower modes. 

Therefore, in the first part of this section, the results of damage localization determined 

by original procedure and modified procedure are compared. The original procedure 
utilizes absolute average normalized jMSECR  obtained via Eq. (3-2), and the modified 

one utilizes non-absolute average normalized jMSECR  obtained via Eq. (3-11). The 

non-absolute average normalized jMSECR  will be illustrated as a better damage 

localization indicator in this section. 

A fixed beam, the same as the numerical example of the original paper (Shi et al. 2000), 

is chosen as the structure for numerical study on MSECR and also the following 

discussion on modal expansion in Section 4.1.2.2. The FE model of the beam consists of 

12 elements and 13 nodes with 33 DOFs as shown in Figure 4-4. The geometrical and 

physical data are as follows: length of each element is 0.6 m; elastic modulus is 

7.5×1010 N/m2; cross-sectional area is 0.001 m2; moment of inertia is 7.56×10-7 m4; and 

mass density is 7,800 kg/m3. The damage occurs in the 6th element with stiffness loss 

15%. Only the vertical DOFs of each node are assumed to be measured. 
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Figure 4-4: A FE model of the fixed-ends beam which is the test structure in Section 

4.1.2.1 and 4.1.2.2. 

 

The first 5 complete mode shapes are utilized to calculate MSECR value. The absolute 

MSECR obtained via Eq. (3-2) and Eq. (3-3) are shown in Figure 4-5(a), while the 

non-absolute ones obtained via Eq. (3-11) and Eq. (3-3) are shown in Figure 4-5(b). 

Comparing these 2 figures, the damage location at the 6th element is illustrated clearly in 

both figures, but the later one is much clearer. In this case, only a small part of the 

elements will be selected as the suspected damaged elements even when the data is 

polluted by some noise. 
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Figure 4-5: MSECR determined by (a) complete analytical mode shapes w/ taking 

absolute; (b) complete analytical mode shapes w/o taking absolute; (c) 

SEREP-expanded mode shapes w/ taking absolute; (d) SEREP-expanded mode shapes 

w/o taking absolute; (e) dynamic-expanded mode shapes w/ taking absolute; (f) 

dynamic-expanded mode shapes w/o taking absolute. 

 

4.1.2.2. Preliminary Study on Modal Expansion Methods 

This section compares the results of damage localization and damage quantification by 

utilizing different mode shape expansion methods. In practice, the measured DOFs of 

mode shapes are incomplete because of the limited number of sensors and the difficulty 

to get the information of rotational DOFs. Therefore, the original author utilizes the 
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SEREP (Shi et. al. 1995) to expand the DOFs of measured mode shapes as described in 

Section 2.2.3.2. The dynamic expansion method as described in Section 2.2.3.1 is 

proposed to be employed here and the results are compared to the ones obtained by 

utilizing the SEREP. 

Utilizing the SEREP-expanded mode shapes and dynamic-expanded mode shapes 

through the same procedures, the results of both absolute or non-absolute MSECR are 

shown in Figure 4-5(c), (d), (e), and(f). The figures on the left side of Figure 4-5 are all 

absolute ones, while the figures on the right side are all non-absolute ones. Figure 4-5(c) 

and (d) show the results from the SEREP-expanded mode shapes, whereas Figure 4-5(e) 

and (f) show the results from the dynamic-expanded mode shapes. 

The result of Figure 4-5(c) looks so vague that the number of suspected damaged 

elements is difficult to determine. All the values of average normalized MSECR are 

under 0.5, even the true damaged 6th element becomes the 3rd suspected element. The 

result of damage localization in this case is quite poor. On the other hand, the result of 

Figure 4-5(d) looks much clearer than the previous one. Only 3 or 4 elements will be 

selected with high confident, including the 6th element as the most suspected damaged 

one. Comparing the results of Figure 4-5(c, d) and Figure 4-5(e, f), it is obviously that 

dynamic modal expansion is much more suitable than the SEREP for calculating the 

MSECR because less elements will be selected with the 6th element remains as the most 

suspected damaged one. Combining the advantage of dynamic expansion and taking 

non-absolute values of MSE, Figure 4-5(f) illustrates a better procedure for damage 

localization in practice. The maximum value of the average normalized MSECR is 1.0 

at element 6th, and the other values of the average normalized MSECR are under 0.5. 

The suitability for damage quantification utilizing different modal expansion methods is 

also studied. For comparison, the suspected damaged elements are selected the same as 

in the original paper (Shi et. al. 2000). They are elements 4, 6, 7, and 11. The numbers 
J  and P  in Eq. (3-10) are equal to 4. The MSEC of these suspected damaged 

elements are computed from Eq. (3-8), and the sensitivity coefficients are calculated 

from Eq. (3-9). The stiffness variations of the suspected damaged elements are obtained 

from solving Eq. (3-10) without iteration, and the results from utilizing individual mode 

are all listed in Table 4-3. However, for clear illustration, only the stiffness variation of 
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element 6th is shown here. The damage indexes obtained by individual complete 

analytical mode shapes are reasonable. If the mode shapes expanded with SEREP are 

utilized via the same procedure, the stiffness variations with large error were obtained 

by individual mode shapes. Moreover, the stiffness reduction of other elements is even 

larger than the one of the 6th element for the cases using the 4th and 5th mode 

individually, which means false-positive damage assessment of intact elements or 

false-negative damage assessment of the 6th element could be concluded. On the other 

hand, if the mode shapes expanded with dynamic expansion are utilized via the same 

procedure, the stiffness variations obtained by the first 5 individual mode shapes are 

closer to the true stiffness loss ratio. It is concluded that the dynamic modal expansion is 

not only more suitable for damage localization but also for damage quantification 

comparing to the SEREP. 

 

Table 4-3: Comparison of damage indexes calculated by complete or expanded mode 

shapes. 
Method Damage Index of Element 6  

(true value = -15%) 
Mode 1 Mode 2 Mode 3 Mode 4 Mode 5 

Complete Mode Shapes -17.0% -17.2% -16.6% -16.8% -16.3% 
SEREP Modal Expansion -6.6% -6.9% -4.9% -2.6%* -5.8%* 
Dynamic Modal Expansion -9.7% -7.1% -9.0% -4.4% -9.8% 
* Damage Index of other elements is even smaller 

 

4.1.2.3. Preliminary Study on a 3D Frame Structure for MSECR 

The damage localization procedure utilizing MSECR is studied with a simple 1-bay × 

1-bay × 1-story 3D steel building structure for clear illustration. The FE model of the 

3D structure is shown in Figure 4-6 with details of the geometrical and physical 

information. The FE model consists of 8 elements and 8 nodes with 24 DOFs, and the 

damage is assumed to occur at elements 1 and 2 with 15% stiffness loss. 
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Figure 4-6: FE model of a 3D steel building structure. 

 

The first 3 complete analytical mode shapes are utilized to calculate MSECR, and the 
results of non-absolute ijMSECR  are shown in Figure 4-7(a). The MSECR of element 

6 and 7 in the first mode (X-dir.) is extraordinary large, as well as the MSECR of 

element 5 and 8 in the third mode (Y-dir.). It is easy to find out that the MSE of these 

elements in the translation modes are close to zero, and hence the MSECR of these 

elements in certain modes will be abnormal. 

Certain level of MSE should be limited for calculating MSECR, and the criteria for 

removing the possibility of resulting in abnormal MSECR is proposed to neglect the 
j th element in i th mode if 

1

1 L

ij MSE ij
j

MSE C MSE
L =

< × ∑  (4-1) 

in the undamaged state, where MSEC  is defined as the threshold of MSE. With setting 

MSEC  equal to 0.05, the MSECR obtained by the same procedure are shown in Figure 

4-7(b). The damage locations at element 1 and 2 are clearly identified via the modified 

procedure. 
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Figure 4-7: MSECR determined by complete mode shapes (a) w/o setting limit; (b) w/ 
setting MSEC =0.05. 

 

4.1.2.4. Comparison between Original and Modified MSEC Method 

The stiffness reduction factors obtained by the original and modified MSEC methods 

were compared in this section to demonstrate the effectiveness of the modified MSEC 

method. Complete DOFs of mode shapes obtained by analytical FE model were utilized, 

meaning that the modified and original iteration processes were identical in this case, 

and less than three iterations were processed in the studies in this section. The numerical 

and the later experimental study of the target structure employed the first 78 analytical 

modes to compute the MSEC sensitivity coefficients of the target structure. 

To imitate the true damage state in the FE model of the target structure described in 

Section 4.1.1.3, the sectional properties of the 1st and 2nd elements were reduced similar 

to the results in Table 4-1, as summarized in Table 4-4. The approximate stiffness 

reduction of sectional properties of element 1 and 2 was utilized in the following 

numerical studies in Sections 4.1.2.4 ~ 4.1.2.6. 

Table 4-4: Approximate reduction of sectional properties of elements 1 and 2 in the FE 
model of the target structure. 

Sectional
Property

Reduced
Quantity

A -2.0%
I z -20.0%
I y -6.0%
I x -3.0%  
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Original MSEC Method 

The first step was to locate the suspected damaged elements by MSECR. The proposed 

non-absolute MSECR was proved better-indicating of suspected damaged elements than 

the absolute MSECR in Section 4.1.2.1, hence was utilized in the following numerical 

and experimental studies. The MSECR of each element is calculated from Eq. (3-11) for 

the first 9 individual modes. Although MSECR obtained by each individual mode can 

also be used to select the suspected damaged elements, for simplicity only the 
jMSECR  obtained in Eq. (3-3) via combination of different kind of mode shapes were 

considered. Five combinations were studied: (1) modes 1, 4 and 6 (X-dir.); (2) modes 2, 

5 and 8 (Y-dir.); (3) modes 3, 7 and 9 (Torsion); (4) modes 1, 2, 4, 5, 6 and 8 (X- and 

Y-dir.), and (5) modes 1 through 9. For discarding the abnormal MSECR caused by 
elements with small MSE, MSEC  was chosen as 0.05. The same value of MSEC  was 

used in the following numerical studies. Figure 4-8(a) shows the damage localization 

results, with MSECR plotted against the element number. Elements with MSECR > 

0.05 were chosen as suspected damaged elements. For instance, the first combination of 

mode 1, 4 and 6 contained four elements with MSECR > 0.05, namely elements 1, 2, 13 

and 14. 
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Figure 4-8: Damage localization results of the 3D target structure using complete 

analytical mode shapes by (a) original MSEC method; (b) modified MSEC method. 

 

After the suspected damaged elements are selected, the second step is to quantify the 
damage extent. The stiffness reduction factor jα  is computed by solving Eq. (3-10). 

The numbers J  and P  in Eq. (3-10) are equal to the number of suspected damaged 
elements. Each sensitivity coefficient jpβ  in Eq. (3-10) is computed using the 

analytical information according to the intact FE model from Eq. (3-9). The MSEC in 

left-hand side of Eq. (3-10) is computed from Eq. (3-8). Table 4-5 summarized the 
stiffness reduction factors jα  obtained by five different combinations of modes. 
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Table 4-5: Identified percentage of element stiffness reduction ( iα ) using original 
MSEC method with complete analytical mode shapes. The objective Obi is also shown. 

Element
No.

Estimated
 αi

Real
 αi

Element
No.

Estimated
 αi

Real
 αi

Element
No.

Estimated
 αi

Real
 αi

Element
No.

Estimated
 αi

Real
 αi

Element
No.

Estimated
 αi

Real
 αi

1 -19.2% -20.0% 1 -6.0% -6.0% 1 -11.5% - 1 -7.7% - 1 -9.9% -
2 -19.2% -20.0% 2 -6.0% -6.0% 2 -11.5% - 2 -7.7% - 2 -9.9% -
13 -0.1% 0.0% 3 0.0% 0.0% 15 0.1% 0.0% 3 0.4% 0.0% 3 -0.7% 0.0%
14 -0.1% 0.0% 4 0.0% 0.0% 16 0.1% 0.0% 4 0.4% 0.0% 4 -0.7% 0.0%

20 -2.5% 0.0% 15 0.1% 0.0%
32 -0.8% 0.0% 16 0.1% 0.0%

Mode Mode Mode Mode Mode
X1 X1 X1 X1 X1
Y1 Y1 Y1 Y1 Y1
T1 T1 T1 T1 T1
X2 X2 X2 X2 X2
Y2 Y2 Y2 Y2 Y2
X3 X3 X3 X3 X3
T2 T2 T2 T2 T2
Y3 Y3 Y3 Y3 Y3
T3 T3 T3 T3 T3

Mode 3,7,9 Mode 1,2,4,5,6,8 Mode 1~9Mode 1,4,6 Mode 2,5,8

Ob i ×10 4Ob i ×10 4

0.11
0.38

2.86

1.77
0.02
8.49

0.10
0.31
1.08
10.78
0.33
14.52

1.11

Ob i ×10 4

1.86
0.04
0.45

0.20
0.05
3.19
0.03
1.09

Ob i ×10 4

0.72
0.43
0.05

11.67
0.01
2.44

19.59
0.03

14.93

Ob i ×10 4

2.70
0.03
0.73

6.39
0.03
1.13
9.34
0.47
7.25

15.90
0.03
3.37
26.15
0.03
20.23

 
 

In Table 4-5, the stiffness reduction factors obtained by the combination of three 
X-directional modes looks quite reasonable, since they relate to the reduction of zI  of 

the 1st and 2nd elements, which is a reduction of approximately 20%. Note that the 

objective, e.g. Obi, of the corresponding X-directional modes (with gray background in 

Table 4-5) were close to zero, while most of Obi of the other modes were not. Similarly, 

the stiffness reduction factors of the 1st and 2nd element obtained by the combination of 

three Y-directional modes (with gray background in Table 4-5) were 6%, and the 

corresponding Obi were close to zero. 

The stiffness reduction factors of the 1st and 2nd elements obtained from the combination 

of three torsion modes, the combination of six X- and Y-directional modes, and the 

combination of all the nine modes were between 20% and 6%, and the stiffness 

reduction factors of the other elements were slightly disturbed, leading to confusing and 

unreliable results. This is because the original MSEC method yields the “lump sum” 

stiffness reduction of the elements, which is not the true damage state of the numerical 

FE model. The results obtained by different combinations of modes using original 

MSEC method are divergent. The Obi of corresponding modes (with gray background 

in Table 4-5) was not close to zero, also indicating unreliable results. 
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Modified MSEC Method 

The procedure of damage localization and quantification using modified MSEC method 
was very similar to that of using original MSEC method. The jMSECR  of each 

element was also obtained using Eq. (3-1), Eq. (3-11) and Eq. (3-3), except that the 

MSE of each element was replaced by the MSE contributed by different sectional 
properties of each element, i.e. A , zI , yI , and xI . Figure 4-8(b) depicts the damage 

localization results using modified MSEC method with MSECR plotted against the 

element number, where each element number has 4 bars with respect to sectional 
properties in sequence A , zI , yI , and xI . The elemental sectional properties with 

MSECR > 0.05 were chosen as suspected damaged elemental sectional properties. For 

example, the MSECR of six sectional properties exceeded the limit in the first 
combination of mode 1, 4 and 6, i.e. A  and zI  of element 1, A  and zI  of element 

2, and zI  of elements 13 and 14. Different kinds of mode shapes (e.g. X-dir., Y-dir., 

and torsion) were found to relate to different sectional properties. 

The stiffness reduction factors of these suspected damaged sectional properties were 

computed by solving Eq. (3-14) with considering Eq. (3-17) through (3-21). Table 4-6 

summarizes the stiffness reduction factors obtained by the same 5 different 

combinations of modes. In Table 4-6, the stiffness reduction factors of the suspected 

damaged sectional properties obtained by combining three X-directional or 

Y-directional modes are almost identical to those of the designated factor, not only in 
terms of the corresponding sectional properties zI  or yI  respectively, but also in the 

axial sectional property. Like the results using original MSEC method, the Obi of 

corresponding X- or Y-directional modes obtained by these two combinations are close 

to zero, while most of Obi of the other modes are not. This is because the X- or 

Y-directional modes are only capable of identifying the corresponding sectional 

properties of these two elements, and cannot identify their other sectional properties.  

