Please use this identifier to cite or link to this item:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/101599Full metadata record
| ???org.dspace.app.webui.jsptag.ItemTag.dcfield??? | Value | Language |
|---|---|---|
| dc.contributor.advisor | 鄭光成 | zh_TW |
| dc.contributor.advisor | Kuan-Chen Cheng | en |
| dc.contributor.author | 游翊琪 | zh_TW |
| dc.contributor.author | Yi-Chi Yu | en |
| dc.date.accessioned | 2026-02-11T16:40:04Z | - |
| dc.date.available | 2026-02-12 | - |
| dc.date.copyright | 2026-02-11 | - |
| dc.date.issued | 2026 | - |
| dc.date.submitted | 2026-01-19 | - |
| dc.identifier.citation | 周志展 (2019) 以反應曲面法提升Komactobacter intermedius之細菌纖維素產量。國立臺灣大學生物科技研究所學位論文。台北。台灣
林云心 (2024) 利用木質醋酸菌和基因工程之大腸桿菌共培養生合成多孔性細菌性纖維素/紫色桿菌素複合模作為水中重金屬吸附之研究。台北。台灣 林欣平 (2016) 細菌性纖維之生產及其於傷口癒創之應用。國立臺灣大學生物科技研究所學位論文。台北。台灣 林郁芸 (2024) 以大腸桿菌建立紫色桿菌素生產系統與功能性細菌纖維素製備。台北。台灣 洪翎 (2023) 以幾丁聚醣修飾之泡沫培養基生產多孔性細菌纖維素作為活性包材之應用。國立臺灣大學食品科技研究所學位論文。台北。台灣 黃亦尊 (2015) 開發普魯藍抗菌活性包材用於延長冷凍鯛魚片保存期限之研究。國立臺灣大學食品科技研究所學位論文。台北。台灣 盛柳娟 (2022) 以泡沫培養基生產多孔性細菌性纖維與其材料特性分析。國立臺灣大學生物科技研究所學位論文。台北。台灣 陳玠廷 (2014) 利用交聯化改良普魯藍薄膜之物理特性。國立臺灣大學生物科技研究所學位論文。台北。台灣 顧子嵐 (2024) 利用共培養木質醋酸菌和基因工程大腸桿菌製備多孔性細菌性纖維素/黑色素複合模及其重金屬離子吸附功能之研究 盧元明 (2024) 順序培養Komagataeibacter xylinus和Lactococcus lactis以生產抗菌乳鏈菌素多孔性細菌纖維素與其材料特性分析 Ahmed, J., Gultekinoglu, M., & Edirisinghe, M. (2020). Bacterial cellulose micro-nano fibres for wound healing applications. Biotechnology Advances, 41, 107549. Al-Sudani, B. T., Khoshkalampour, A., Kamil, M. M., Al-Musawi, M. H., Mohammadzadeh, V., Ahmadi, S., & Ghorbani, M. (2024). A novel antioxidant and antimicrobial food packaging based on Eudragit®/collagen electrospun nanofiber incorporated with bitter orange peel essential oil. LWT - Food Science and Technology, 193, 115730. Amin, U., Khan, M. U., Majeed, Y., Rebezov, M., Khayrullin, M., Bobkova, E., Shariati, M. A., Chung, I. M., & Thiruvengadam, M. (2021). Potentials of polysaccharides, lipids and proteins in biodegradable food packaging applications. International Journal of Biological Macromolecules, 183, 2184-2198. Andersen, A. (2006). Final report on the safety assessment of sodium p-chloro-m-cresol, p-chloro-m-cresol, chlorothymol, mixed cresols, m-cresol, o-cresol, p-cresol, isopropyl cresols, thymol, o-cymen-5-ol, and carvacrol. International Journal of Toxicology, 25, 29-127. Appendini, P., & Hotchkiss, J. H. (2002). Review of antimicrobial food packaging. Innovative Food Science and Emerging Technologies, 3(2), 113-126. Arnon-Rips, H., Porat, R., & Poverenov, E. (2019). Enhancement of agricultural produce quality and storability using citral-based edible coatings; the valuable effect of nano-emulsification in a solid-state delivery on fresh-cut melons model. Food Chemistry, 277, 205-212. Arul Raj, J. S., Kasi, M., Karuppiah, P., & Hirad, A. H. (2024). Green Packaging Solutions for Extending the Shelf Life of Fish Fillet: Development and Evaluation of Cinnamon Essential Oil-Infused Cassava Starch and Fish Gelatin Edible Films. ACS Omega, 9(46), 45898-45910. Asadi, S., Nayeri-Fasaei, B., Zahraei-Salehi, T., Yahya-Rayat, R., Shams, N., & Sharifi, A. (2023). Antibacterial and anti-biofilm properties of carvacrol alone and in combination with cefixime against Escherichia coli. BMC Microbiology, 23(1), 55. Atta, O. M., Manan, S., Ul-Islam, M., Ahmed, A. A. Q., Ullah, M. W., & Yang, G. (2021). Silver decorated bacterial cellulose nanocomposites as antimicrobial food packaging materials. ES Food & Agroforestry, 6(26), 12-26. Azeredo, H. M., Barud, H., Farinas, C. S., Vasconcellos, V. M., & Claro, A. M. (2019). Bacterial cellulose as a raw material for food and food packaging applications. Frontiers in Sustainable Food Systems, 3, 7. Azevedo, A. G., Barros, C., Miranda, S., Machado, A. V., Castro, O., Silva, B., Saraiva, M., Silva, A. S., Pastrana, L., & Carneiro, O. S. (2022). Active flexible films for food packaging: a review. Polymers, 14(12), 2442. Badr, A. M., El-Orabi, N. F., Mahran, Y. F., Badr, A. M., Bayoumy, N. M., Hagar, H., Elmongy, E. I., & Atawia, R. T. (2023). In vivo and In silico evidence of the protective properties of carvacrol against experimentally-induced gastric ulcer: Implication of antioxidant, anti-inflammatory, and antiapoptotic mechanisms. Chemico-Biological Interactions, 382, 110649. Bayir, A. G., Kiziltan, H. S., & Kocyigit, A. (2019). Plant family, carvacrol, and putative protection in gastric cancer. In Dietary Interventions in Gastrointestinal Diseases (pp. 3-18). Elsevier. Bazargani‐Gilani, B. (2018). Activating sodium alginate‐based edible coating using a dietary supplement for increasing the shelf life of rainbow trout fillet during refrigerated storage (4±1 C). Journal of Food Safety, 38(1), e12395. Blanco Parte, F. G., Santoso, S. P., Chou, C.