Conversely, unlike the results using original MSEC method, the stiffness reduction 

factors obtained by the combination of torsional modes, the combination of X- and 

Y-directional modes, and also the combination of all nine modes are very close to the 

designated damage extent. The corresponding Obi of these three combinations distinctly 

indicate that the results are reliable, since the Obi of every mode is close to zero, 

indicating the mode shapes obtained from the calculated damaged stiffness matrix is 
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almost identical to the measured mode shapes in the damaged state. These findings 

indicate that the modified MSEC method can clearly identify the extent of damage to 

sectional properties of elements, rather than a vague damage extent of elements 

obtained by the original MSEC method. The Obi is verified as an easy way to judge the 

reliability of results. If all the Obi of corresponding modes are close to zero, the results 

are believed reliable. 

 

Table 4-6. Identified percentage of element stiffness reduction ( iα ) using modified 
MSEC method with complete analytical mode shapes. The objective Obi is also shown. 

Sectional
Property

Estimated
 αi

Real
 αi

Sectional
Property

Estimated
 αi

Real
 αi

Sectional
Property

Estimated
 αi

Real
 αi

Sectional
Property

Estimated
 αi

Real
 αi

Sectional
Property

Estimated
 αi

Real
 αi

'1_A' -2.3% -2.0% '1_A' -1.9% -2.0% '1_Iz' -20.0% -20.0% '1_A' -2.0% -2.0% '1_A' -1.4% -2.0%
'1_Iz' -19.7% -20.0% '1_Iy' -6.0% -6.0% '1_Iy' -6.0% -6.0% '1_Iz' -19.7% -20.0% '1_Iz' -19.9% -20.0%
'2_A' -2.3% -2.0% '2_A' -1.9% -2.0% '2_Iz' -20.0% -20.0% '1_Iy' -6.0% -6.0% '1_Iy' -6.0% -6.0%
'2_Iz' -19.7% -20.0% '2_Iy' -6.0% -6.0% '2_Iy' -6.0% -6.0% '2_A' -2.0% -2.0% '2_A' -1.4% -2.0%
'13_Iz' 0.0% 0.0% '3_Iy' 0.0% 0.0% '15_Iz' 0.0% 0.0% '2_Iz' -19.7% -20.0% '2_Iz' -19.9% -20.0%
'14_Iz' 0.0% 0.0% '4_Iy' 0.0% 0.0% '16_Iz' 0.0% 0.0% '2_Iy' -6.0% -6.0% '2_Iy' -6.0% -6.0%

'3_Iy' 0.0% 0.0% '3_Iy' 0.0% 0.0%
'4_Iy' 0.0% 0.0% '4_Iy' 0.0% 0.0%

'13_Iz' 0.0% 0.0% '15_Iz' 0.0% 0.0%
'14_Iz' 0.0% 0.0% '16_Iz' 0.0% 0.0%

Mode Mode Mode Mode Mode
X1 X1 X1 X1 X1
Y1 Y1 Y1 Y1 Y1
T1 T1 T1 T1 T1
X2 X2 X2 X2 X2
Y2 Y2 Y2 Y2 Y2
X3 X3 X3 X3 X3
T2 T2 T2 T2 T2
Y3 Y3 Y3 Y3 Y3
T3 T3 T3 T3 T3

0.00
0.10
0.04
0.00
0.60
0.01
0.21
0.52
0.18

19.22
0.00
6.39
50.94
0.00
45.92
6.92
0.00
1.71

0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00

0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00

0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00

Ob i ×10 4 Ob i ×10 4 Ob i ×10 4 Ob i ×10 4 Ob i ×10 4

Mode 3,7,9 Mode 1,2,4,5,6,8 Mode 1~9Mode 1,4,6 Mode 2,5,8

 
 

4.1.2.5. Comparison between Original and Modified Iteration 
Process 

To evaluate the performance of the proposed modified iteration process, the estimated 

stiffness reduction factors obtained by the original and modified iteration processes 

were compared. The complete DOFs of mode shapes obtained by dynamic expanding 

from the twelve measured DOFs (which are the same as those described in Section 

4.1.1.1) via Eq. (2-59) and Eq. (2-60) were utilized in this section, both for the original 

and modified iteration processes. For simplicity, only the modified MSEC method was 

employed.  



 

 

85 

The MSECR of each elemental sectional property was calculated from Eq. (3-11) for 

the first nine individual modes. Figure 4-9 shows the damage localization results, and 

the elemental sectional property with MSECR > 0.05 in the 1st, 3rd and 4th modes and 

with MSECR > 0.01 in the 2nd, 5th and the 6th modes were chosen as suspected damaged 

elements. Here, the performance of the proposed modified iteration process is illustrated 
by using the suspected damaged sectional properties selected in the 1st mode, i.e. zI  of 
element 1, zI  of element 2, and yI  of element 5 selected from the 1st bar chart of 

Figure 4-9. Only the modal information of the 1st mode is used to solve the stiffness 

reduction factors. Figures 4-10(a) and 4-10(b) illustrate the stiffness reduction factors 

obtained by the original and modified iteration process at each step, respectively. The 

original iteration process converged very quickly but the results were poor. For example, 
the sectional property yI  of element 5 exhibited no damage, but the result was that the 

stiffness was reduced by approximately 10%. Conversely, the results of modified 

iteration process converged to the destined reduction value after around 30 iterations. 

The modified iteration process, which updated the target modal parameters according to 

the current model state, was found to be a much better iteration process than the original 

process. 
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Figure 4-9: Damage localization results of the 3D target structure using dynamic 

expanded analytical mode shapes by modified MSEC method. 
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Figure 4-10: Iteration process for damage quantification: (a) original method; (b) 

proposed method. 

 

4.1.2.6. Study of the Effect Caused by Modal Expansion with 
Limited Measurement of the Target Structure 

Numerical results of Section 4.1.2.4 and 4.1.2.5 have demonstrated that the modified 

MSEC method and iteration processes performed better than the original method. 
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Therefore the modified MSEC method and iteration processes were utilized in this 

section to investigate the effect caused by modal expansion with a few measurements. 

The dynamic expanded mode shapes were utilized, instead of the analytical mode 

shapes with complete DOFs.  

The results of damage localization were the same as those in the previous section. 

Figure 4-9 in Section 4.1.2.5 shows these results and reveals that the lower modes can 

clearly provide information to locate the damaged sectional properties, while the higher 

modes cannot do so. Therefore, the information of damage location from higher modes 

should not be considered in the experimental study of the target structure. However, if 

the damage section properties relate only to some higher mode shapes in other damage 

cases, maybe the higher modes should be considered rather than the lower ones. 

Table 4-7 presents the stiffness reduction factor jα  and the objective Obi obtained by 

individual 1st, 2nd, 3rd, 4th, 5th, 6th and 7th mode, while the localization using other 

individual modes was failed, and therefore not shown. The iteration number of each 
mode is also listed in Table 4-7. The stiffness reduction of sectional properties zI  of 

elements 1 and 2 were correctly identified by the first three X-directional modes and the 
1st torsional mode, while the stiffness reduction of sectional properties yI  of elements 

1 and 2 were distributed to yI  of elements 3 and 4 in the 1st Y-directional mode and the 

1st torsional mode. The stiffness reduction of sectional properties obtained by the 2nd 

Y-directional mode and 2nd torsional mode were not so close to the true one. This 

reveals again that higher modes are too sensitive to be expanded with only limited 

measurements, and therefore large error is introduced. The stiffness reduction of 

sectional properties A  of elements 1 and 2 were incorrect, because no vertical DOFs 

were measured. The results of damage quantification using individual mode help 

understand the effect of dynamic expansion with limited measurement of the target 

structure and also the possible modes to be utilized in the following experimental study 

to identify the damage of the real target structure. 

It is worth to be mentioned that if α  is obtained by Eq. (3-10) where no eigenvalue 

was included rather than by Eq. (3-14) where eigenvalue was included, the results 

obtained by the 3rd or the 4th modal information individually disperse, while the results 

obtained by the 1st, 2nd, 5th, 6th or the 7th modal information individually did not change 
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too much. This reveals the benefit of suppressing the ill-posed problem by including 

eigenvalue in Eq. (3-14). 

Table 4-7: Identified percentage of element stiffness reduction ( iα ) using modified 
MSEC method with dynamic expanded mode shapes. The objective Obi is also shown. 

Sectional
Property

Estimated
 αi

Real
 αi

Sectional
Property

Estimated
 αi

Real
 αi

Sectional
Property

Estimated
 αi

Real
 αi

Sectional
Property

Estimated
 αi

Real
 αi

'1_Iz' -19.9% -20.0% '1_Iy' -3.0% -6.0% '1_Iz' -20.5% -20.0% '1_A' 21.0% -2.0%
'2_Iz' -20.2% -20.0% '2_Iy' -3.0% -6.0% '1_Iy' -3.0% -6.0% '1_Iz' -18.5% -20.0%
'5_Iy' 0.5% 0.0% '3_Iy' -3.1% 0.0% '2_Iz' -20.7% -20.0% '2_A' 21.0% -2.0%

'4_Iy' -3.1% 0.0% '2_Iy' -3.1% -6.0% '2_Iz' -19.1% -20.0%
'6_Iy' 0.0% 0.0% '3_Iz' -3.0% 0.0% '13_Iz' 3.8% 0.0%
'7_Iy' 0.0% 0.0% '3_Iy' -2.9% 0.0% '14_Iz' 2.5% 0.0%

'4_Iz' 0.0% 0.0% '15_Iz' 1.9% 0.0%
'4_Iy' 0.1% 0.0% '16_Iz' 2.0% 0.0%
'5_Iy' 0.0% 0.0% '17_Iy' 0.6% 0.0%
'6_Iy' -0.3% 0.0%
'7_Iy' -0.4% 0.0%
'8_Iy' 3.2% 0.0%

Mode Mode Mode Mode
X1 X1 X1 X1
Y1 Y1 Y1 Y1
T1 T1 T1 T1
X2 X2 X2 X2
Y2 Y2 Y2 Y2
X3 X3 X3 X3
T2 T2 T2 T2
Y3 Y3 Y3 Y3
T3 T3 T3 T3

0.52 0.00 0.00 0.52
0.18 1.73 0.00 0.18

0.00 45.79 0.00 0.00
0.20 6.92 0.00 0.21

0.60 0.00 0.00 0.60
0.00 50.77 0.00 0.00
0.04 6.39 0.00 0.03
0.10 0.00 0.00 0.10
0.00 19.28 0.00 0.00

Ob i ×10 4 Ob i ×10 4 Ob i ×10 4 Ob i ×10 4

Mode 1 (ITE=50) Mode 2 (ITE=60) Mode 3 (ITE=4) Mode 4 (ITE=5)

 
 

Sectional
Property

Estimated
 αi

Real
 αi

Sectional
Property

Estimated
 αi

Real
 αi

Sectional
Property

Estimated
 αi

Real
 αi

Sectional
Property

Estimated
 αi

Real
 αi

'1_Iy' -1.1% -5.5% '1_Iz' -23.1% -20.3% '1_Iy' -19.0% -5.5% '15_Iz' 32.8% 0.0%
'2_Iy' -1.3% -5.5% '2_Iz' -23.1% -20.3% '2_Iy' -29.9% -5.5% '15_Iy' -12.3% 0.0%
'3_Iy' -2.6% 0.0% '8_Iy' -1.3% 0.0% '3_Iz' 4.4% 0.0% '16_Iz' 32.0% 0.0%
'4_Iy' -2.5% 0.0% '17_Iy' 15.2% 0.0% '3_Iy' -5.4% 0.0% '16_Iy' 9.1% 0.0%

'13_Iy' -4.3% 0.0% '27_Iz' 7.5% 0.0% '4_Iz' 4.0% 0.0% '18_Iy' 0.0% 0.0%
'14_Iy' -4.7% 0.0% '27_Iy' 7.5% 0.0% '4_Iy' 5.4% 0.0% '19_Iy' -0.1% 0.0%
'15_Iy' -7.7% 0.0% '31_Iy' 7.1% 0.0% '13_Iy' -39.5% 0.0% '20_Iy' 3.5% 0.0%
'16_Iy' -7.4% 0.0% '14_Iy' -61.0% 0.0%

Mode Mode Mode
X1 X1 X1
Y1 Y1 Y1
T1 T1 T1
X2 X2 X2
Y2 Y2 Y2
X3 X3 X3
T2 T2 T2
Y3 Y3 Y3
T3 T3 T3

30.09
1.58 2.96 4.29
0.10 0.52

86.46
6.80 4.28 0.85
45.78 12.11

81.54
0.02 0.60 19.82
50.77 22.51

0.12 0.10 5.04
6.66 2.09 9.10

Mode 7 (ITE=1)

Ob i ×10 4 Ob i ×10 4 Ob i ×10 4

19.28 12.35 4.76

Mode 5 (ITE=1) Mode 6 (ITE=2)
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4.1.3. Experimental Validation 

After the proposed modified MSEC method was validated through the numerical studies 

in the previous section, the feasibility of the application of the proposed MSEC method 

to the target structure described in Section 4.1.1 was studied in this section. Due to the 

limited measurement as discussed in 4.1.1.1, the difficulty of damage detection of the 

target structure was anticipated, which has also been discussed via numerical studies in 

Section 4.1.2.6. The performance of the original method was also studied in this section. 

However, since some of the proposed modifications of the original MSEC method had 

been verified through the numerical studies in Section 4.1.2 including: (i) taking 

non-absolute MSECR for damage localization; (ii) using dynamic expansion to expand 

incomplete measured mode shapes; (iii) setting threshold to exclude elements with 

small MSE to avoid abnormal results of damage localization and quantification; (iv) an 

modified iteration process, these modifications were employed also by the original 

MSEC method here. 

 

4.1.3.1. Modified MSEC Method 

Damage Localization 

The measured mode shapes of the target structure in intact and damaged states were 

employed to calculate MSECR using Eq. (3-1) and Eq. (3-11). In order to erase the 
abnormal MSECR, the threshold of MSE, MSEC , should be determined in advance. 

Owing to the noise and other disturbance in the test, this threshold was determined 
much larger than the one in Section 4.1.2.6. If MSEC  was chosen as 0.05, which is the 

same as the one in Section 4.1.2.6, some abnormal MSECR were induced. Therefore, 

the threshold was finally set to 0.3 in this experimental study to exclude the abnormal 

MSECR. The individual modes were used to determine the damage locations. Similarly, 

the sectional properties with MSECR > 0.05 in the 1st, 3rd and 4th modes and with 

MSECR > 0.01 in the 2nd and the 6th modes as shown in Figure 4-11 were chosen to 

calculate the stiffness reduction factors. The damage localization using the other 

individual modes was failed. 
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Figure 4-11: Experimental damage localization results of the target structure using 

modified MSEC method. 

 

Damage Quantification 

The measured mode shapes and eigenfrequencies of the target structure in both intact 

and damaged states were applied for damage quantification. Table 4-8 presents the 

stiffness reduction factors obtained using individual modes. These results indicate that 
the stiffness reduction of sectional properties zI  of elements 1 and 2 were properly 

identified by the first three X-direction modes and the 1st torsional mode. However, the 

other sectional properties of other elements were identified as some moderate amount of 

stiffness reduction or “increasing”, which may be caused by modal expansion, modeling 

error and noise effect. The combination of any modes did not improve the results of 

damage quantification, and hence is not shown here. 

The results obtained by the modified MSEC method but excluding eigenvalue in Eq. 

(3-14) are also shown in Table 4-9. It is evident that all the results are distorted. Again, 

the effects to suppress ill-posed problem by including eigenvalue in Eq. (3-14) are 

illustrated. 
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Table 4-8: Identified percentage of element stiffness reduction ( iα ) from experimental 
damage detection using modified MSEC method. The objective Obi is also shown. 

Sectional
Property

Estimated
 αi

Real
 αi

Sectional
Property

Estimated
 αi

Real
 αi

Sectional
Property

Estimated
 αi

Real
 αi

Sectional
Property

Estimated
 αi

Real
 αi

'1_Iz' -18.3% -20.3% '1_Iy' -2.5% -5.5% '1_Iz' -19.9% -20.3% '1_Iz' -18.8% -20.3%
'2_Iz' -18.9% -20.3% '2_A' -1.9% -2.5% '1_Iy' -4.1% -5.5% '2_Iz' -20.9% -20.3%
'5_Iy' -9.5% 0.0% '2_Iy' -2.3% -5.5% '2_Iz' -20.5% -20.3% '13_Iz' 12.1% 0.0%

'3_A' -2.2% 0.0% '3_Iz' -2.3% 0.0% '14_Iz' 8.1% 0.0%
'3_Iy' -1.8% 0.0% '3_Iy' 0.6% 0.0% '15_Iz' -14.2% 0.0%
'4_Iy' -2.8% 0.0% '4_Iz' -3.0% 0.0% '17_Iy' 1.8% 0.0%

'25_Iy' -4.2% 0.0% '6_Iy' -1.8% 0.0%
'30_Iy' -2.7% 0.0% '13_Iy' 1.1% 0.0%

'15_Iy' -2.3% 0.0%
'18_Iy' -1.5% 0.0%
'26_Iy' -4.1% 0.0%
'28_Iy' -3.5% 0.0%

Mode Mode Mode Mode
X1 X1 X1 X1
Y1 Y1 Y1 Y1
T1 T1 T1 T1
X2 X2 X2 X2
Y2 Y2 Y2 Y2
X3 X3 X3 X3
T2 T2 T2 T2
Y3 Y3 Y3 Y3
T3 T3 T3 T3

4.7627.87 10.42

Mode 1 (ITE=1) Mode 4 (ITE=1)Mode 2 (ITE=1) Mode 3 (ITE=1)

29.63 26.84 26.80
45.56

54.15 5.57 27.37
63.54 46.08

26.81

74.40 7.36 14.02
31.09

41.07 52.49 33.99 43.21

32.19
6.81

Ob i ×10 4 Ob i ×10 4 Ob i ×10 4 Ob i ×10 4

46.91

6.02 8.01 6.94
129.04

4.05
6.95

127.10
11.09
32.47

4.76 122.05

32.47

 

Sectional
Property

Estimated
 αi

Real
 αi

'1_Iz' -20.2% -20.3%
'2_Iz' -29.8% -20.3%
'5_Iy' 55.2% 0.0%
'8_Iy' 1.0% 0.0%

'13_Iz' 9.0% 0.0%
'14_Iz' 5.7% 0.0%
'27_Iz' 4.0% 0.0%
'28_Iz' 5.8% 0.0%
'32_Iy' 3.6% 0.0%

Mode
X1
Y1
T1
X2
Y2
X3
T2
Y3
T3

7.71
Ob i ×10 4

122.10
6.94

39.92
26.80
35.28

Mode 6 (ITE=3)

9.14
32.47
10.31
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Table 4-9: Identified percentage of element stiffness reduction ( iα ) from experimental 
damage detection using modified MSEC method but without eigenvalue. The objective 

Obi is also shown. 

Sectional
Property

Estimated
 αi

Real
 αi

Sectional
Property

Estimated
 αi

Real
 αi

Sectional
Property

Estimated
 αi

Real
 αi

Sectional
Property

Estimated
 αi

Real
 αi

'1_Iz' -8.6% -20.3% '1_Iy' -19.8% -5.5% '1_Iz' -24.0% -20.3% '1_Iz' 36.5% -20.3%
'2_Iz' -43.2% -20.3% '2_A' -2.9% -2.5% '1_Iy' 51.8% -5.5% '2_Iz' 34.6% -20.3%
'5_Iy' 12.5% 0.0% '2_Iy' -15.7% -5.5% '2_Iz' -21.3% -20.3% '13_Iz' -89.2% 0.0%

'3_A' -3.8% 0.0% '3_Iz' 10.4% 0.0% '14_Iz' -92.4% 0.0%
'3_Iy' -18.0% 0.0% '3_Iy' 41.4% 0.0% '15_Iz' 40.4% 0.0%
'4_Iy' -17.2% 0.0% '4_Iz' 12.6% 0.0% '17_Iy' -33.2% 0.0%

'25_Iy' -9.9% 0.0% '6_Iy' 52.6% 0.0%
'30_Iy' -5.1% 0.0% '13_Iy' 59.0% 0.0%

'15_Iy' 63.7% 0.0%
'18_Iy' 76.4% 0.0%
'26_Iy' -34.5% 0.0%
'28_Iy' -36.0% 0.0%

Mode Mode Mode Mode
X1 3.43 X1 27.07 X1 12.40 X1 868.31
Y1 7.02 Y1 1.73 Y1 1228.12 Y1 7.01
T1 125.72 T1 132.31 T1 27.93 T1 502.08
X2 7.60 X2 70.93 X2 40.76 X2 763.15
Y2 32.80 Y2 15.53 Y2 1222.81 Y2 9999.98
X3 7.08 X3 51.79 X3 45.94 X3 9999.98
T2 44.83 T2 41.14 T2 291.08 T2 95.89
Y3 26.97 Y3 18.67 Y3 2557.97 Y3 26.99
T3 38.62 T3 33.82 T3 540.42 T3 94.18

Mode 1 (ITE=16) Mode 3 (ITE=1) Mode 4 (ITE=1)Mode 2 (ITE=2)

Ob i ×10 4 Ob i ×10 4 Ob i ×10 4 Ob i ×10 4

 

Sectional
Property

Estimated
 αi

Real
 αi

'1_Iz' -24.5% -20.3%
'2_Iz' -29.7% -20.3%
'5_Iy' 35.7% 0.0%
'8_Iy' 0.5% 0.0%

'13_Iz' 3.1% 0.0%
'14_Iz' 1.4% 0.0%
'27_Iz' 1.2% 0.0%
'28_Iz' 2.8% 0.0%
'32_Iy' 1.3% 0.0%

Mode
X1 4.16
Y1 7.03
T1 124.08
X2 7.87
Y2 32.81
X3 6.69
T2 42.15
Y3 26.98
T3 36.38

Mode 6 (ITE=2)

Ob i ×10 4
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4.1.3.2. Original MSEC Method 

The damage detection using original MSEC method was also conducted for comparison. 

Note that the proposed modifications of the original MSEC method verified through the 

numerical studies in Sections 4.1.2.1, 4.1.2.2, 4.1.2.3 and 4.1.2.5 were employed also by 

the original MSEC method here. In other words, the only difference between the 

original MSEC method and modified MSEC method employed in this section are the 

including of eigenvalue in Eq. (3-14) and the expansion of element stiffness to sectional 

properties as described in Section 3.1.2.3. 

 

Damage Localization 

The measured mode shapes of the target structure in intact and damaged states were 

employed to calculate MSECR for individual modes using Eq. (3-1) and Eq. (3-11). The 
threshold of MSE, MSEC , was determined as 0.3 which was the same as the one in 

Section 4.1.3.1. The individual modes were used to determine the damage locations. 

Similarly, the sectional properties with MSECR > 0.05 in the 1st, 3rd and 4th modes and 

with MSECR > 0.01 in the 2nd and the 6th modes as shown in Figure 4-12 were chosen 

to calculate the stiffness reduction factors. The damage localization using the other 

individual modes was failed. 

 

Damage Quantification 

The measured mode shapes and eigenfrequencies of the target structure in both intact 

and damaged states were applied for damage quantification. Table 4-10 presents the 

stiffness reduction factors obtained using individual modes. The combination of any 

modes did not improve the results of damage quantification, hence is not shown here. 

The results obtained using individual modes were divergent, leading to confusing results. 

Comparing the results in Table 4-10 and Table 4-8, it can be observed that the results 

obtained by modified MSEC method were more accurate than the one obtained by 

original MSEC method. 
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Figure 4-12: Experimental damage localization results of the target structure using 

original MSEC method. 
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Table 4-10: Identified percentage of element stiffness reduction ( iα ) from experimental 
damage detection using original MSEC method. The objective Obi is also shown. 

Element
Estimated

 αi

Real
 αi

Element
Estimated

 αi

Real
 αi

Element
Estimated

 αi

Real
 αi

Element
Estimated

 αi

Real
 αi

1 -15.9% -20.3% 1 -1.8% -5.5% 1 -25.2% - 1 -9.6% -20.3%
2 -16.0% -20.3% 2 -2.2% -5.5% 2 -22.2% - 2 -10.2% -20.3%
5 -7.9% 0.0% 3 -1.9% 0.0% 3 10.9% 0.0% 17 -4.0% 0.0%

4 -2.0% 0.0% 5 -18.0% 0.0%
6 -4.4% 0.0%

13 -8.6% 0.0%
15 4.1% 0.0%

Mode Mode Mode Mode
X1 X1 X1 X1
Y1 Y1 Y1 Y1
T1 T1 T1 T1
X2 X2 X2 X2
Y2 Y2 Y2 Y2
X3 X3 X3 X3
T2 T2 T2 T2
Y3 Y3 Y3 Y3
T3 T3 T3 T3

31.33 16.27

Mode 1 (ITE=1) Mode 2 (ITE=1) Mode 3 (ITE=1) Mode 4 (ITE=1)

Ob i ×10 4 Ob i ×10 4

16.18 28.13 1.31 21.74
14.38 64.40 41.29 31.83

128.64 127.01 6.80 126.40

7.77
4.32 6.44 5.80 5.42

Ob i ×10 4 Ob i ×10 4

7.35 47.47

5.30 25.82 34.56

36.76 58.16 5.54 46.17

32.16 47.74 1.60 39.21
12.51 23.01 0.41 17.43

 

Element Estimated
 αi

Real
 αi

1 -45.4% -20.3%
2 -45.4% -20.3%
27 15.6% 0.0%
28 15.4% 0.0%

Mode
X1
Y1
T1
X2
Y2
X3
T2
Y3
T3

19.85
125.30
185.20

4.38
207.15

Mode 6 (ITE=1)

Ob i ×10 4

52.77
34.12
14.21
17.16  
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4.2. Frequency Response Function Change Method 

At frst, the feasibility of the proposed FRFC method for damage localization and 

quantification was studied through a numerical simulation of a 2D 6-story shear 

building. Both the effects of measurement noise and modeling error were considered. 

Efforts were made to reduce the error caused by measurement noise and modeling error. 

The FRFC method was further validated via a 1/4-scale 6-story steel building structure 

designed by NCREE. A set of special connecting plates between bracings and floor 

plates in the structure could be replaced by smaller ones or be removed quickly at each 

story to simulate damage.  

To realize the idea of integrating FRFC method with wireless sensing systems as 

proposed in Section 3.2.2, another experimental validation was carried out. The 

feasibility and energy efficiencies of the proposed on-line damage detection operation 

scheme were investigated. 

 

4.2.1. Numerical Validation 

4.2.1.1. Test Structure Description 

The FE model of a 2D 6-story shear building was constructed using 6 beam elements 
whose properties can be summarized as: E = 2.039×1011 N/m2, I = 3.906×10-7 N/m2, and 

A = 3.6×10-3 m2. The stiffness of each story is 955,720 N/m. The lumped mass of each 

floor is 439.8 kg. The damping matrix is decided Rayleigh damping on the assumption 

that the damping ratios of the first two modes are 2%. The six eigenfrequencies are 

1.7887 Hz, 5.2620 Hz, 8.4296 Hz, 11.1073 Hz, 13.1394 Hz, and 14.4080 Hz. The 

damage is assumed to be occurred at the first story with 50% loss of stiffness. 

The 6-story shear building was assumed to be subjected to white noise ground 

excitations with sampling rate 200 Hz and time duration 50 sec. All the acceleration 

response time-history of 6 stories were assumed measured with the same sampling rate 

and length, i.e. 10000 points.  
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4.2.1.2. Effects of Measurement Noise 

In order to study the effects caused by measurement noise on the damage detection of 

the proposed FRFC method, normally distributed noise with 2% and 5% of noise level 

were added to both the input and output acceleration signals. The noise Level is defined 

as 

( ) 100(%)n sNL = ×σ σ  (4-2) 

where sσ  represents the standard deviation of the signal without noise, and nσ  

represents the standard deviation of the noise. Totally 1000 samples were generated for 

each noise level. The “measured” displacement FRFs between each story and ground 

floor were calculated by Eq. (3-39) and divided by square of circular frequencies.  

Note that when solving Eq. (3-38), it is easy to reduce the ill-posed problem by 

including more equations as described in Section 3.2. Therefore, here the variation of 

stiffness of each story at different frequencies was identified by solving Eq. (3-38) with 

11 successive frequencies at each frequency (22 equations). Figure 4-13(a) shows the 

variation of the identified stiffness at different frequencies from one of the sample under 

2% noise level and Figure 4-13(b) shows the corresponding displacement FRFs. Note 

that the variation of stiffness was divided by minus of the original story stiffness; hence 

the plus value represents the percentage of stiffness loss. The solid line in Figure 4-13(a) 

represents the stiffness variation of the first story and should be 50% while the other 

lines represent the stiffness variation of the 2nd to 6th stories and should be 0%. 

Obviously these lines flutter because of noise effects. However, it is evident that the 

results around the eigenfrequencies of the damaged structure which are marked with 

solid vertical lines in both Figure 4-13(a) and Figure 4-13(b) suffer much less noise 

effects. It is because that the signal to noise ratio of FRFs is larger around the 

eigenfrequencies of the damaged structure. Therefore, it is suggested to select the FRFs 

around the eigenfrequencies of the damaged structure to calculate the stiffness variation.  

Because the least-square solution of Eq. (3-38) is dominated by equations with larger 

coefficients, the information at frequencies with smaller amplitude of FRFs will be 
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overshadowed. To overcome this shortcoming, one can simply solve the equations with 

several frequencies around each eigenfrequency, and then take average of all the results 

obtained around 6 eigenfrequencies. The least-square solution using 11 frequencies 

around each eigenfrequency and also the average of all the results obtained using FRFs 

around 6 eigenfrequencies of one of the numerical sample under 2% measurement noise 

is listed in Table 4-11. It can be observed that there are some abnormal identified 

stiffness variations. For example, the identified 4th story stiffness variations of the 3rd 

mode is 20.1%, therefore the mean value of the 4th story seems to be affected by this 

abnormal value a lot. In order to obtain more reliable results with less effect caused by 

abnormal value, a results similarity criterion (RSC) is proposed. The RSC weights the 

identified story stiffness variations obtained by each mode according to their similarity 

to the median value of each story as shown in the following equations: 

1

ˆ
p

i ij ij
j

w
=

= ×∑Δκ Δκ  (4-3) 

2 2ˆexp( 2( ) ( ) )ij ij i iw = − −Δκ Δκ σ  (4-4) 

2

1
( )

p

i ij i
j=

= −∑σ Δκ Δκ�  (4-5) 

where ι̂Δκ  represents the weighted identified stiffness variations of the i th story; 

ijΔκ  represents the identified stiffness variations of the i th story using frequencies 

around mode j ; ijw  represents the weighting determined by the similarity 

measurement result of each ijΔκ ; σ  represents the standard deviation between the 

identified stiffness variations ijΔκ  and the mdeian of identified stiffness variations 

iΔκ� ; p  represents the number of identified modes. The results weighted according to 

Eq. (4-3) to (4-5) are also listed in Table 4-11. By multiplying the abnormal results with 

less weighting, the weighted identified stiffness variations were much closer to the 

median value of other “normal” results, and therefore more reliable results can be 

obtained without the interference of the abnormal results. 

Table 4-12 lists mean and standard deviation of both the calculated “average” and 



 

 

99 

“weighted” stiffness variations obtained by the 1000 samples under two different noise 

levels. For both the 2% and 5% noise levels, the “weighted” stiffness variations suffer 

much less errors caused by measurement noise than the “averaged” one. This 

demonstrates that the proposed weighting procedure RSC can reduce the error caused 

by some abnormal results. Therefore all the results of following studies were obtained 

by taking weighted results obtained around different eigenfrequencies using the RSC. 

For the 2% noise level, the standard deviation of the “weighted” results remains less 

than 2.5% which is quite reliable. As the noise Level-Increases to 5%, the identification 

accuracy becomes only moderate with about 5% of both standard deviation and biased 

mean value. 
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Figure 4-13: Typical FRFC results under 2% noise level: (a) identified stiffness 

variation; (b) FRFs 
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Table 4-11: One of the identified stiffness variation under 2% noise level. 