-C., Verma, V., Wang, H.-T., Ismadji, S., & Cheng, K.-C. (2020). Current progress on the production, modification, and applications of bacterial cellulose. Critical Reviews in Biotechnology, 40(3), 397-414. Calabretta, M. M., Gregucci, D., Desiderio, R., & Michelini, E. (2023). Colorimetric paper sensor for food spoilage based on biogenic amine monitoring. Biosensors, 13(1), 126. Campos, C. A., Gerschenson, L. N., & Flores, S. K. (2011). Development of edible films and coatings with antimicrobial activity. Food and Bioprocess Technology, 4, 849-875. Cazón, P., & Vázquez, M. (2021). Improving bacterial cellulose films by ex-situ and in-situ modifications: A review. Food Hydrocolloids, 113, 106514. Cha, D. S., & Chinnan, M. S. (2004). Biopolymer-based antimicrobial packaging: a review. Critical Reviews in Food Science and Nutrition, 44(4), 223-237. Chavan, P. S., & Tupe, S. G. (2014). Antifungal activity and mechanism of action of carvacrol and thymol against vineyard and wine spoilage yeasts. Food Control, 46, 115-120. Chen, H.-z., Zhang, M., Bhandari, B., & Guo, Z. (2018). Applicability of a colorimetric indicator label for monitoring freshness of fresh-cut green bell pepper. Postharvest Biology and Technology, 140, 85-92. Cheng, H., Xu, H., McClements, D. J., Chen, L., Jiao, A., Tian, Y., Miao, M., & Jin, Z. (2022). Recent advances in intelligent food packaging materials: Principles, preparation and applications. Food Chemistry, 375, 131738. Cheng, K.-C., Catchmark, J. M., & Demirci, A. (2009). Effect of different additives on bacterial cellulose production by Acetobacter xylinum and analysis of material property. Cellulose, 16, 1033-1045. Cheng, K.-C., Catchmark, J. M., & Demirci, A. (2011). Effects of CMC addition on bacterial cellulose production in a biofilm reactor and its paper sheets analysis. Biomacromolecules, 12(3), 730-736. Chouhan, S., Sharma, K., & Guleria, S. (2017). Antimicrobial activity of some essential oils—present status and future perspectives. Medicines, 4(3), 58. Costa, M. F., Durço, A. O., Rabelo, T. K., Barreto, R. d. S. S., & Guimarães, A. G. (2019). Effects of Carvacrol, Thymol and essential oils containing such monoterpenes on wound healing: A systematic review. Journal of Pharmacy and Pharmacology, 71(2), 141-155. Daemi, H., & Barikani, M. (2012). Synthesis and characterization of calcium alginate nanoparticles, sodium homopolymannuronate salt and its calcium nanoparticles. Scientia Iranica, 19(6), 2023-2028. Dai, G., Yao, H., Yang, L., Ding, Y., Du, S., Shen, H., & Mo, F. (2023). Rapid detection of foodborne pathogens in diverse foodstuffs by universal electrochemical aptasensor based on UiO-66 and methylene blue composites. Food Chemistry, 424, 136244. Dayal, M. S., & Catchmark, J. M. (2016). Mechanical and structural property analysis of bacterial cellulose composites. Carbohydrate Polymers, 144, 447-453. Dehghan‐Niri, R., Tsakoumis, N. E., Voronov, A., Holmen, A., Holmestad, R., Vullum, P. E., Borg, Ø., Rytter, E., Rønning, M., & Walmsley, J. C. (2022). Nanostructural Analysis of Co‐Re/γ‐Al2O3 Fischer‐Tropsch Catalyst by TEM and XRD. ChemCatChem, 14(11), e202101931. Dini, H., Fallah, A. A., Bonyadian, M., Abbasvali, M., & Soleimani, M. (2020). Effect of edible composite film based on chitosan and cumin essential oil-loaded nanoemulsion combined with low-dose gamma irradiation on microbiological safety and quality of beef loins during refrigerated storage. International Journal of Biological Macromolecules, 164, 1501-1509. Esmaeili, H., Cheraghi, N., Khanjari, A., Rezaeigolestani, M., Basti, A. A., Kamkar, A., & Aghaee, E. M. (2020). Incorporation of nanoencapsulated garlic essential oil into edible films: A novel approach for extending shelf life of vacuum-packed sausages. Meat Science, 166, 108135. Esporrín-Ubieto, D., Sonzogni, A. S., Fernández, M., Acera, A., Matxinandiarena, E., Cadavid-Vargas, J. F., Calafel, I., Schmarsow, R. N., Müller, A. J., & Larrañaga, A. (2023). The role of Eudragit® as a component of hydrogel formulations for medical devices. Journal of Materials Chemistry B, 11(38), 9276-9289. Falcó, I., Randazzo, W., Sánchez, G., López-Rubio, A., & Fabra, M. J. (2019). On the use of carrageenan matrices for the development of antiviral edible coatings of interest in berries. Food Hydrocolloids, 92, 74-85. Fang, S., Zhou, Q., Hu, Y., Liu, F., Mei, J., & Xie, J. (2019). Antimicrobial carvacrol incorporated in flaxseed gum-sodium alginate active films to improve the quality attributes of Chinese sea bass (Lateolabrax maculatus) during cold storage. Molecules, 24(18), 