1 2 3 4 5 6
1 50.6% 50.2% 46.9% 45.1% 50.0% 44.5% 47.9% 48.5% 50.0%
2 1.4% 14.9% 4.0% -0.4% -8.1% -2.1% 1.6% 0.4% 0.0%
3 1.0% -1.6% 1.7% 1.7% 3.4% -1.5% 0.8% 0.9% 0.0%
4 3.6% -0.8% 20.1% 1.6% 0.5% 9.5% 5.7% 1.2% 0.0%
5 2.0% 0.1% -2.8% 9.2% 0.9% -10.7% -0.2% 0.4% 0.0%
6 4.4% -0.9% -1.1% -2.2% -2.0% -6.8% -1.4% -1.6% 0.0%

RSC DesignatedStory
Number

Mode Average

 
 

Table 4-12: Mean and standard deviation of the identified stiffness variation of 1000 
samples under different noise levels in measurement. 

mean std mean std mean std mean std
1 49.0% 3.2% 49.1% 1.3% 46.6% 8.5% 49.0% 3.6% 50.0%
2 -2.4% 5.4% -1.0% 2.3% 4.7% 10.3% 2.8% 5.7% 0.0%
3 2.8% 3.7% 1.7% 1.6% 5.6% 6.9% 4.2% 4.2% 0.0%
4 0.2% 4.3% 0.9% 1.6% 5.4% 10.2% 3.8% 4.9% 0.0%
5 3.4% 4.8% 1.3% 1.9% 8.0% 9.6% 4.0% 5.8% 0.0%
6 -1.9% 5.2% 0.3% 1.0% -1.5% 8.4% 0.5% 2.6% 0.0%

NL=2% NL=5% Designated
ValueAverage RSC AveragedStory

Number RSC

 
 

4.2.1.3. Effects of Modeling Error 

In this section, the effect caused by modeling error on the efficiency of the FRFC 

method was studied. Firstly, four cases considering modeling error in the system 

matrices but without measurement noise were investigated: Case M1 considered 

modeling error in the mass matrix; Case M2 considered modeling error in the damping 

matrix; Case M3 considered modeling error in the stiffness matrix; Case M4 considered 

modeling error in all the mass, damping and stiffness matrices. For each case, white 

noise with 5% noise level was added to the system matrix/matrices and totally 1000 

samples were generated. The variation of stiffness of each story was identified using the 

same procedure with RSC as described in section 4.2.1.2, and the results are listed in 

Table 4-13. It is observed that the accuracy of the damage detection with 5% modeling 

error of the damping matrix is quite high. It makes sense since the damping ratio of each 

mode of this system is only about 2%. Meanwhile, the sensitivity of the accuracy to the 
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modeling error of the stiffness matrix is higher than the one of the mass matrix. This is 

because the dynamic stiffness matrix is dominated by the stiffness matrix within lower 

frequency range. If 5% modeling error were considered in all the system matrices, the 

standard deviation of damage detection results were about 4% to 8.5%, which were 

close to the summation of the standard deviations of the results in Case M1 to Case M3. 

Note that the mean value is non-biased for all Case M1 to Case M4 where only 

modelling error exists. 

Since small modeling error in the mass matrix, damping matrix and stiffness matrix 

results in moderate error in damage detection, the proposed method seems to be 

dependent on the well-established or well-updated FE model of the monitored structure. 

Fortunately, the troublesome model updating of the FE model may be circumvented if 
the dynamic stiffness matrix, i.e. 2 i− + +M D Kω ω , in Eq. (3-31) can be 

well-estimated via measured data. The subspace identification technique proposed by 

(Xiao et al. 2001) as described in Section 2.1.3 provides a solution to estimate a 

dynamic system matrix directly from the input and output data with acceptable 

accuracy. 

To understand the feasibility to perform damage detection with FRFC method using 

system matrices identified by subspace identification technique, another two numerical 

case studies were performed. Case M5 assumed the mass matrix was known, and the 

stiffness and damping matrices were identified using the measured ground and response 

acceleration with 5% noise level by the subspace identification technique introduced in 

Section 2.1.3. The stiffness variations calculated by Eq. (3-38) using system matrices 

identified by Eq. (2-34) and noise-free FRFs are also listed in Table 4-13. The mean 

value of the identified stiffness variations are all close to the true value, while the 

standard deviation is almost within 0.5%, which means the error caused by the 

identified dynamic stiffness matrix is quite small. In Case M6, all the conditions were 

the same with that in Case M5 except the FRFs was calculated with 5% noise Level-In 

measurement and the results are listed in Table 4-13. The error between the identified 

mean value and the true value of the stiffness variation is about 0.5% to 4%, and the 

relating standard deviation is about 2.5% to 6%. These errors are mainly contributed 

from the measurement noise when calculating FRFs because the results are quite similar 

to the results of the 5% noise Level-In Table 4-12 and the error in Case M5 is quite 
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small. 

It should be noted that for a shear building with diagonal mass matrix which is a good 

assumption in many cases, the mass matrix is not necessary to be known for the FRFC 

method as derived in Section 3.2.1. The measured FRFs between each story and ground 

excitation both prior to and after the damage as well as the identified mass-normalized 

system matrices of the structure in intact state are the only information utilized in FRFC 

method to calculate the damage reduction ratio of each story. This makes the FRFC 

method a non-model-based method in this case. The feasibility of this idea is verified 

here using another numerical case study. In Case M7, all the conditions were the same 

with that in Case M6 except the mass-normalized stiffness and damping matrices were 

identified using Eq. (2-35) and the stiffness reduction of each story was calculated using 

Eq. (3-45). The results of Case M7 are also listed in Table 4-13. The error between the 

identified mean value and the true value of the stiffness variation is about 0.5% to 4.4%, 

and the relating standard deviation is about 2.7% to 6.0%. Similar to Case M6, these 

errors are mainly contributed from the measurement noise because the results are quite 

similar to the results of the 5% noise Level-In Table 4-12. 
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Table 4-13: Mean and standard deviation of the identified stiffness variation of 1000 
samples under modeling error (Case M1~ M5) or under both modelling error and 

measurement noise (Case M6 and M7). 

mean std mean std mean std mean std
1 50.0% 1.1% 50.0% 0.1% 50.1% 3.6% 50.0% 3.9% 50.0%
2 -0.1% 2.3% 0.0% 0.2% 0.1% 4.4% 0.0% 5.9% 0.0%
3 0.0% 2.7% 0.0% 0.2% -0.1% 5.3% -0.3% 7.5% 0.0%
4 0.0% 2.8% 0.0% 0.2% 0.3% 6.6% -0.2% 8.4% 0.0%
5 -0.2% 2.8% 0.0% 0.2% 0.2% 6.3% -0.1% 8.1% 0.0%
6 -0.1% 1.8% 0.0% 0.2% 0.1% 5.1% -0.1% 6.4% 0.0%

mean std mean std mean std
1 50.0% 0.6% 48.9% 3.7% 48.8% 3.7%
2 0.0% 0.5% 2.8% 5.9% 2.8% 6.0%
3 0.0% 0.5% 4.2% 4.7% 4.4% 4.5%
4 0.0% 0.5% 3.4% 5.1% 3.6% 5.0%
5 0.1% 0.6% 3.7% 6.0% 3.8% 6.0%
6 0.0% 0.3% 0.5% 2.6% 0.5% 2.7%

Story
Number

Designated
Value

0.0%
0.0%
0.0%
0.0%
0.0%

50.0%

Case M5 Case M6 Case M7

Story
Number

Designated
Value

Case M1 Case M2 Case M3 Case M4

 
 

4.2.2. Experimental Validation 

4.2.2.1. Test Structure Description 

A 1/4-scale 6-story steel building structure (Figure 4-14) designed by NCREE was used 

for experimental validation on the proposed FRFC method. As shown in Figure 4-15, 

the 6-story 1/4-scale structure consisted of a single bay with 1.0m×1.5m floor area with 

uniformly 1.0 m story height. The size of column and beam was 150mm×25mm 

(rectangular section) and 50mm×50mm (L-section), respectively. The beam-floor 

connection was welded, and the floor-beam connection and the floor-column connection 

were bolted. The dead load was simulated by lead-block units fixed on the steel plate of 

each floor, and the total mass of each floor of the target structure was 862.85 kg, except 

the mass of the roof floor was 803.98 kg. The stiffness of the bracing system was 

controlled by a small connecting plate (named as “B3”) whose size was 100mm×10mm 

with clear height 196mm as shown in Figure 4-16.  
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Figure 4-14: A 1/4-scale 6-story steel building structure. 

 

 

Figure 4-15: Side views of the 1/4-scale 6-story steel building structure. 
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Figure 4-16: Connecting plates installed in the bracing system of the 1/4-scale 6-story 

steel building structure (left: B3; middle: B2; right: B1). 

 

4.2.2.2. Damage Cases 

To imitate damage of the structure, the original connecting plate of the bracing system 

was removed or replaced by smaller connecting plates “B2” and “B1” whose 

cross-section were 100mm×5mm and 100mm×3mm respectively (see Figure 4-16). The 

connection of these connecting plates was designed as bolted (see Figure 4-17); 

therefore the bending shape of the plate should be between double-curvature and 

single-curvature. The story-stiffness reduction ratios assuming double-curvature and 

single-curvature were calculated. These story-stiffness reduction ratios of different size 

of bracings or without bracings were summarized in Table 4-14. The mean value of the 

story-stiffness reduction ratios is chosen as a reference value to check with the 

experimental results. 

 

 

Figure 4-17: Close view of the bolting connection of the connecting plates. 
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Table 4-14: Estimated story-stiffness reduction ratios contributed by removing or 
replacing connecting plates. 

Single-
Curvature Mean Double-

Curvature
Removed -54.8% -37.3% -19.8%

B1 -38.4% -26.2% -13.9%
B2 -27.4% -18.7% -9.9%  

 

In order to examine the feasibility of the proposed FRFC method, totally 8 cases were 

conducted for the 6-story steel building structure as summarized in Table 4-15. Case R1 

was the baseline test and no damage was introduced. Case R2 simulated the damage 

occurring in the first story by replacing the bracing with a smaller bracing “B2”. In 

order to simulate the extension of damage both in extent and in range, the adjacent 

bracings were replaced by bracings “B2” and “B1” or even removed in Case R3 and 

Case R4. Case R5 was another baseline test to see if the proposed FRFC method may 

give false alarm. Case R6 through Case R8 simulated the phenomenon with sparsely 

distributed damage.  

 

Table 4-15: Cases of experimental study in Section 4.2. (“B3”, “B2” and “B1” are types 
of bracings; “R” represents removing of bracing). 

R1 R2 R3 R4 R5 R6 R7 R8
6F B3 B3 B3 B3 B3 B3 B1 B3
5F B3 B3 B3 B3 B3 B3 B3 B3
4F B3 B3 B3 B3 B3 R R R
3F B3 B3 B3 B2 B3 B3 B3 B3
2F B3 B3 B2 B1 B3 B3 B3 B3
1F B3 B2 B1 R B3 R R B3

Story
Number

Case Nunber

 
 

4.2.2.3. Excitation and Measurement 

All the cases were subjected to uniaxial ground excitations in X-direction including El 

Centro earthquake and white noise with PGA 0.05 g. The auto-spectra of achieved 

excitations of Case R1 shaking table test is shown in Figure 4-18. It is observed that the 

frequency content of the El Centro earthquake excitation in higher frequency is much 
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less than the one in lower frequency.  

The acceleration responses in each story were obtained by averaging the measured 

acceleration responses in X-direction at both sides. The sampling rate for collecting 

discrete data was 200 Hz. The data length was 46.08 seconds and 133.12 seconds for the 

El Centro earthquake and white noise excitation respectively.  
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Figure 4-18: Auto-spectrum of the achieved ground excitations in Case R1: (a) white 

noise; (b) El Centro earthquake. 

 

4.2.2.4. Data Preparing for FRFC Method 

The FRFs between each story and the ground floor were calculated by Eq. (3-39) using 

measured ground and response acceleration time-histories and then divided by square of 

the circular frequencies. Typical FRFs of both the El Centro earthquake and white noise 

excitations are shown in Figure 4-19. It is observed that all the first 6 modes of the 
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structure are distinct under the white noise excitation while only the first 4 modes of the 

structure can be clearly recognized visually under the El Centro earthquake due to the 

insufficient frequency content of the El Centro earthquake. 

Besides the FRFs of the structures both prior to and posterior to damage, the FRFC 

method needs a well-estimated system matrix of the structure in intact state. The mass 

matrix was assumed diagonal with the lumped value of story mass described in Section 

4.2.2.1. The stiffness and damping matrices of both the El Centro and white noise 

excitations in Case R1 were identified using the subspace identification algorithm with 

the assumed diagonal mass matrix as described in Section 2.1.3. 
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Figure 4-19: Typical FRFs of Case R1 under (a) white noise excitation; (b) El Centro 

earthquake. 
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4.2.2.5. Damage Detection Results of FRFC Method 

The 11 frequencies closest to each identified eigenfrequencies of the structure were 

selected to detect the variation of stiffness of each story using Eq. (3-38). The 6 

damaged eigenfrequencies were determined automatically according to the first 6 modes 

identified by auto-regression (Marple 1987) of the auto-correlation (Orfanidis 1996) of 

the measured acceleration response on the 1st story.  

For each case, four results were obtained. The first one “WN/WN” represents the results 

obtained by using damaged FRFs under “white noise excitation” of Case R2 to Case R8 

as well as the identified dynamic stiffness matrix and intact FRFs under “white noise 

excitation” of Case R1. The second one “ELC/WN” represents the results obtained by 

using damaged FRFs under “El Centro earthquake excitation” of Case R2 to Case R8 as 

well as the identified dynamic stiffness matrix and intact FRFs under “white noise 

excitation” of Case R1. The third one “WN/ELC” represents the results obtained by 

using damaged FRFs under “white noise excitation” of Case R2 to Case R8 as well as 

the identified dynamic stiffness matrix and intact FRFs under “El Centro earthquake 

excitation” of Case R1. The fourth one “ELC/ELC” represents the results obtained by 

using damaged FRFs under “El Centro earthquake excitation” of Case R2 to Case R8 as 

well as the identified dynamic stiffness matrix and intact FRFs under “El Centro 

earthquake excitation” of Case R1. 

The RSC weighted results of the “WN/WN”, “ELC/WN”, “WN/ELC”, and “ELC/ELC” 

of Case R2 to Case R8 as well as the reference value of the story-stiffness reduction 

ratios calculated in section 4.2.2.2 are shown in Figure 4-20. According to the results in 

Figure 4-20, some conclusions can be made. Firstly, Case R5 is intact hence no stiffness 

variations should be identified. However, the results of Case R5 indicate some biased 

errors and about 8% error in maximum of the identified variation of stiffness may be 

obtained. This may be mainly due to measurement noise effects which may contribute 

biased errors as illustrated in the numerical study. Case R2 is with single relative small 

damage in the first story and the results are quite satisfactory because all the four sets of 

results were consistent with each other and close to the reference value. Similar 

conclusion may be made according to the results of Case R6 to Case R8 which 

simulated the sparsely distributed damage. However, although the damage extent of the 

1st story was identified quite successfully, the identified damage extent of the 2nd story 
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in Case R3 was relatively small comparing to the reference value. Similarly, the 

identified damage extent of the 2nd story and 3rd story in Case R4 were also relatively 

small comparing to the reference value.  
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Figure 4-20: Identified story-stiffness reduction ratio from the experimental studies: (a) 

Case R2; (b) Case R3; (c) Case R4; (d) Case R5; (e) Case R6; (f) Case R7; (g) Case R8. 
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4.2.3. Experimental Validation of Integration with Wireless 
sensing systems 

The idea proposed in Section 3.2.2 to integrate FRFC method with wireless sensing 

systems was validated in this Section. The main attraction of this idea is to take 

advantage of collocated computational power in each wireless sensing unit and save the 

energy consumption of wireless sensing unit at the same time. Therefore, the purposes 

of the experimental validation in this section are: (i) to realize the on-line damage 

detection operation scheme by integrating software and hardware; (ii) to verify the 

feasibility of the proposed on-line damage detection operation scheme; (iii) to recognize 

the possible energy saved by the proposed on-line damage detection operation scheme.  