3292. Farsanipour, A., Khodanazary, A., & Hosseini, S. M. (2020). Effect of chitosan-whey protein isolated coatings incorporated with tarragon Artemisia dracunculus essential oil on the quality of Scomberoides commersonnianus fillets at refrigerated condition. International Journal of Biological Macromolecules, 155, 766-771. Firouz, M. S., Mohi-Alden, K., & Omid, M. (2021). A critical review on intelligent and active packaging in the food industry: Research and development. Food Research International, 141, 110113. Flórez, M., Guerra-Rodríguez, E., Cazón, P., & Vázquez, M. (2022). Chitosan for food packaging: Recent advances in active and intelligent films. Food Hydrocolloids, 124, 107328. Gaikwad, K. K., Singh, S., & Ajji, A. (2019). Moisture absorbers for food packaging applications. Environmental Chemistry Letters, 17(2), 609-628. Gaikwad, K. K., Singh, S., & Negi, Y. S. (2020). Ethylene scavengers for active packaging of fresh food produce. Environmental Chemistry Letters, 18, 269-284. Ge, X., Huang, X., Zhou, L., & Wang, Y. (2022). Essential oil-loaded antimicrobial and antioxidant zein/poly (lactic acid) film as active food packaging. Food Packaging and Shelf Life, 34, 100977. Gibis, D., & Rieblinger, K. (2011). Oxygen scavenging films for food application. Procedia Food Science, 1, 229-234. Gómez-Estaca, J., López-de-Dicastillo, C., Hernández-Muñoz, P., Catalá, R., & Gavara, R. (2014). Advances in antioxidant active food packaging. Trends in Food Science & Technology, 35(1), 42-51. Gomez-Rodriguez, G. H., López-Mata, M. A., Valbuena-Gregorio, E., Melchor, R. G., Campos-Garcia, J. C., Silva-Beltran, N. P., Quihui-Cota, L., Ruiz-Cruz, S., & Juarez, J. (2018). Microencapsulation of carvacrol using pectin/aloe-gel as a novel wound dressing films. Current Topics in Medicinal Chemistry, 18(14), 1261-1268. Grotta, L., Castellani, F., Palazzo, F., Naceur Haouet, M., & Martino, G. (2017). Treatment optimisation and sample preparation for the evaluation of lipid oxidation in various meats through TBARs assays before analysis. Food Analytical Methods, 10, 1870-1880. Han, J. H. (2005). Innovations in food packaging. Elsevier. Hansen, A. Å., Langsrud, S., Carlehög, M., Haugen, J.-E., & Moen, B. (2023). CO2 packaging increases shelf life through reduction of off-odor production by CO2 tolerant bacteria in addition to growth inhibition of the spoilage bacteriota. Food Control, 144, 109390. Hou, S., Xia, Z., Pan, J., Wang, N., Gao, H., Ren, J., & Xia, X. (2024). Bacterial cellulose applied in wound dressing materials: Production and functional modification–A review. Macromolecular Bioscience, 24(2), 2300333. Huacai, G., Wan, P., & Dengke, L. (2006). Graft copolymerization of chitosan with acrylic acid under microwave irradiation and its water absorbency. Carbohydrate Polymers, 66(3), 372-378. Huang, C. I., & Chen, J. R. (2001). Crystallization and chain conformation of semicrystalline and amorphous polymer blends studied by wide‐angle and small‐angle scattering. Journal of Polymer Science Part B: Polymer Physics, 39(21), 2705-2715. Huang, L., Du, X., Fan, S., Yang, G., Shao, H., Li, D., Cao, C., Zhu, Y., Zhu, M., & Zhang, Y. (2019). Bacterial cellulose nanofibers promote stress and fidelity of 3D-printed silk based hydrogel scaffold with hierarchical pores. Carbohydrate Polymers, 221, 146-156. Indriyati, Dara, F., Primadona, I., Srikandace, Y., & Karina, M. (2021). Development of bacterial cellulose/chitosan films: structural, physicochemical and antimicrobial properties. Journal of Polymer Research, 28, 1-8. Jacek, P., Dourado, F., Gama, M., & Bielecki, S. (2019). Molecular aspects of bacterial nanocellulose biosynthesis. Microbial Biotechnology, 12(4), 633-649. Jang, E. J., Padhan, B., Patel, M., Pandey, J. K., Xu, B., & Patel, R. (2023). Antibacterial and biodegradable food packaging film from bacterial cellulose. Food Control, 153, 109902. Janjarasskul, T., & Suppakul, P. (2018). Active and intelligent packaging: The indication of quality and safety. Critical Reviews in Food Science and Nutrition, 58(5), 808-831. Jongsri, P., Wangsomboondee, T., Rojsitthisak, P., & Seraypheap, K. (2016). Effect of molecular weights of chitosan coating on postharvest quality and physicochemical characteristics of mango fruit. LWT - Food Science and Technology, 73, 28-36. Kachur, K., & Suntres, Z. (2020). The antibacterial properties of phenolic isomers, carvacrol and thymol. Critical Reviews in Food Science and Nutrition, 60(18), 3042-3053. Karanth, S., Feng, S., Patra, D., & Pradhan, A. K. (2023). Linking microbial contamination to food spoilage and food waste: The role of smart packaging, spoilage risk assessments, and date labeling. Frontiers in Microbiology, 14, 1198124. Kerry, J., O’grady, M., & Hogan, S. (2006). Past, current and potential utilisation of active and intelligent packaging systems for meat and muscle-based products: A review. Meat Science, 74(1), 113-130. Kim, S. O., & Kim, S. S. (2021). Bacterial pathogen detection by conventional culture‐based and recent alternative (polymerase chain reaction, isothermal amplification, enzyme linked immunosorbent assay, bacteriophage amplification, and gold nanoparticle aggregation) methods in food samples: A review. Journal of Food Safety, 41(1), e12870. Koskela, J., Sarfraz, J., Ihalainen, P., Määttänen, A., Pulkkinen, P., Tenhu, H., Nieminen, T., Kilpelä, A., & Peltonen, J. (2015). Monitoring the quality of raw poultry by detecting hydrogen sulfide with printed sensors. Sensors and Actuators B: Chemical, 218, 89-96. Küçükgöz, K., Franczak, A., Borysewicz, W., Kamińska, K., Salman, M., Mosiej, W., Kruk, M., Kołożyn-Krajewska, D., & Trząskowska, M. (2024). Impact of Lactic Acid Fermentation on the Organic Acids and Sugars of Developed Oat and Buckwheat Beverages. Fermentation, 10(7), 373. Kung, H.-F., Lee, Y.-C., Lin, C.-W., Huang, Y.-R., Cheng, C.-A., Lin, C.-M., & Tsai, Y.-H. (2017). The effect of vacuum packaging on histamine changes of milkfish sticks at various storage temperatures. Journal of Food and Drug Analysis, 25(4), 812-818. Kusuma, A. C., Chou, Y.-C., Hsieh, C.-C., Santoso, S. P., Go, A. W., Lin, H.-T. V., Hsiao, I.-L., & Lin, S.-P. (2024). Agar-altered foaming bacterial cellulose with carvacrol for active food packaging applications. Food Packaging and Shelf Life, 42, 101269. Kuswandi, B., Asih, N. P., Pratoko, D. K., Kristiningrum, N., & Moradi, M. (2020). Edible pH sensor based on immobilized red cabbage anthocyanins into bacterial cellulose membrane for intelligent food packaging. Packaging Technology and Science, 33(8), 321-332. Kuswandi, B., Maryska, C., Jayus, Abdullah, A., & Heng, L. Y. (2013). Real time on-package freshness indicator for guavas packaging. Journal of Food Measurement and Characterization, 7, 29-39. Lahiri, D., Nag, M., Dutta, B., Dey, A., Sarkar, T., Pati, S., Edinur, H. A., Abdul Kari, Z., Mohd Noor, N. H., & Ray, R. R. (2021). Bacterial cellulose: Production, characterization, and application as antimicrobial agent. International Journal of Molecular Sciences, 22(23), 12984. Lin, H.-T. V., Yu, Y.-C., Yu, S.-H., Chou, Y.-C., Lin, H.-J., Santoso, S. P., & Lin, S.-P. (2025). Antimicrobial efficacy of carvacrol-loaded curdlan hydrogels for enhancing shelf-life in seafood packaging applications. International Journal of Food Microbiology, 428, 110976. Lin, S.-P., Hong, L., Hsieh, C.-C., Lin, Y.-H., Chou, Y.-C., Santoso, S. P., Hsieh, C.-W., Tsai, T.-Y., & Cheng, K.-C. (2024). In situ modification of foaming bacterial cellulose with chitosan and its application to active food packaging. International Journal of Biological Macromolecules, 279, 135114. Lin, S.-P., Hsieh, S.-C., Chen, K.-I., Demirci, A., & Cheng, K.-C. (2014). Semi-continuous bacterial cellulose production in a rotating disk bioreactor and its materials properties analysis. Cellulose, 21, 835-844. Lin, S.-P., Huang, S.-H., Ting, Y., Hsu, H.-Y., & Cheng, K.-C. (2022). Evaluation of detoxified sugarcane bagasse hydrolysate by atmospheric cold plasma for bacterial cellulose production. International Journal of Biological Macromolecules, 204, 136-143. Lin, S.-P., Huang, Y.-H., Hsu, K.-D., Lai, Y.-J., Chen, Y.-K., & Cheng, K.-C. (2016). Isolation and identification of cellulose-producing strain Komagataeibacter intermedius from fermented fruit juice. Carbohydrate Polymers, 151, 827-833. Lin, S.-P., Kung, H.-N., Tsai, Y.-S., Tseng, T.-N., Hsu, K.-D., & Cheng, K.-C. (2017). Novel dextran modified bacterial cellulose hydrogel accelerating cutaneous wound healing. Cellulose, 24, 4927-4937. Lin, S.-P., Loira Calvar, I., Catchmark, J. M., Liu, J.-R., Demirci, A., & Cheng, K.-C. (2013). Biosynthesis, production and applications of bacterial cellulose. Cellulose, 20(5), 2191-2219. Lin, S.-P., Singajaya, S., Lo, T.-Y., Santoso, S. P., Hsu, H.-Y., & Cheng, K.