 

4.2.3.1. Wireless Sensing Unit 

The prototype of wireless sensing unit developed by Wang et al. (2005) was employed 

here to realize the on-line damage detection operation scheme. This prototype was 

applied to both structural health monitoring (Lu et al. 2008b; Weng et al. 2008) and 

structural control (Lu et al. 2008a) successfully. Figure 4-21 shows the overall hardware 

design of the prototype wireless sensing unit with an optional off-board auxiliary 

module for conditioning analog sensor signals. The main wireless sensing unit (shown 

in the top part of the figure) consists of three functional modules: sensor signal 

digitization, computational core, and wireless communication. The auxiliary sensor 

signal conditioning module (shown in the bottom part of the figure) assists offsetting 

analog sensor signals prior to digitization. The key parameters of the prototype wireless 

sensing unit are summarized in Table 4-16. 
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Figure 4-21: Functional diagram detailing the hardware design of the wireless sensing 

unit. (modified from Wang 2007) 
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Table 4-16: Key performance parameters of the wireless sensing unit. 

 (modified from Wang 2007) 
Design Parameter  Specification 
Computing Core  
Microcontroller  8-bit RISC1 architecture, up to 16MIPS2 throughput at 16MHz
Flash Memory  128K bytes 
Internal SRAM3  4K bytes 
External SRAM  128K bytes 
EEPROM4 4K bytes 
Power Consumption  30mA active, 55μA standby 
    
Wireless Transmission  
Operating Frequency  ISM 2.4000 - 2.4835 GHz 
Data Transfer Rate 19.2 kbps 
Communication Range Up to 180m indoor, 5km at line-of-sight 
Power Consumption 150mA transmitting, 80mA receiving, 26μA standby 
    
Sensing Interface  
Sampling Precision and Rate 16bit, Up to 100kHz 
Analog Sensor Channels  4 

 

4.2.3.2. Experimental Setup 

The same test structure in Section 4.2.2.1 and measurement setup in Section 4.2.2.3 

were employed again here to perform experimental validation of the proposed wireless 

on-line damage detection operation scheme. For the shaking table wired measurement 

system, Setra141-A accelerometers with acceleration range of ±4 g and a noise floor of 

0.4 mg were employed. Multiple Pacific Instrument Series PI660-6000 data acquisition 

chassis are used in the wired system. 

The wireless sensing unit was instrumented with the “TOKYO SOKUSHIN Servo 

Velocity Seismometer” type VSE-15A which was placed in each story including the 

                                                 

1 RISC: reduced instruction set computer. 
2 MIPS: million instructions per second. 
3 SRAM: static random access memory. 
4 EEPROM: electrically erasable programmable read-only memory. 



 

 

114 

ground floor. The wireless sensing systems consists of 7 wireless sensing units and 7 

VSE-15A sensors. A typical setup of wireless sensing units and sensor as well as 

associated power supply devices and antennas are shown in Figure 4-22. The VSE-15A 

was switched to acceleration mode in order to compare the wireless measured 

acceleration data to the one measured by the data acquisition system of shaking table 
system. The analog output voltage of the VSE-15A sensor was -10V~10V, which was 

offset to 0~5V by the auxiliary sensor signal conditioning module. The specification of 

both the VSE-15A sensor and the Setra141-A accelerometers employed by the wired 

system are listed in Table 4-17. The sampling rate of both wired and wireless system 

was 200 Hz. 

Because the FRFC method has been validated by wired data obtained in experimental 

case studies with 8 different damage cases and 2 different excitations in Section 4.2.2, 

only 4 different damage cases (see Table 4-18) under El Centro earthquake excitation 

with PGA 0.05 g were studied in this section. Case W1 was the baseline test and no 

damage was introduced. Case W2 was another baseline test to see if the FRFC method 

may give false alarm. Case W3 and Case W4 simulated the damage occurring by 

removing the “B3” connecting plates in the designated stories. 

 

 

Figure 4-22: Close view of the wireless sensing units, power supply devices, antennas 

and sensors. 
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Table 4-17: Specification of the sensors used by the wire-based and wireless systems. 
Specification Setra 141-A VSE-15A 

Maximum Range ±4G ±2G 
Sensitivity 0.125V/G 5V/G 
Bandwidth 260Hz 0.2 to 70Hz 
Resolution 0.4mG 0.1mG 

Table 4-18: Cases of experimental study in Section 4.2.3 (“B3” represents the type of 

connecting plates; “R” represents removing of connecting plates). 

W1 W2 W3 W4
6 B3 B3 B3 B3
5 B3 B3 B3 B3
4 B3 B3 B3 B3
3 B3 B3 B3 R
2 B3 B3 B3 B3
1 B3 B3 R R

Story
number

Case Number

 
 

4.2.3.3. Imbedded Algorithms in the Wireless Sensing Unit 

In order to compare the wireless measured data and the FFT results calculated by the 

wireless sensing units with the wired ones, these data were recorded in the wireless 

sensing unit and also transmitted wirelessly. Therefore, due to the limited memory of 

hardware of wireless sensing units described in Section 4.2.3.1, the auto-regression 

algorithm and auto-correlation algorithm utilized in the experimental validation of 

FRFC method in Section 4.2.2 were not employed here. Instead, a smoothing algorithm 

and peak-picking algorithm which require less memory were imbedded in the wireless 

sensing units. 

The operational scheme of Figure 3-2 requires the wireless sensing unit to equip with 

FFT algorithm, smoothing algorithm and peak-picking algorithm. The Cooley-Tukey 

FFT algorithm coded by Wang et al. (2005) was borrowed here to be embedded in the 

WSU. The algorithms for smoothing and peak-picking the Fourier spectrum after taking 

FFT of the measured data are described here. The triangular smoothing with a weighting 

function was employed as: 
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where 1iw n i= + +  if 0i ≤  and iw i=  if 0i > ; n  denotes the half bandwidth of 

the weighting function; Y  denotes the absolute value of FFT results of the measured 
data; ˆ

jY  denotes the absolute value of FFT results after smoothing. The peak of 

smoothed FFT results ˆ
jY  was picked if 1

ˆ ˆ
j jY Y −>  and 1

ˆ ˆ
j jY Y+ > . For the measured data 

with length of 4096 points, the half bandwidth of the weighting function n  started at 

20 and increased by 10 per time if wider bandwidth were required. The bandwidth 

stopped increasing if 6 peaks or less than 6 peaks were picked. For the 6-story test 

structure, only the FFT results below 20Hz were smoothed. Note that Y  needs to be 

padded with zeros for the first few freuquencies for the traiangular smoothing algorithm. 

The smoothed FFT results below 0.2 Hz was eliminated to avoid abnormal value caused 

by offset of the measured data.  

After the peaks of FFT results of each wireless sensing unit transmitted to the host 

computer, the most probable eigenfrequencies were determined by taking the median of 

each set of peaks and were broadcasted to each wireless sensing unit afterwards. The 

adjacent 11 FFT results around the 6 most probable eigenfrequencies were transmitted 

from wireless sensing unit to host computer to compute the stiffness variation of each 

story using Eq. (3-38). 

 

4.2.3.4. Quality of the Wireless Sensor Data 

The typical time-history of the measured acceleration response of both the wireless 

system and wired system in Case W2 after zero-mean under El Centro earthquake 

excitation are shown in Figure 4-23. In general, the wireless-measured data had a good 

agreement with the wired-measured one. However, take a close look at the data as 

shown in Figure 4-24; it is evident that the noise ratio in the wireless-measured data is 

higher than the one in the wired-measured data, especially for the data measured on the 

ground floor. The extra noise in the wireless measured data may contribute additional 
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errors to the damage detection results using FRFC method as discussed in numerical 

studies in Section 4.2.1.2. 
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Figure 4-23: Comparison between wireless and wired sensor data – whole time history. 
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Figure 4-24: Comparison between wireless and wired sensor data – close view. 

 

4.2.3.5. Damage Detection Results of FRFC Method Integrated with 
WSU 

The mass matrix was assumed diagonal with the lumped value of story mass described 
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in Section 4.2.2.1. The stiffness and damping matrices of the structure in Case W1 were 

identified using the subspace identification algorithm with the assumed diagonal mass 

matrix as described in Section 2.1.3. The FRFs of the test structure in Case W1 and also 

the system matrices of the test structure identified using the data in Case W1 were 

already written in the host computer. The adjacent 11 FFT results around the 6 most 

probable eigenfrequencies were utilized to calculate FRFs using Eq. (3-39) right after 

the host computer received them from wireless sensing units. Therefore, on-line 

detection of the stiffness reduction ratio of each story was implemented by integrating 

FRFC method with the wireless sensing systems.  

The RSC weighted results of stiffness reduction ratio of each story is plotted in Figure 

4-25 with bars marked as “Wireless On-Line”. For Case W2 with no damage, no 

stiffness variations of any story should be identified. For Case W3 and Case W4, stories 

with connecting plates removed should have stiffness reduction ratio close to the 

reference value, while other stories should have no stiffness variations. For all the three 

cases, the damage locations were detected successfully with stiffness reduction ratio 

about 10% errors. For the bars in Figure 4-25 marked as “Wireless Off-Line”, the FRFs 

of the test structure after damage were obtained using FFT results of the 

wireless-measured time-history calculated in the host computer, instead of the 

wireless-calculated FFT results calculated in the wireless sensing units. Little 

improvement of the results was achieved if FFT results were obtained using the DFT 

algorithm in the Matlab software. However, if the FRFs of the test structure after 

damage were obtained using FFT results of the wired-measured time-history in the host 

computer, the results of damage localization and quantification improved a lot (marked 

as “Wired Off-Line” in Figure 4-25). Much less error was obtained if wired-measured 

data were used. The difference between wireless and wired data as shown in Figure 4-25 

could mainly contributed by the hardware difference including power supply devices of 

sensors, type of sensors and data acquisition system, etc. Nevertheless, the feasibility of 

the proposed idea to integrate FRFC method with wireless sensing systems to take 

advantage of collocated computing resources in wireless sensing units was verified. The 

energy efficiencies gained from FRFC method integrated with wireless sensing systems 

are discussed in the next section. 
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Figure 4-25: Comparison among identified story-stiffness reduction ratio obtained by 

wireless on-line, wireless off-line and wired off-line. (a) Case W2; (b) Case W3; (c) 

Case W4. 

 

4.2.3.6. Energy Efficiencies Gained from Integrating FRFC Method 
with WSS 

In this section, the energy consumed by the wireless transmission of raw time-history 
data 1E  is compared to the total energy 2E  required by FRFC algorithm in WSU 

(except the energy for recording raw time-history data). If 2E  is less than 1E , then 

there is an advantage of energy efficiencies contributed by the integration of FRFC 

method and wireless sensing systems. 

 

Energy consumed by wireless transmission of raw time-history data 

The measured time-history and FFT results are stored within the wireless sensing unit 

memory bank as floating point numbers. With each measurement point requiring 4 byte 

of memory, a 4096-point time-history record occupies 16,384 bytes of the memory. The 

24XStream wireless transceiver is capable of sending data packets with a maximum size 

of 1462 byte (including 14 byte of overhead per packet). As a results, to wireless 

transmit these data using the 24XStream wireless transceiver, 12 transmission packets 
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with 16,538 bytes are transmitted wirelessly. The transmission of data takes 6.89 

seconds using 24XStream with 19,200 bits/s transfer rate. All the hardware components 

are internally referenced at 5V. The current consumption of the main components in 

wireless sensing unit is summarized in Table 4-19 (Wang 2007). The complete current 

consumption of wireless sensing unit in transmitting mode is 182mA. Therefore, the 

energy consumed by the wireless transceiver can be determined as follows: 

1 (5 )(0.182 )(6.89 ) 6.27E V A s J= =  (4-7) 

 

Table 4-19: Approximate current consumption of the wireless sensing unit. 
 (modified from Wang 2007) 

Component  Active Current 
A/D converter ADS8341 1mA 
Micro-controller ATmega128 (at 8MHz)  15mA 
SRAM CY62128B  15mA 
Support electronics  1mA 

Wireless transceiver 24XStream 150mA transmitting, 
80mA receiving 

Complete wireless sensing unit w/o wireless transceiver 32mA 

Complete wireless sensing unit w/ wireless transceiver 182mA transmitting, 
112mA receiving 

 

Energy consumed by FRFC algorithms in WSU 

As shown in Figure 3-2, the operations required by the FRFC method in wireless 

sensing unit includes: (i) executing FFT, smoothing and peak-picking algorithms to 

determine 6 peaks of FFT results in the wireless sensing unit; (ii) transmitting of 6 

peaks of FFT results from wireless sensing unit to host computer; (iii) receiving of 6 

peaks of FFT results determined in host computer; and (iv) transmitting of adjacent 11 

FFT results around the 6 peaks from wireless sensing unit to host computer.  

The energy consumed by executing FFT, smoothing and peak-picking algorithms to 
determine the 6 eigenfrequencies, i.e. iω  in Figure 3-2, depends on the time for 

smoothing and peak-picking. For determining the 6 peaks of FFT results of the test 
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structure with 4096 points acceleration response, one to five times of both smoothing 

and peak-picking processes are enough. This means the bandwidth of smoothing is 20 to 

60. The time required to calculate FFT is approximately 15 seconds, and the time 

required to calculate five times of both smoothing and peak-picking is approximately 2 

seconds. The complete current consumption of wireless sensing unit without wireless 

transceiver is 32mA. The energy consumed by the wireless sensing unit for determining 

the 6 peaks of FFT results can be determined as follows: 

2 (5 )(0.032 )(15 2 ) 2.720cE V A s s J= + =  (4-8) 

After the 6 peaks of FFT results are determined, the 6 unsigned integers which represent 

the array of locations of the 6 peaks are transmitted to the host computer wirelessly. 

Once the most probable set of the system eigenfrequencies is determined in the host 
computer, i.e. systemω  in Figure 3-2, the 6 unsigned short integers which represent the 

array of locations of systemω  are broadcasted to the wireless sensing units. With each 

unsigned short integer requiring 2 bytes of memory, the array contains 6 locations of 

FFT peaks occupies 12 bytes memory. The transmission or receiving of data takes 

0.0108 seconds using 24XStream with 19,200 bits/s transfer rate. Following similar 

calculation algorithm, the energy consumed by the wireless sensing unit for transmitting 

6 unsigned integers can be determined as follows: 

2 1 (5 )(0.182 )(0.0108 ) 0.010tE V A s J= =  (4-9) 

And the energy consumed by the wireless sensing unit for receiving 6 unsigned integers 

(with complete current consumption of wireless sensing unit in receiving mode 112mA) 

can be determined as follows: 

2 (5 )(0.112 )(0.0108 ) 0.006rE V A s J= =  (4-10) 

Once the location of systemω  is received by the wireless sensing unit, the adjacent 11 

FFT results around the 6 peaks are transmitted to the host computer. Both the real part 

and imaginary part of the FFT results are stored within the wireless sensing unit 

memory bank as floating point numbers. With each FFT results point requiring 8 byte of 
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memory (both real part and imaginary part), a 66-point FFT results occupies 528 bytes 

memory. To wirelessly transmit these data using the 24XStream wireless transceiver, 

only one transmission packet with 542 bytes are transmitted wirelessly. The 

transmission of data takes 0.23 seconds using 24XStream with 19,200 bits/s transfer rate. 