-C. (2023). Evaluation of porous bacterial cellulose produced from foam templating with different additives and its application in 3D cell culture. International Journal of Biological Macromolecules, 234, 123680. Lindh, H., Williams, H., Olsson, A., & Wikström, F. (2016). Elucidating the indirect contributions of packaging to sustainable development: A terminology of packaging functions and features. Packaging Technology and Science, 29(4-5), 225-246. Liolios, C. C., Graikou, K., Skaltsa, E., & Chinou, I. (2010). Dittany of Crete: a botanical and ethnopharmacological review. Journal of Ethnopharmacology, 131(2), 229-241. Liu, B., Xu, H., Zhao, H., Liu, W., Zhao, L., & Li, Y. (2017). Preparation and characterization of intelligent starch/PVA films for simultaneous colorimetric indication and antimicrobial activity for food packaging applications. Carbohydrate Polymers, 157, 842-849. Liu, H., Shi, C., Sun, X., Zhang, J., & Ji, Z. (2021). Intelligent colorimetric indicator film based on bacterial cellulose and pelargonidin dye to indicate the freshness of tilapia fillets. Food Packaging and Shelf Life, 29, 100712. López, P., Sánchez, C., Batlle, R., & Nerín, C. (2007). Vapor-phase activities of cinnamon, thyme, and oregano essential oils and key constituents against foodborne microorganisms. Journal of Agricultural and Food Chemistry, 55(11), 4348-4356. López-Malo, A., Alzamora, S. M., & Palou, E. (2005). Aspergillus flavus growth in the presence of chemical preservatives and naturally occurring antimicrobial compounds. International Journal of Food Microbiology, 99(2), 119-128. Lorenzo, J. M., Munekata, P. E., Dominguez, R., Pateiro, M., Saraiva, J. A., & Franco, D. (2018). Main groups of microorganisms of relevance for food safety and stability: General aspects and overall description. In Innovative Technologies for Food Preservation (pp. 53-107). Elsevier. Mafe, A. N., Edo, G. I., Makia, R. S., Joshua, O. A., Akpoghelie, P. O., Gaaz, T. S., Jikah, A. N., Yousif, E., Isoje, E. F., & Igbuku, U. A. (2024). A review on food spoilage mechanisms, food borne diseases and commercial aspects of food preservation and processing. Food Chemistry Advances, 5, 100852 Mahmoudi, R., & Mardani, K. (2015). Histamines and foods: a review on importance, detection and controlling in foods. Malaysian Journal of Science, 34(1), 103-107. Maisanaba, S., Llana-Ruiz-Cabello, M., Gutiérrez-Praena, D., Pichardo, S., Puerto, M., Prieto, A., Jos, A., & Cameán, A. (2017). New advances in active packaging incorporated with essential oils or their main components for food preservation. Food Reviews International, 33(5), 447-515. Mangaraj, S., Yadav, A., Bal, L. M., Dash, S., & Mahanti, N. K. (2019). Application of biodegradable polymers in food packaging industry: A comprehensive review. Journal of Packaging Technology and Research, 3, 77-96. Mansourbahmani, S., Ghareyazie, B., Zarinnia, V., Kalatejari, S., & Mohammadi, R. S. (2018). Study on the efficiency of ethylene scavengers on the maintenance of postharvest quality of tomato fruit. Journal of Food Measurement and Characterization, 12, 691-701. Marchese, A., Arciola, C. R., Coppo, E., Barbieri, R., Barreca, D., Chebaibi, S., Sobarzo-Sánchez, E., Nabavi, S. F., Nabavi, S. M., & Daglia, M. (2018). The natural plant compound carvacrol as an antimicrobial and anti-biofilm agent: Mechanisms, synergies and bio-inspired anti-infective materials. Biofouling, 34(6), 630-656. Marsh, K., & Bugusu, B. (2007). Food packaging—roles, materials, and environmental issues. Journal of Food Science, 72(3), R39-R55. Mbese, Z., Nell, M., Fonkui, Y. T., Ndinteh, D. T., Steenkamp, V., & Aderibigbe, B. A. (2022). Hybrid compounds containing carvacrol scaffold: In vitro antibacterial and cytotoxicity evaluation. Recent Advances in Anti-Infective Drug Discovery Formerly Recent Patents on Anti-Infective Drug Discovery, 17(1), 54-68. Migone, C., Piras, A. M., Zambito, Y., Duce, C., Pulidori, E., Guazzelli, L., Mezzetta, A., & Fabiano, A. (2024). How oregano essential oil can be transformed into a taste-masking controlled release solid formulation. LWT - Food Science and Technology, 201, 116281. Mills, A. (2005). Oxygen indicators and intelligent inks for packaging food. Chemical Society Reviews, 34(12), 1003-1011. Mills, A., Doyle, G., Peiro, A. M., & Durrant, J. (2006). Demonstration of a novel, flexible, photocatalytic oxygen-scavenging polymer film. Journal of Photochemistry and Photobiology A: Chemistry, 177(2-3), 328-331. Mohammadalinejhad, S., Almasi, H., & Moradi, M. (2020). Immobilization of Echium amoenum anthocyanins into bacterial cellulose film: A novel colorimetric pH indicator for freshness/spoilage monitoring of shrimp. Food Control, 113, 107169. Mohsin, A., Zhang, K., Hu, J., Tariq, M., Zaman, W. Q., Khan, I. M., Zhuang, Y., & Guo, M. (2018). Optimized biosynthesis of xanthan via effective valorization of orange peels using response surface methodology: A kinetic model approach. Carbohydrate Polymers, 181, 793-800. Mondéjar-López, M., López-Jimenez, A. J., Martínez, J. C. G., Ahrazem, O., Gómez-Gómez, L., & Niza, E. (2022). Comparative evaluation of carvacrol and eugenol chitosan nanoparticles as eco-friendly