Similarly, the energy consumed by the wireless transceiver for transmitting the FFT 

segments can be determined as follows: 

2 2 (5 )(0.182 )(0.23 ) 0.206tE V A s J= =  (4-11) 

As a result, the total energy 2E  required by the FRFC algorithm in WSU is 

summarized as follows: 

2 2 2 1 2 2 2 2.720 0.010 0.006 0.206 2.941c t r tE E E E E J J J J J= + + + = + + + =  (4-12) 

which is about 47% of 6.271J. This means that the energy consumed by the wireless 

sensing unit to perform necessary actions for the FRFC method is less than half of the 

energy consumed by the wireless sensing unit in transmitting the raw time-history to a 

host computer without performing any local data interrogation. This illustrates the 

advantage of energy efficiencies associated with FRFC methods integrated with 

wireless sensing systems. 
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4.3. Local Flexibility Method 

The local flexibility method has been applied to numerical cases of damaged isostatic 

and hyperstatic beams, and experiments involving a reinforced concrete free-free beam 

in the laboratory and a real three-span prestressed concrete bridge (Reynders and De 

Roeck 2008; Reynders and De Roeck 2010). The results show that the estimated local 

stiffness change is generally accurate. Accurate estimation of the damage of a 

simple-supported beam can be obtained by measuring only one or a few of the lowest 

modes. More modes are needed to obtain accurate damage detection results if the 

structure and damage is more complex. However, these numerical and experimental 

verifications focus on the beam structures and bridge structures. In this section, the 

feasibility of the local flexibility method to detect damage in building structures are 

discussed, both numerically and experimentally. 

 

4.3.1. Numerical Validation 

4.3.1.1. A 6-story shear building 

The first numerical model is the same model of the one in section 4.2.1.1. The stiffness 

of each story is 955,720 N/m. The mass of each floor is 439.8 kg. The damping matrix 

is decided Rayleigh damping on the assumption that the damping ratios of the first two 

modes are 2%. The six eigenfrequencies are 1.79 Hz, 5.26 Hz, 8.43 Hz, 11.11 Hz, 13.14 

Hz, and 14.41 Hz. The damage is assumed to be occurred at the first story with 50% 

loss of stiffness. 

The exact eigenfrequencies, damping ratios and mode shapes were used in Eq. (2-46) 

and Eq. (2-49) to obtain the quasi-static flexibility matrix. Since the building was 
isostatic, the load configuration of Figure (4-26) is used as both the load system 1g  

and load system 2g . The visual displacement vectors of the structure in intact and 

damaged states under load system 1g  were calculated using Eq. (3-53). Figure (4-27) 

shows the estimated relative change of bending stiffness 1 EI EI EI
EI EI
+ −

− =
Δ Δ  

calculated by using Eq. (3-52). Note that “plus” value of the estimated relative change 

of stiffness relates to “decrease” of stiffness. The results using the first load 
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configuration (count from left side) in Figure (4-26) relates only to the stiffness of the 

first story because only the stress field between node 1 and node 2 is not zero, while the 

results using the second load configuration in the same figure relates to the stiffness of 

both the first and second stories because the stress field between node 1 and node 3 is 

not zero, and so on. As a result, the exact value of estimated relative change of stiffness 

using the first and second load configuration should be 0.5 and 0.333, respectively. As 

can be observed from the results obtained using 6 modes in Figure (4-27), the estimated 

relative change of stiffness using 6 modes is almost identical to the exact value. 

In order to have an idea about how many modes are necessary for applying local 

flexibility method on this shear building, the estimated relative change of stiffness using 

different number of modes are also shown in Figure (4-27). The damage localization 

seems hold quite successful because the estimated ratio of node 2 remains indicating 

loss of stiffness even if only one mode was used. The quality of damage quantification 

decreases a lot when fewer numbers of modes were used. The estimated relative change 

of stiffness has large error if only the first 3 modes or fewer modes are used. 
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Figure 4-26: Load configurations for the 6-story shear building. 
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Figure 4-27: Estimated relative change of stiffness of the 6-story shear building using 

different numbers of modes. 

 

4.3.1.2. A 50-story flexible building 

In order to test the feasibility of the local flexibility method for a high-rise flexible 

building, a numerical model of a 2-span 50-story reinforced concrete 2D frame building 

structure was constructed as shown in Figure (4-28). In total there were 153 joints, 250 

elements and 450 DOFs. The length of each span was 12.5 m and the height of each 

story as 4 m. The dimension of the column was 1.2m×1.2m; the dimension of girder 

was 1.8m×1m. The elastic modulus of concrete was 2.3×1010 M/m2 with Poisson’s ratio 

equals to 0.3. The lumped mass with 67,824 kg was considered at each joint. The 

fundamental eigenfrequency of the building was 0.165Hz. The damage was simulated 

by reducing half of the elastic modulus of elements within the region surrounded by 

points 4, 8, 100 and 106 (thick lines in Figure 4-28). 

Because the number of DOF of the building was large, the original model is simplified 

to a reduced model using Eq. (2-61) based on the static reduction algorithm. Only the 

X-translation and Y-rotation DOFs of each joint of the left column were remained in the 

reduced model; therefore the reduced model had 100 DOFs. The analytical 

eigenfrequencies and mode shapes were obtained by eigenvalue analysis of the reduced 

model. Assume only the translation DOFs of every 5 stories were measured, which 

means only 11 joints were considered in the identification model (ID Model). As a result, 
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each element between two joints of the ID model represented the contribution of the 

corresponding 5 stories in the reduced model. This is a practical situation where only 

some floors of a tall building are equipped with measurement sensors. 

To perform damage localization and quantification of the ID model, the analytical 

eigenfrequencies and partial mode shapes (with 10 measured DOFs) of the reduced 

model were used in Eq. (2-46) and Eq. (2-49). Since the building was isostatic and quite 

similar to the 6-story shear building, the load configuration with the same concept in 
figure (4-26) was used as both the load system 1g  and load system 2g . Figure (4-29) 

shows the estimated relative change of stiffness 1 EI EI
EI
+

−
Δ . As can be observed in 

the results in the same figure, the ratio at node number 1, 2 and 3 estimated using 100 

modes equals to 14.6%, 18.6% and 9.5% respectively and the ratio at other joints are all 

equals to 0%. These results were treated as the best solution for comparing the results 

obtained using fewer modes.  

Again, in order to have an idea about how many modes are necessary for applying local 

flexibility method on this tall building, the estimated relative change of stiffness using 

different number of modes are also shown in Figure (4-29). The damage localization 

seems hold quite successful because the estimated ratio of node 1, 2 and 3 remains 

indicating loss of stiffness for all the cases, except the case only the first mode was used. 

The quality of damage quantification also decreases when fewer modes were used. 

However, it seems that the results obtained using only the first 5 modes are already 

close to the best solution (remember the reduced model has 100 modes); use more 

modes can only improve the results a little. This illustrates the benefit of using the 

flexibility-based method for damage detection. Contrary to the stiffness matrix, the 

value of the components in the flexibility matrix is mainly controlled by the lower 

modes as can be observed in Eq. (2-41). The contribution of the modes to the flexibility 
matrix decreases with 2−ω . Moreover, in general, unlike the higher modes which are 

not easy to identify and always contain more noise, the lower modes are more accurate 

and reliable. 
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Figure 4-28: A 2-span 50-story reinforced concrete 2D flexible building. 
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Figure 4-29: Estimated relative change of stiffness of the 2-span 50-story 2D frame 

building structure using different numbers of modes. 

 

4.3.2. Experimental Validation 

The applicability of local flexibility method was further investigated by experimental 

studies. The same 6-story steel building structure in section 4.2.2.1 was used again here. 

The same virtual load configuration used in the 6 story shear building structure in 
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section 4.3.1.1 as shown in Figure (4-26) was used here. Again, Case R1 was the 

baseline test and no damage was introduced. Case R2 through R4 simulated the damage 

occurring in the lower stories. Case R5 was another baseline test to see if the local 

flexibility method may give false alarm. Case R6 through Case R8 simulated the 

phenomenon with sparsely distributed damage.  

The modal parameters were identified using the SSI technique in Section 2.1.1. Table 

4-20 lists the identified modal properties of the 6-story steel building structure in 

different cases under El Centro earthquake excitation. The quality of all the identified 

modes was quite good because their MPD values were all less than 6°. Note that these 

mode shapes identified using the SSI technique in Section 2.1.1 were complex-value. 

These complex-value mode shapes can be transformed to real-value mode shapes with 

only amplitude and sign according to the phase between each component and their mean 

phase. Both the complex-value mode shapes and real-value mode shapes can be used to 

construct the flexibility matrix. 

The mode shape can be mass-normalized using an analytical mass matrix. Alternatively, 

the mode shapes can be normalized to make the maximum absolute amplitude equal one, 

i.e. non-mass-normalized mode shapes. 

The flexibility matrix can be constructed by Eq. (2-41) using mass-normalized real 

mode shapes. Alternatively, it can also be constructed by Eq. (2-46) and Eq. (2-49) 

using non-mass-normalized complex mode shapes with the assumption of a distributed 

diagonal mass matrix. 

With the flexibility matrix constructed using the identified modal parameters of the 

structure both in intact and damaged states, damage detection of the story stiffness 

variation can be performed using Eq. (3-52).  
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Table 4-20: Identified modal properties of the 6-story steel building structure in 
different cases under El Centro earthquake excitation. 

f i ξ i MPD f i ξ i MPD f i ξ i MPD f i ξ i MPD
(Hz) (%) (°) (Hz) (%) (°) (Hz) (%) (°) (Hz) (%) (°)

1 1.74 1.4 0.9 1.67 4.1 1.6 1.62 1.7 0.2 1.45 0.9 0.4
2 5.41 1.8 0.9 5.29 1.1 0.4 5.18 0.8 1.5 4.94 0.6 1.7
3 9.10 1.7 1.0 8.91 0.9 1.2 8.80 1.2 1.2 8.40 1.0 0.6
4 12.84 0.8 3.2 12.80 0.7 1.6 12.68 1.0 1.9 12.09 1.4 1.1
5 15.73 0.5 3.3 15.75 0.4 1.5 15.68 0.5 2.2 15.12 0.9 1.6
6 18.26 0.5 0.9 18.24 0.5 2.0 18.19 0.7 5.4 18.07 0.6 1.5

f i ξ i MPD f i ξ i MPD f i ξ i MPD f i ξ i MPD
(Hz) (%) (°) (Hz) (%) (°) (Hz) (%) (°) (Hz) (%) (°)

1 1.75 1.3 0.7 1.46 0.3 0.7 1.45 1.6 0.2 1.56 1.5 0.2
2 5.33 1.2 1.4 4.41 0.4 3.2 4.35 0.6 2.0 4.91 0.8 0.5
3 9.19 1.7 1.5 8.70 0.7 1.3 7.88 0.8 0.8 8.90 0.9 1.0
4 12.82 1.3 1.3 11.26 0.7 0.9 10.85 0.8 1.3 11.58 0.9 1.1
5 15.95 0.8 1.1 15.94 0.5 3.5 15.18 0.6 1.5 15.63 0.4 2.8
6 18.41 0.6 1.5 17.18 0.5 0.9 16.97 0.5 1.2 17.12 0.4 0.5

R6 R7 R8
Mode

R1 R2
Mode

R3 R4

R5

 
 

Using flexibility matrix calculated by Eq. (2-41) with  

mass-normalized real-value mode shapes 

At first, the flexibility matrix was calculated by Eq. (2-41) using 6 real-value 

mass-normalized modes. The estimated stiffness variation, 1 EI EI
EI
+

−
Δ , obtained via 

Eq. (3-52) using the estimated flexibility matrix and all the 6 modes is shown in Figure 

(4-30). In general, most of the locations and quantity of damage were detected 

successfully, despite some confusing errors. For example, Case R5 is intact hence no 

stiffness variations should be identified. However, the results of Case R5 indicate that 

about 20% errors in maximum of the identified variation of stiffness may be obtained. 

Comparing these results to the ones obtained by the FRFC method as described in 

Section 4.2.2, it is observed that the accuracy obtained by LFM is even less than the one 

obtained by the FRFC method. 

If only the first 5 modes were used to construct the flexibility matrix, most of the 

estimated stiffness variation is still reasonable for both damage localization and 

quantification, as shown in Figure (4-31), despite the phenomenon of confusing 

“increasing” of stiffness of the undamaged stories became more serious. At least the 
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first 4 modes were needed to catch the trend of the true stiffness variation. Using 

flexibility matrix constructed by less than 3 modes derived worse results of damage 

localization and quantification. Note that the excitation input of all the cases was El 

Centro earthquake. Using the mode shapes identified under white noise excitation only 

changed the results little. Nevertheless, acceptable results were obtained using the 

flexibility matrix calculated by Eq. (2-41) with 6 modes normalized by the analytical 

mass matrix. 

 

Using flexibility matrix calculated by Eq. (2-46) with  

mass-normalized complex-value mode shapes 

If the flexibility matrix was calculated by Eq. (2-46) and Eq. (2-49) using 

mass-normalized complex-value modes, the stiffness variations were acceptable only if 

all the 6 modes were used (see Figure 4-32). The estimated stiffness variation calculated 

by Eq. (2-46) and Eq. (2-49) with the fist 5 modes cannot detect the location and extent 

of the damage with acceptable accuracy (see Figure 4-33). The results using fewer 

modes were even worse. The flexibility matrix constructed by Eq. (2-46) and Eq. (2-49) 

using all the 6 modes suffer much less errors than the one constructed by the same 

equations using fewer modes. This implies that the flexibility matrix calculated by Eq. 

(2-46) and Eq. (2-49) is more sensitive to the noise in the identified mode shapes than 

the one calculated by Eq. (2-41). Observing Eq. (2-49), it is found that the there is a 

term calculated by inversing the matrix constructed by mode shapes and eigenvalue, i.e. 
1( )H H H

c c
−+Λ Φ ΦΛ Φ Φ . The inverse of this matrix could induce large errors due to the 

ill-posed problem especially when noise exists. 

 

Using flexibility matrix calculated by Eq. (2-46) with  

mass-normalized real-value mode shapes 

The stiffness variations obtained by using the flexibility matrix calculated by Eq. (2-46) 

and Eq. (2-49) using the first 6 or 5 mass-normalized real-value modes is shown in 

Figure (4-34) and Figure (4-35), respectively. Comparing these two figures to Figure 

(4-32) and Figure (4-33), it is evident that the quality of damage localization and 
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quantification improves a lot. While the results using all 6 modes remain almost the 

same acceptable results, the results using the first 5 modes became much more 

reasonable. It is concluded that using real-value mode shapes to construct flexibility 

matrix using Eq. (2-46) and Eq. (2-49) reduces the numerical problem caused by 

inversing matrix in Eq. (2-49). Comparing Figures (4-34) and (4-35) to Figures (4-30) 

and (4-31), the quality of damage localization and quantification is quite similar to the 

one obtained by the flexibility matrix constructed by Eq. (2-41) with mass-normalized 

real-value mode shapes. 

 

Using “relative” flexibility matrix calculated by Eq. (2-41) with  

non-mass-normalized real-value mode shapes 

Although theoretically the mode shapes used for Eq. (2-41) to construct the flexibility 

matrix should be mass-normalized, the flexibility matrix with “relative” value still can 

be obtained if the mass is distributed. These “relative” flexibility matrices of the 

structure in intact and damaged states can also be used in the local flexibility method. 

The stiffness variations obtained by using the “relative” flexibility matrix calculated by 

Eq. (2-41) using the first 6 and 5 non-mass-normalized real-value modes is shown in 

Figure (4-36) and (4-37), respectively. Comparing Figures (4-36) and (4-37) to Figures 

(4-30) and (4-31), the quality of damage localization and quantification is almost 

identical to the one obtained by the flexibility matrix constructed by Eq. (2-41) with 

mass-normalized real-value mode shapes.  

One of the advantage of using Eq. (2-46) and Eq. (2-49) to construct flexibility matrix is 

to circumvent the construction of an analytical mass matrix, therefore a FE model is not 

necessary to be constructed for a structure with a distributed diagonal mass matrix; this 

makes the local flexibility method a non-model-based one. However, as discussed 

previously, using Eq. (2-49) to construct flexibility matrix could have an numerical 

problem when inversing a matrix. Fortunately, the concept of using “relative” flexibility 

matrix in Eq. (3-52) to detect damage is validated for this 6-story steel building 

structure. This also makes the local flexibility method a non-model-based damage 

detection method because the “relative” flexibility matrix can be constructed by Eq. 

(2-41) using non-mass-normalized mode shapes without constructing a FE model. It 
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should be noted that the mass of each story of this building is almost identical, except 

the mass on the roof is a little smaller. For a structure with irregular mass distribution, 

mass-normalized mode shapes are probable still necessary. 

In the original paper (Reynders and De Roeck 2010), only the first mode is enough to 

have a good estimation for damage localization and quantification of a simple-supported 

beam with one damage location. For a hyperstatic beam with more complex damage, 

more modes are necessary to have good damage assessment results. It is concluded in 

the original paper that the results of damage detection depend on factors like the 

location and extent of the damage. It is the author’s opinion that the results of damage 

detection not only depend on complexity of damage but also on the accuracy of the 

flexibility matrix constructed by the identified modal parameters. The contribution of a 

mode to the flexibility matrix is approximately the reciprocal of the square of its circular 

frequency. For a simple-supported beam, only the first mode can approximate the 

flexibility matrix with enough accuracy for damage detection using the local flexibility 

method. For other structures, more modes are necessary to have enough accuracy of 

flexibility matrix. In the case of this 6-story steel building, the contribution of the lower 

modes is still big until the 4th mode whose contribution is approximately 1.8% of the 

contribution of the 1st mode. Therefore, at least the first 4 modes are required to have 

enough accuracy of the flexibility matrix. 
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Figure 4-30: Estimated relative change of stiffness of 6-story steel building structure 

obtained by Eq. (2-41) using the first 6 mass-normalized real-value mode shapes from 

the experimental studies: (a) Case R2; (b) Case R3; (c) Case R4; (d) Case R5; (e) Case 

R6; (f) Case R7; (g) Case R8. 
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Figure 4-31: Estimated relative change of stiffness of 6-story steel building structure 

obtained by Eq. (2-41) using the first 5 mass-normalized real-value mode shapes from 

the experimental studies: (a) Case R2; (b) Case R3; (c) Case R4; (d) Case R5; (e) Case 

R6; (f) Case R7; (g) Case R8. 
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Figure 4-32: Estimated relative change of stiffness of 6-story steel building structure 

obtained by Eq. (2-46) using the first 6 mass-normalized complex-value mode shapes 

from the experimental studies: (a) Case R2; (b) Case R3; (c) Case R4; (d) Case R5; (e) 

Case R6; (f) Case R7; (g) Case R8. 
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Figure 4-33: Estimated relative change of stiffness of 6-story steel building structure 

obtained by Eq. (2-46) using the first 5 mass-normalized complex-value mode shapes 

from the experimental studies: (a) Case R2; (b) Case R3; (c) Case R4; (d) Case R5; (e) 

Case R6; (f) Case R7; (g) Case R8. 
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Figure 4-34: Estimated relative change of stiffness of 6-story steel building structure 

obtained by Eq. (2-46) using the first 6 mass-normalized real-value mode shapes from 

the experimental studies: (a) Case R2; (b) Case R3; (c) Case R4; (d) Case R5; (e) Case 

R6; (f) Case R7; (g) Case R8. 
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Figure 4-35: Estimated relative change of stiffness of 6-story steel building structure 

obtained by Eq. (2-46) using the first 5 mass-normalized real-value mode shapes from 

the experimental studies: (a) Case R2; (b) Case R3; (c) Case R4; (d) Case R5; (e) Case 

R6; (f) Case R7; (g) Case R8. 
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Figure 4-36: Estimated relative change of stiffness of 6-story steel building structure 

obtained by Eq. (2-41) using the first 6 non-mass-normalized real-value mode shapes 

from the experimental studies: (a) Case R2; (b) Case R3; (c) Case R4; (d) Case R5; (e) 

Case R6; (f) Case R7; (g) Case R8. 
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Figure 4-37: Estimated relative change of stiffness of 6-story steel building structure 

obtained by Eq. (2-41) using the first 5 non-mass-normalized real-value mode shapes 

from the experimental studies: (a) Case R2; (b) Case R3; (c) Case R4; (d) Case R5; (e) 

Case R6; (f) Case R7; (g) Case R8. 
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5. DAMAGE DETECTION ACCOMMODATING 
NONLINEAR ENVIRONMENTAL EFFECTS 

The damage of a structure may be detected through the variation of the structural 

features such as eigenfrequencies, modal damping, mode shapes, damage indexes, 

stiffness matrices, etc. However, in most of the previous studies, these identified 

structural features were assumed under a constant environmental condition. Generally, 

for case of continuous monitoring the structure behavior is affected by the changing 

environmental conditions such as temperature, humidity, loading conditions, and 

boundary conditions. The variation of the identified structural features due to the 

varying environmental conditions may smear the changes caused by structural damages; 

therefore, false damage diagnosis can be concluded. 

A technique is proposed in this thesis to accommodate nonlinear varying environmental 

effects in the identified stiffness reduction of structural components (Level-III damage 

detection) without measuring the environmental factors as a prior. Once the target 

features are identified or measured under varying environmental conditions, the actual 

trend caused by the intrinsic unmeasured system variables can be extracted by the 

nonlinear principal component analysis (NPCA). Then the variation of the features 

caused by damage is determined more accurately by the proposed prediction model, 

which is achieved by solving an optimization problem. 

In the first section of this chapter, the methodology of NPCA is introduced, and then the 

optimization problem for applying the prediction model of NPCA is defined and 

explained using a simple example. The efficiency of the proposed approach is illustrated 

using a synthetic bridge model with the consideration of the specific element stiffness 

reduction together with the element stiffness change due to varying environmental 

conditions including temperature, gradient of temperature, humidity and frozen of 

supports. 
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5.1. Methodology 

A methodology is proposed to perform damage detection of structural components 

accommodating nonlinear environmental effects provided that the target features of 

structural components can be identified. In this thesis, the stiffness of structural 

components is selected as the key target feature for demonstration. The environmental 

factors which affect the structural features are not necessary to be measured for damage 

detection using the proposed methodology. The proposed methodology of NPCA and 

the associated prediction model are explained in detail in this section. 

 

5.1.1. Nonlinear Principal Component Analysis 

The identified stiffness of structural components under varying environmental 

conditions when the structure is intact is used to conduct NPCA. The environmental 
factors are not necessary to be measured for this technique. Let J P×∈ℵ R  represents 
the matrix whose column vectors pκ  are the stiffness values of the components of the 

system identified at any particular time pt , where J  is the dimension of data and P  

is the number of data set. In order to detect the percentile reduction of the stiffness 
values directly, the matrix ℵ  is formed by the data which has been standardized as 

ˆ
100jp j

jp
j

κ μ
κ

μ
−

= ×  (5-1) 

where ˆ jpκ  is the non-normalized feature of the j th component at time pt , and jμ  is 

the mean of the row vector ˆ jκ .  

After the data of structural component stiffness under varying environmental conditions 

is prepared, the NPCA technique is performed to extract the underlying environmental 

trend when the system is in its intact condition. These intact data sets will be used for 

training and validating the neural networks. 

Kramer (1991) proposed the NPCA algorithm by applying the auto-associative neural 

network (AANN) to perform feature extraction. The AANN is a particular class of 
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neural networks in which the target output pattern is identical to the input pattern. In this 

thesis the NPCA is used to extract the intrinsic environmental trend causing the 

variation of structural components stiffness. The architecture of AANN is described as 

follows. 

There are five layers in the typical AANN as illustrated in Figure 5-1, where σ  

represents sigmoid transfer function and l  represents the linear transfer function. The 

AANN seeks mapping and de-mapping functions simultaneously which are represented 

as 

( )F=Z ℵ  (5-2) 

and 

ˆ ( )G= Zℵ  (5-3) 

The first half of AANN represents the mapping function F  which operates on the 

rows of ℵ  and has J  inputs. The mapping layer of F  contains M  nodes with 

sigmoid transfer functions and projects the input pattern ℵ  into Z  feature space with 

d  dimensions. The number of nodes in the bottleneck layer, d , in Z  feature space is 

actually the number of nonlinear principal components and is usually less than M  and 
J . The second half of AANN represents the de-mapping function G  which takes the 

rows of Z  as inputs and accordingly has d  inputs. The de-mapping layer contains 

the same M  nodes of sigmoid transfer functions and projects the Z  feature space 
back into original ℵ  space with J  dimensions.  

Cybenko (1989) had proved that the function F  and G  can fit any nonlinear 
function ( )z f κ=  expressed in the following form 

2 1
2 1

1 1
( )

N N

p jp ij i j
j i

z m m κ bυ
= =

= +∑ ∑  (5-4) 

where pz  and iκ  are the p th and i th components of z  and κ  respectively; p
ijm  

represents the weight connecting the i th node in the p th layer to the j th node in the 
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( 1)p + th layer; jb  is a nodal bias; iN  is the number of nodes in each layer. ( )xυ  is a 

continuous and monotonically increasing function with the output range of 0 to 1 for an 
arbitrary input κ . 

Supervised learning is applied to train AANN. Specially, ℵ  is both the input and 
output of AANN. The residual error re  is measured by ˆ

r = −e ℵ ℵ . The mapping 

function F  and de-mapping function G  are computed to minimize Euclidean norm 
of the residual error, re . Thus the AANN is trained to reconstruct the original data 

and to extract the underlying nonlinear principal components (NLPCs) simultaneously. 

As a result, the latent relationship between the identified features (e.g. structural 

component stiffness) and the unknown intrinsic features (e.g. environmental factors) 

causing the variations of the identified features is revealed. 

Based on the residual error re  of the validating data of the intact system, the threshold 

of each component for separating the suspected damage data from those of the intact 
data can be determined. Provided the residual error re  of the intact stiffness values is 

Gaussian distribution, the point with residual error less than mean minus two times of 

the standard deviation σ  is only 2.5% of all data. However, such a threshold level 

makes about 2.5% of the intact data be identified as the damage case, which means that 

false alarm may be issued quite frequently. To avoid the false alarm caused by noise or 

other effect, it is suggested to issue an alarm only when three consecutive residual errors 

exceed the threshold. If the noise is Gaussian distribution and the system is intact, the 

possibility for three consecutive residual errors exceeding the threshold is only 

(2.5%)3=0.001563%. Although the reliability of damage alarm can be increased if a 

lower threshold is chosen, on the contrary the sensitivity of damage extent may be 

sacrificed. Therefore, determination of threshold depends on engineering judgment. 
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F G

 

Figure 5-1: Network architecture of AANN for implementation of NPCA.  

(modified from Kramer 1991). 

 

5.1.2. Prediction Model 

Consider a simple system with two components as an example. If the system is 

continuously monitored and enough data of the stiffness values (k1 and k2) under 

varying environmental conditions are identified, the NLPCs of these two features, i.e. 

the solid line in Figure 5-2, can be extracted by training the AANN. Note that the 

stiffness values are semi-normalized by Eq. (5-1) and thus are expressed in percentage.  

In this section, a single damaged data point under certain environmental condition is 

used to demonstrate the concept of the prediction model of NPCA. Assuming this single 

damage data represents 4% stiffness reduction of the second component, the stiffness 

values of the system may be identified as the dot point in Figure 5-2(a). This dot point is 

projected onto the space formed by the NLPCs using Equation (5-2), obtaining the 

double-circle point in Figure 5-2(a). Afterward, this double-circle point can be 

transferred back to the original two-dimensional feature space using Eq. (5-3). The 



 

 

147 

residual error re  of this data due to the mapping and de-mapping of AANN is actually 

a vector from the dot point to the double-circle point in Figure 5-2(a). This vector 

indicates the stiffness values of the first and second components approximately increase 

by 2% and decrease by 2% respectively. However, since the stiffness values of the 

damaged structural components should indicate a decreasing value, the increase of 

stiffness value of the structural component after the system is damaged is physical 

meaningless. A better result can be obtained by assuming that the first component is not 

damaged and the second component is damaged. In other words, the damage extent can 

be obtained more accurately by seeking the true features when the system is intact under 

the same environmental condition. These true intact features are denoted as a “predicted 

point” and can be obtained by minimizing the object function Π  as defined 

2
( ( ))G FΠ = −ℵ ℵ� � , u

d

κ
κ
⎧ ⎫

= ⎨ ⎬
⎩ ⎭

ℵ�  (5-5) 

where uκ  represents the known stiffness variation of the intact components and dκ  

represents the unknown stiffness variation of the damaged components. Note the 
sequence of ℵ�  is the same as ℵ . Thus the predicted damage extent is obtained by 

p = −e ℵ ℵ�  (5-6) 

In this two-dimensional case, the predicted point is actually the double-circle point in 

Figure 5-2(b). As a result, the damage extent of the second component is predicted as 

approximately 4%, which is the same as the designated one.  

It should be noted that, as discussed in Section 1.4.4, the variations of structural 

component stiffness due to damage should behave in different manners from those due 

to varying environmental conditions, otherwise this approach will fail. Fortunately, the 

variation of features caused by damage generally departs from the one caused by 

environmental effects since damage usually occurs at local components while 

environmental factors usually affect the structure globally. For the circumstance when 

these two variations of features are analogous, it is suggested to measure the 

environmental factors and include them in the AANN. 
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Figure 5-2: Two-dimensional example for demonstration of (a) residual error; (b) 

predicted stiffness loss. 

 

5.2. Numerical Validation 

5.2.1. The Identification Model 

The proposed damage detection approach is demonstrated using a synthetic bridge 

model as illustrated in Figure 5-3. The bridge was composed of 9 components including 

4 components of concrete decks, 3 components of steel decks paved with asphalt, and 2 

elastic springs to simulate the changing boundary conditions. The length of each deck 

was 10m . The Young’s modulus of the concrete and steel decks were 10 22.48 10 /N m×  

and 11 22.04 10 /N m× , respectively. The moment of inertia of the concrete and steel 

decks were 48.10m  and 41.28m , respectively. The stiffness of the spring number 1 and 

2 were 91 10 /N m×  and 92 10 /N m× , respectively. The mass was lumped on each 
node; for concrete element, the translation inertia and rotary inertia was 53.31 10 kg×  

and 5 227.6 10 kg m× − , respectively; for steel element, the translation inertia and rotary 

inertia was 51.13 10 kg×  and 5 29.44 10 kg m× − , respectively. 
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Figure 5-3: A synthetic bridge model. 

 

5.2.2. Synthetic Environmental Effects 

This bridge was assumed being monitored under the changes of different environmental 

conditions including temperature, temperature gradient, humidity, and frozen of 

supports during a period of continuous monitoring. The hypothetical relationships 

between the Young’s modulus of each kind of structural component and the temperature 

and humidity are demonstrated in Figure 5-4. It should be noted that the temperature 

effect when asphalt is under freezing point was simulated to imitate the behavior of 

Z-24 Bridge (Peeters and De Roeck 2001) as shown in Figure 1-1. The frozen of the 

supports were simulated by increasing the stiffness of the springs dramatically if the 
temperature of the adjacent deck was under 0 C° . The frozen of support made the first 

eigenfrequency of the system increase about 50% maximum. The temperature was 
generated uniformly random distributed between 10 C− °  and 50 C° . The humidity 

was generated uniformly random distributed between 60%  and 100% . The 

temperature gradient was considered distributed from the first deck to the last one with 

random magnitude and with maximum difference of 20 degree, either increasing or 

decreasing. 

 

5.2.3. Damage Cases 

Four cases were studied for the synthetic bridge model. The noise level, damaged 

components and damage extent of these case studies were listed in Table 5-1. In order to 

demonstrate the results clearly, only one component was designated damaged in the first 

case study. The second case study investigated the ability to identify multiple damaged 

components. The third case study raised the noise level to examine the effect of higher 

noise level. The forth case study inspected the case with different damage elements and 
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larger damage extent. For each case study, 600 intact samples and 50 damaged samples 

were generated. The first 500 of the intact samples were used for training and validating 

of the AANN. The rest 100 of the intact samples and the 50 damaged samples were used 

to verify the proposed technique. 