preservative agents in cosmetics. International Journal of Biological Macromolecules, 206, 288-297. Moustafine, R., Bukhovets, A., Sitenkov, A., Kemenova, V., Rombaut, P., & Van den Mooter, G. (2013). Eudragit E PO as a complementary material for designing oral drug delivery systems with controlled release properties: comparative evaluation of new interpolyelectrolyte complexes with countercharged eudragit L100 copolymers. Molecular Pharmaceutics, 10(7), 2630-2641. Muppalla, S. R., & Chawla, S. (2018). Effect of Gum Arabic‐polyvinyl alcohol films containing seed cover extract of Zanthoxylum rhetsa on shelf life of refrigerated ground chicken meat. Journal of Food Safety, 38(4), e12460. Nikam, A., Sahoo, P. R., Musale, S., Pagar, R. R., Paiva-Santos, A. C., & Giram, P. S. (2023). A systematic overview of Eudragit® based copolymer for smart healthcare. Pharmaceutics, 15(2), 587. Nilsen‐Nygaard, J., Fernández, E. N., Radusin, T., Rotabakk, B. T., Sarfraz, J., Sharmin, N., Sivertsvik, M., Sone, I., & Pettersen, M. K. (2021). Current status of biobased and biodegradable food packaging materials: Impact on food quality and effect of innovative processing technologies. Comprehensive Reviews in Food Science and Food Safety, 20(2), 1333-1380. Nopwinyuwong, A., Trevanich, S., & Suppakul, P. (2010). Development of a novel colorimetric indicator label for monitoring freshness of intermediate-moisture dessert spoilage. Talanta, 81(3), 1126-1132. Noseda, B., Goethals, J., De Smedt, L., Dewulf, J., Samapundo, S., Van Langenhove, H., & Devlieghere, F. (2012). Effect of O2CO2 enriched atmospheres on microbiological growth and volatile metabolite production in packaged cooked peeled gray shrimp (Crangon crangon). International Journal of Food Microbiology, 160(1), 65-75. Ochoa-Velasco, C. E., Pérez-Pérez, J. C., Varillas-Torres, J. M., Navarro-Cruz, A. R., Hernández-Carranza, P., Munguía-Pérez, R., Cid-Pérez, T. S., & Avila-Sosa, R. (2021). Starch edible films/coatings added with carvacrol and thymol: In vitro and in vivo evaluation against Colletotrichum gloeosporioides. Foods, 10(1), 175. Pa’e, N., Salehudin, M. H., Hassan, N. D., Marsin, A. M., & Muhamad, I. I. (2019). Thermal behavior of bacterial cellulose-based hydrogels with other composites and related instrumental analysis. In Cellulose-Based Superabsorbent Hydrogels (pp. 763-787). Springer. Padrao, J., Gonçalves, S., Silva, J. P., Sencadas, V., Lanceros-Méndez, S., Pinheiro, A. C., Vicente, A. A., Rodrigues, L. R., & Dourado, F. (2016). Bacterial cellulose-lactoferrin as an antimicrobial edible packaging. Food Hydrocolloids, 58, 126-140. Papastergiadis, A., Mubiru, E., Van Langenhove, H., & De Meulenaer, B. (2012). Malondialdehyde measurement in oxidized foods: evaluation of the spectrophotometric thiobarbituric acid reactive substances (TBARS) test in various foods. Journal of Agricultural and Food Chemistry, 60(38), 9589-9594. Pavase, T. R., Lin, H., Hussain, S., Li, Z., Ahmed, I., Lv, L., Sun, L., Shah, S. B. H., & Kalhoro, M. T. (2018). Recent advances of conjugated polymer (CP) nanocomposite-based chemical sensors and their applications in food spoilage detection: A comprehensive review. Sensors and Actuators B: Chemical, 273, 1113-1138. Pirsa, S., & Shamusi, T. (2019). Intelligent and active packaging of chicken thigh meat by conducting nano structure cellulose-polypyrrole-ZnO film. Materials Science and Engineering: C, 102, 798-809. Pisoschi, A. M., Pop, A., Gajaila, I., Iordache, F., Dobre, R., Cazimir, I., & Serban, A. I. (2020). Analytical methods applied to the assay of sulfur-containing preserving agents. Microchemical Journal, 155, 104681. Pogorelova, N., Rogachev, E., Digel, I., Chernigova, S., & Nardin, D. (2020). Bacterial cellulose nanocomposites: morphology and mechanical properties. Materials, 13(12), 2849. Portela, R., Leal, C. R., Almeida, P. L., & Sobral, R. G. (2019). Bacterial cellulose: a versatile biopolymer for wound dressing applications. Microbial Biotechnology, 12(4), 586-610. Pourjavaher, S., Almasi, H., Meshkini, S., Pirsa, S., & Parandi, E. (2017). Development of a colorimetric pH indicator based on bacterial cellulose nanofibers and red cabbage (Brassica oleraceae) extract. Carbohydrate Polymers, 156, 193-201. Poyatos-Racionero, E., Ros-Lis, J. V., Vivancos, J.-L., & Martinez-Manez, R. (2018). Recent advances on intelligent packaging as tools to reduce food waste. Journal of Cleaner Production, 172, 3398-3409. Prior, R. L., Wu, X., & Schaich, K. (2005). Standardized methods for the determination of antioxidant capacity and phenolics in foods and dietary supplements. Journal of Agricultural and Food Chemistry, 53(10), 4290-4302. Rahmadevi, R., Zaini, E., & Halim, A. (2013). Penggunaan Eudragit L 100 Dalam Formulasi Mikrokapsul Natrium Diklofenak Dengan Teknik Emulsifikasi-Penguapan Pelarut. Andalas Journal of Pharmacy, 1(1). Rivera, D., Toledo, V., Reyes-Jara, A., Navarrete, P., Tamplin, M., Kimura, B., Wiedmann, M., Silva, P., & Switt, A. I. M. (2018). Approaches to empower the implementation of new tools to detect and prevent foodborne pathogens in food processing. Food Microbiology, 75, 126-132. Rivera, X. C. S., Leadley, C., Potter, L., & Azapagic, A. (2019). Aiding the design of innovative and sustainable food packaging: Integrating techno-environmental and circular economy criteria. Energy Procedia, 161, 190-197. Robertson, G. L. (2005). Food Packaging: Principles and Practice. CRC press. Rodriguez-Amaya, D. B., & Shahidi, F. (2021). Oxidation of lipids. In Chemical Changes During Processing and Storage of Foods (pp. 125-170). Elsevier. Rollini, M., Musatti, A., Cavicchioli, D., Bussini, D., Farris, S., Rovera, C., Romano, D., De Benedetti, S., & Barbiroli, A. (2020). From cheese whey permeate to Sakacin-A/bacterial cellulose nanocrystal conjugates for antimicrobial food packaging applications: a circular economy case study. Scientific Reports, 10(1), 21358. Romero-Castelán, E., Rodríguez-Hernández, A.-I., Santos-López, E.-M., Cariño-Cortés, R., López-Ortega, M.-A., Chavarría-Hernández, N., & del Rocio López-Cuellar, M. (2024). Nanoencapsulation as an Ally of the Bioactive Compound Carvacrol: A Review of 10 Years of Advances. Current Nanoscience. Rühs, P. A., Storz, F., López Gómez, Y. A., Haug, M., & Fischer, P. (2018). 3D bacterial cellulose biofilms formed by foam templating. npj Biofilms and Microbiomes, 4(1), 21. Ruiz-Valdepeñas Montiel, V., Sempionatto, J. R., Campuzano, S., Pingarrón, J. M., Esteban Fernández de Ávila, B., & Wang, J. (2019). Direct electrochemical biosensing in gastrointestinal fluids. Analytical and Bioanalytical Chemistry, 411, 4597-4604. Santoso, S. P., Chou, C.-C., Lin, S.-P., Soetaredjo, F. E., Ismadji, S., Hsieh, C.-W., & Cheng, K. C. (2020). Enhanced production of bacterial cellulose by Komactobacter intermedius using statistical modeling. Cellulose, 27, 2497-2509. Ščetar, M., & Kurek, M. (2010). Trends in meat and meat products packaging–a review. Croatian journal of food science and technology, 2(1.), 32-48. Schroeter, L. C. (2013). Sulfur Dioxide: Applications in Foods, Beverages, and Pharmaceuticals. Elsevier. Senarat, S., Pichayakorn, W., Phaechamud, T., & Tuntarawongsa, S. (2023). Antisolvent Eudragit® polymers based in situ forming gel for periodontal controlled drug delivery. Journal of Drug Delivery Science and Technology, 82, 104361. Shah, N., Ul-Islam, M., Khattak, W. A., & Park, J. K. (2013). Overview of bacterial cellulose composites: a multipurpose advanced material. Carbohydrate Polymers, 98(2), 1585-1598. Shemesh, R., Krepker, M., Nitzan, N., Vaxman, A., & Segal, E. (2016). Active packaging containing encapsulated carvacrol for control of postharvest decay. Postharvest Biology and Technology, 118, 175-182. Shlush, E., & Davidovich-Pinhas, M. (2022). Bioplastics for food packaging. Trends in Food Science & Technology, 125, 66-80. Siddiqui, M. N., Redhwi, H. H., Tsagkalias, I., Vouvoudi, E. C., & Achilias, D. S. (2021). Development of bio-composites with enhanced antioxidant activity based on poly (lactic acid) with thymol, carvacrol, limonene, or cinnamaldehyde for active food packaging. Polymers, 13(21), 3652. Sohail, M., Sun, D.-W., & Zhu, Z. (2018). Recent developments in intelligent packaging for enhancing food quality and safety. Critical Reviews in Food Science and Nutrition, 58(15), 2650-2662. Subudhi, M. B., Jain, A., Jain, A., Hurkat, P., Shilpi, S., Gulbake, A., & Jain, S. K. (2015). Eudragit S100 coated citrus pectin nanoparticles for colon targeting of 5-fluorouracil. Materials, 8(3), 832-849. Suntres, Z. E., Coccimiglio, J., & Alipour, M. (2015). The bioactivity and toxicological actions of carvacrol. Critical Reviews in Food Science and Nutrition, 55(3), 304-318. Svanes, E., Vold, M., Møller, H., Pettersen, M. K., Larsen, H., & Hanssen, O. J. (2010). Sustainable packaging design: a holistic methodology for packaging design. Packaging Technology and Science: An International Journal, 23(3), 161-175. Swingler, S., Gupta, A., Gibson, H., Kowalczuk, M., Heaselgrave, W., & Radecka, I. (2021). Recent advances and applications of bacterial cellulose in biomedicine. Polymers, 13(3), 412. Tan, E. L., Ng, W. N., Shao, R., Pereles, B. D., & Ong, K. G. (2007). A wireless, passive sensor for quantifying packaged food quality. Sensors, 7(9), 