In the first case study, only the component No.6 was damaged, and 1% noise was added 

to the stiffness of each element. For demonstration, only 100 intact and 50 damaged 

samples are presented. The identified stiffness values of the 5th and 6th components 

under varying environmental conditions are demonstrated in Figure 5-5. From the data 

distribution in Figure 5-5 it is not easy to judge reliably and immediately whether the 

components are damaged or not since the deviation of data caused by environmental 

effects smears the damage data. 
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Figure 5-4: Young’s modulus of (a) concrete deck vs. temperature when humidity 

equals 60%; (b) steel deck vs. temperature; (c) spring (s2) vs. temperature; (d) concrete 
deck vs. humidity when temperature equals 0 C° . 
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5.2.4. Numerical Results 

Before the data set, ℵ , is used to train the AANN, normalization using Equation (5-1) 

is performed. Thus the decreasing value of the data relates directly to the percentage of 

component stiffness loss. Basically the number of d -nodes of AANN depends on the 

number of underlying factors in the data. In practice, the number of underlying factors is 

not known. However, similar to the PCA, the selection of exact number of nonlinear 

principal components to represent the underlying factors is not very critical (Yan et al. 
2005a; Giraldo et al. 2006). It is recommended to choose a series of d  for verification. 

For all the numerical studies, d  was chosen as 2.  

It is well known that the number of neurons in the mapping and de-mapping layers 

relates to the complexity of the nonlinear functions represented by the neural network. 

Enough number of neurons for mapping is required so as to get satisfying accuracy. On 

the other hand, over-fitting caused by too many mapping neurons should be avoid 

otherwise the network may learn the stochastic nature of data rather than the underlying 

functionalities. Therefore, the Akaike’s final prediction error (FPE) (Akaide 1974) is 

introduced to determine the number of M. For all the numerical studies, M was chosen 

as 8. 

Once the AANN was trained, based on the residual error re  of the validating data of 

the intact system, the threshold of each component for separating the suspected damage 

data from those appears intact was determined as mean minus two times of the standard 
deviation (i.e. 2j j−μ σ ). The damage alarm could be issued when three consecutive 

residual errors exceed the threshold. Figure 5-6 provides the residual error of the 5th and 

6th components for Case N1 study. The threshold for the 5th and 6th component was 

-2.02% and -1.93% respectively. When the components were intact, only a few 

intermittent points exceeded the threshold and no false alarm was issued. When the 6th 

component was damaged, the residual error of the damaged component consecutively 

exceeded the threshold. The mean value of the residual error of the damaged component 

was -4.14%, while the designated damage extent is -5%. Figure 5-7 presents the 

predicted stiffness loss of these two components obtained by Equations (5-5) and (5-6). 

The mean value of the predicted stiffness loss when the component was damaged was 

-4.96%. It is evident that the predicted stiffness loss was approximately the same as the 
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designated one.  

Table 5-1 summarizes the results for all N1 to N4 case studies. The mean value of the 

predicted stiffness loss of 3 consequent data points whose residual error consecutively 

exceeds the threshold was also listed, as well as the number of samples needed to issue 

alarm after the true damage occurred. All values of the predicted stiffness loss provided 

a good estimate of true extent of damage, except the 6th component in Case N3 where 

noise level was so big that small damage could not be detected. Most of the alarm was 

issued after only 3 samples were recorded, which indicates that the damage could be 

detected promptly with high confidence. Furthermore, no false alarm was issued in all 

the N1 to N4 case studies, indicating high reliability for the proposed technique. 

 

Table 5-1: Summary of the patterns and results of case studies. 

Case
Noise
Level

Damage
Component

Damage
Extent

Predicted
Stiffness Loss

Samples Needed
to Issue Alarm

N1 1.0% 6 5.0% 4.06% 3
1 5.0% 4.64% 3
2 5.0% 4.71% 3
6 5.0% 5.58% 3
1 20.0% 22.63% 3
2 10.0% 11.65% 8
6 5.0% - -
3 10.0% 12.62% 6
4 20.0% 23.14% 3
7 50.0% 51.16% 3

1.0%N2

5.0%N4

5.0%N3
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Figure 5-5: The original stiffness including 100 intact (first 100 samples) and 50 

damaged samples (last 50 samples) of the (a) 5th component; (b) 6th component. 
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Figure 5-6: The residual error including 100 intact (first 100 samples) and 50 damaged 

samples (last 50 samples) of the (a) 5th component; (b) 6th component. 
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Figure 5-7: The predicted stiffness loss including 100 intact (first 100 samples) and 50 

damaged samples (last 50 samples) of the (a) 5th component; (b) 6th component. 
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6. CONCLUSIONS AND FUTURE WORKS 

6.1. Conclusions 

The objective of this thesis is to develop techniques to localize and quantify damage in 

civil structures under nonlinear environmental effects. The FRFC method and the 

modified MSEC method are developed to perform Level-III damage detection. Both 

algorithms are verified by numerical and experimental studies. The feasibility of the 

LFM to perform Level-III damage detection of building structures is also studies with 

numerical and experimental cases. It is assumed that the stiffness variation of the 

structural components is identified from the measured data within a short duration 

where environmental factors are constant. In practice, the stiffness variations identified 

at different time fragments always fluctuate with environmental factors. The stiffness 

variation caused by damage may be smeared by these environmental effects. To treat the 

environmental effects, the algorithm using NPCA to extract the underlying 

environmental trend is proposed. Then the stiffness variations caused by damage is 

determined more accurately by the proposed prediction model. Numerical studies are 

conducted to verify this algorithm.  

The main conclusions of this thesis are summarized as the followings: 

 

The Modified Modal Strain Energy Change Method 

The modified MSEC method is developed to overcome some difficulties when applying 

MSEC method to the 3D steel building structure with relatively sparse measurement. 

The following conclusions can be drawn from the numerical studies and experimental 

studies. 

 When selecting suspected damage elements according to the MSECR of each 

element, it is proposed to calculate MSECR without taking absolute MSEC 

value rather than taking absolute MSEC value. It is illustrated that better 

localization can be achieved because fewer suspected damage elements are 

selected without missing the true damaged elements. Selecting fewer suspected 
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elements is important for reducing ill-posed problem when solving the damage 

identification equations. 

 The measured incomplete mode shapes is suggested to be expanded by 

dynamic expansion algorithm instead of by SEREP algorithm. From the 

numerical studies, it is found that better damage localization and more accurate 

damage quantification can be achieved using the dynamic expansion algorithm. 

 The elements with relatively small MSE may induce abnormal MSECR. It is 

suggested to avoid the abnormal MSECR by setting a threshold of MSE. From 

the numerical studies, it is observed that more accurate damage localization can 

be achieved with employing the threshold of MSE. 

 In addition to the sensitivity equations of MSEC respect to elemental stiffness 

change in the damage identification equations of the original MSEC method, the 

sensitivity equations of eigenvalue respect to elemental stiffness change are also 

considered in the damage identification equations. Through the numerical 

studies and experimental studies on a 3D 3-story steel building structure, it is 

proved that the ill-posed problem when solving the identification equations is 

suppressed by adding these equations.  

 The damage identification equations are expanded from considering sensitivity 

of “lump elemental stiffness variation ratios” to considering sensitivity of 

“elemental sectional property variation ratios”. The numerical studies and 

experimental studies indicate that more reliable and consistent results are 

obtained if the expanded damage identification equations are employed.  

 For the MSEC method, the measured mode shapes with incomplete DOFs are 

expanded to complete mode shapes according to the analytical FE model of the 

structure. The target MSEC in the iteration process is calculated based on these 

complete mode shapes. A new iteration process which updates the target MSEC 

according to the mode shapes expanded based on the stiffness matrix obtained 

in the last step is proposed. The new iteration process will be terminated 

according to the proposed convergence criterion based on MAC between each 

mode. The numerical studies illustrates that the accuracy can be improved by 

using the proposed iteration process. 

 Less measurement increases the difficulty of vibration-based damage detection. 

This is illustrated by the numerical studies of the 3D building structure. While 

all modes with complete analytical DOFs are capable to detect damage, only a 
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few lowest modes expanded from sparse DOFs are capable to detect damage. 

The experimental studies of the 3D building structure with relatively sparse 

measurement present that damage quantification of the truly damaged sectional 

properties can be fairly identified even though the stiffness reduction factors of 

other properties seem to be contaminated. The errors are attributed mainly to 

modal expansion from limited numbers of DOFs, as well as to the combination 

of modal expansion, modeling error and measurement noise. 

 

The Frequency Response Function Change Method 

The FRFC method to perform Level-III damage detection based on the change of the 

FRFs of a linear structure under ground excitation is proposed in this thesis. The FRFC 

method uses the geometry information of the structure to circumvent ill-posed problem 

when solving the variation of stiffness matrix from the damage identification equations. 

This idea is illustrated by applying it to a shear building structure. The information 

required for the FRFC method includes: (i) FRFs of the structure both prior and 

posterior to damage and (ii) a well-estimated dynamic stiffness matrix when the 

structure is intact. 

The FRFs at frequencies with higher signal-to-noise ratio, e.g. frequencies close to the 

eigenfrequencies of the structure, are suggested to be utilized to reduce the errors caused 

by measurement noise. Because the least-square solution of the damage identification 

equations depends on the magnitude of coefficient in each equation; therefore the 

damage identification equations are solved using the frequencies close to each 

eigenfrequency of the structure separately. The results obtained with different set of 

frequencies are suggested to be weighted according the proposed results similarity 

criterion. The numerical studies illustrate that the results similarity criterion can reduce 

the errors caused by both measurement noise and modeling error. 

The dynamic stiffness matrix of the intact structure identified using subspace 

identification techniques with a known mass matrix can be utilized to replace the 

analytical one constructed from a FE model; this circumvents the troublesome process 

of FE model-updating and at the same time makes the FRFC method much less 

model-dependent. If the mass matrix of a shear building structure is diagonal, it is 
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illustrated that the stiffness variation ratio of each story can be obtained without 

knowing the value of the mass matrix. In this case, the FRFC method is almost 

non-model-based.  

According to the results of numerical studies which consider measurement noise and 

modelling error, the proposed FRFC method is proved realistic. It is observed that the 

modeling error causes unbiased error while the measurement noise causes biased error. 

The experimental studies using the 1/4-scale 6-story steel building structure with several 

damage cases reveals that the proposed FRFC method is feasible to detect the damage 

with acceptable accuracy. 

An operational scheme is proposed to integrate the FRFC method with wireless sensing 

systems to take the advantage of collocated computing resources of wireless sensing 

systems and reduce the energy consumed by wireless sensing units at the same time. 

Necessary algorithms for FRFC method are imbedded into the wireless sensing units to 

realize the proposed operational scheme. On-line Level-III damage detection of the 

same 6-story steel building structure using the FRFC method integrated with the 

wireless sensing systems is successfully accomplished. 

 

The Local Flexibility Method 

Numerical studies on the feasibility of the LFM are conducted with a shear-type 

low-rise building structure and a flexible high-rise frame building structure. For the 

shear-type low-rise building structure, 4 modes out of 6 modes are required to obtain a 

reasonable result. For the flexible high-rise frame building structure, only 5 modes out 

of 100 modes are required to obtain a reasonable result. Combining the results of the 

LFM applying to beam structures and bridges in the literature and results in this thesis, 

it seems that only the lowest few modes may be enough for the LFM to detect damage 

with acceptable accuracy, especially for a flexible structure like a high-rise building, a 

beam structure and a bridge. 

The LFM is also verified by experimental studies on the 1/4-scale 6-story steel building 

structure with several damage cases. It is found that the algorithm to construct a 



 

 

158 

flexibility matrix using Eq. (2-46) may have ill-posed problem with truncated modes. A 

suggestion is made to use another algorithm, i.e. Eq. (2-41), to avoid ill-posed problem 

while constructing a flexibility matrix. Theoretically, the mode shapes utilized in Eq. 

(2-41) should be mass-normalized. However, it is illustrated by the experimental studies 

that the “relative” flexibility matrices constructed using non-mass-normalized mode 

shapes by Eq. (2-41) are possible to be used for the LFM if the structure is 

mass-distributed. By doing so, the troublesome work of obtaining a mass matrix by 

establishing a finite element model can be circumvented. 

 

The Method Treating Nonlinear Environmental Effects 

A new method which deals with environmental effects on the identified structural 

features, e.g. damage extent of each component, without measuring the environmental 

factors is proposed, especially for nonlinear environmental effects. The underlying 

environmental factors can be extracted by nonlinear principal component analysis using 

auto-associative neural network. The residual error due to mapping and de-mapping of 

the auto-associative neural network when the structure is intact is used to decide the 

threshold for separating suspected damaged samples from the intact one. Then the 

extent of stiffness loss is calculated by the prediction model of NPCA through solving 

an optimization problem. 

The proposed methodology for treating environmental effects is verified by a synthetic 

bridge model which considers a specific element stiffness reduction together with the 

change due to environmental conditions including temperature, gradient of temperature, 

humidity and frozen of the supports. Results show that the extent of stiffness loss can be 

quantified accurately and promptly after the damage is introduced. 

One of the benefits of this approach is that the environmental factors are not necessary 

to be measured. Note that the application of this technique is not limited to the 

identified stiffness value. The structural features with the variation that is 

non-decreasing or non-increasing, e.g. damage index, when damage occurs are also 

valid for this technique.  
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Note that enough data when the system is intact are required to perform NPCA for 

training the AANN. If the environmental conditions depart significantly from the 

exposure history during the data collection, the proposed technique may fail. 

Fortunately, the most important environmental factor, i.e. temperature, is almost 

periodic in one year of view. The highest and lowest temperatures of each year do not 

change significantly. However, for those environmental effects which are not known 

well, preliminary observations and studies are necessary. Otherwise, one needs to 

update the training database once the false-positive alarm due to obscure environmental 

effect is observed. 

It should be noted that the variations of structural component stiffness due to damage 

should behave in different manners from those due to varying environmental conditions, 

otherwise this approach will fail. Fortunately, the variation of features caused by 

damage generally departs from the one caused by environmental effects since damage 

usually occurs at local components while environmental factors usually affect the 

structure globally. For the circumstance when these two variations of features are 

analogous, it is suggested to measure the environmental factors and include them in the 

AANN. 

 

6.2. Future work 

It is found that large error is introduced to the MSEC method if mode shapes are 

obtained from expanding from relatively sparse measurement. Therefore, it might be 

appropriate to develop an algorithm to determine the optimal DOFs to be measured to 

perform damage detection with less error attributed to inadequate sensor locations. 

Besides, as cost of sensors may continue to lower, more sensors are possible to be 

installed in a structure; this benefits the results of vibration-based damage detection. 

Since the number of sensors is not constraint to budget so hardly in the near future, it 

might also be appropriate to develop an algorithm to determine the cost-effective 

number of sensors to be installed in a structure to perform damage detection. 

Although the theoretical basis of the local flexibility method is general to any structure 
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type, to date, it is only applied to the estimation of changes of bending stiffness of beam 

structures. It might be appropriate to expand the local flexibility method to other type of 

structures such as plate structures. However, one of the main difficulties is to find the 

load configuration which only induces local stress within a portion of the plate 

structure. 

The results of damage detection are always contaminated by errors caused by many 

reasons such as measurement noise, modelling error and numerical errors etc. Therefore, 

it might be appropriate to associate a uncertainty measurement with the identified 

damage. The confidence of the identified damage could be indicated by an index which 

may help increase the accuracy of judgment. For instance, when performing NPCA by 

training AANN with the identified stiffness variations of elements, residual error of 

each identified stiffness variation could be weighted according to the corresponding 

confidence index. 

The methodologies studied in this thesis focus on Level-III damage detection. Although 

compressive studies on the extent of errors in the identified stiffness variations using 

these damage identification methodologies have not been done, it seems that moderate 

errors are inevitable which causes damage qualification not so reliable, even in the 

laboratory tests. However, while efforts are devoted for Level-III damage detection, the 

reliability of Level-I and Level-II damage detection might also increase. Knowing the 

existing of damage and possible locations of damage has already contributed critical 

information for structural health monitoring purpose. Detail examination can be 

conducted to find exact location and severity of the damage of a structure. Therefore, 

more efforts are required to develop approaches to increase the reliability of Level-III 

damage detection. Specially, there are few literatures studying the environmental effects 

on the identified elemental stiffness variations in a real structure under long term 

continuous monitoring. For practical application purpose, further studies are necessary 

to verify existing Level-III damage detection algorithms on real structures under 

varying environmental conditions in a continuous way. 
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