1747-1756. Tao, R., Sedman, J., & Ismail, A. (2022). Characterization and in vitro antimicrobial study of soy protein isolate films incorporating carvacrol. Food Hydrocolloids, 122, 107091. Thakral, S., Thakral, N. K., & Majumdar, D. K. (2013). Eudragit®: a technology evaluation. Expert Opinion on Drug Delivery, 10(1), 131-149. Ullah, F., Iqbal, Z., Khan, A., Khan, S. A., Ahmad, L., Alotaibi, A., Ullah, R., & Shafique, M. (2022). Formulation development and characterization of pH responsive polymeric nano-pharmaceuticals for targeted delivery of anti-cancer drug (methotrexate). Frontiers in Pharmacology, 13, 911771. Vadanan, S. V., Basu, A., & Lim, S. (2022). Bacterial cellulose production, functionalization, and development of hybrid materials using synthetic biology. Polymer Journal, 54(4), 481-492. Velásquez, P., Montenegro, G., Valenzuela, L., Giordano, A., Cabrera-Barjas, G., & Martin-Belloso, O. (2022). k-carrageenan edible films for beef: Honey and bee pollen phenolic compounds improve their antioxidant capacity. Food Hydrocolloids, 124, 107250. Vieira, I. R. S., de Carvalho, A. P. A. d., & Conte‐Junior, C. A. (2022). Recent advances in biobased and biodegradable polymer nanocomposites, nanoparticles, and natural antioxidants for antibacterial and antioxidant food packaging applications. Comprehensive Reviews in Food Science and Food Safety, 21(4), 3673-3716. Vilela, C., Kurek, M., Hayouka, Z., Röcker, B., Yildirim, S., Antunes, M. D. C., Nilsen-Nygaard, J., Pettersen, M. K., & Freire, C. S. (2018). A concise guide to active agents for active food packaging. Trends in Food Science & Technology, 80, 212-222. Vlachou, M., Kikionis, S., Siamidi, A., Kyriakou, S., Tsotinis, A., Ioannou, E., & Roussis, V. (2019). Development and characterization of Eudragit®-based electrospun nanofibrous mats and their formulation into nanofiber tablets for the modified release of furosemide. Pharmaceutics, 11(9), 480. Wang, S., Liu, X., Yang, M., Zhang, Y., Xiang, K., & Tang, R. (2015). Review of time temperature indicators as quality monitors in food packaging. Packaging Technology and Science, 28(10), 839-867. Wei, B., Yang, G., & Hong, F. (2011). Preparation and evaluation of a kind of bacterial cellulose dry films with antibacterial properties. Carbohydrate Polymers, 84(1), 533-538. Wicochea-Rodríguez, J. D., Chalier, P., Ruiz, T., & Gastaldi, E. (2019). Active food packaging based on biopolymers and aroma compounds: how to design and control the release. Frontiers in Chemistry, 7, 398. Wittaya-Areekul, S., Prahsarn, C., & Sungthongjeen, S. (2006). Development and in vitro evaluation of Chitosan-Eudragit RS 30D composite wound dressings. AAPS PharmSciTech, 7, E215-E220. Wohner, B., Pauer, E., Heinrich, V., & Tacker, M. (2019). Packaging-related food losses and waste: an overview of drivers and issues. Sustainability, 11(1), 264. Wrona, M., Manso, S., Silva, F., Cardoso, L., Salafranca, J., Nerín, C., Alfonso, M. J., & Caballero, M. Á. (2023). New active packaging based on encapsulated carvacrol, with emphasis on its odour masking strategies. Food Packaging and Shelf Life, 40, 101177. Wu, C.-N., Fuh, S.-C., Lin, S.-P., Lin, Y.-Y., Chen, H.-Y., Liu, J.-M., & Cheng, K.-C. (2018). TEMPO-oxidized bacterial cellulose pellicle with silver nanoparticles for wound dressing. Biomacromolecules, 19(2), 544-554. Xiao-wei, H., Zhi-Hua, L., Xiao-bo, Z., Ji-yong, S., Han-ping, M., Jie-wen, Z., Li-min, H., & Holmes, M. (2016). Detection of meat-borne trimethylamine based on nanoporous colorimetric sensor arrays. Food Chemistry, 197, 930-936. Xiaowei, H., Wanying, Z., Zhihua, L., Junjun, Z., Ning, Z., Jiyong, S., Xiaodong, Z., Tingting, S., & Xiaobo, Z. (2024). pH-triggered bilayer film based on carboxymethyl cellulose/zein/Eudragit L100 with purple cabbage anthocyanin for monitoring pork freshness. International Journal of Biological Macromolecules, 278, 134358. Yanti, N. A., Ahmad, S. W., Ramadhan, L. O. A. N., Jamili, Muzuni, Walhidayah, T., & Mamangkey, J. (2021). Properties and application of edible modified bacterial cellulose film based sago liquid waste as food packaging. Polymers, 13(20), 3570. Yildirim, S., Röcker, B., Pettersen, M. K., Nilsen‐Nygaard, J., Ayhan, Z., Rutkaite, R., Radusin, T., Suminska, P., Marcos, B., & Coma, V. (2018). Active packaging applications for food. Comprehensive Reviews in Food Science and Food Safety, 17(1), 165-199. Yousefi, H., Ali, M. M., Su, H.-M., Filipe, C. D., & Didar, T. F. (2018). Sentinel wraps: real-time monitoring of food contamination by printing DNAzyme probes on food packaging. ACS Nano, 12(4), 3287-3294. Yuan, N., Xu, L., Zhang, L., Ye, H., Zhao, J., Liu, Z., & Rong, J. (2016). Superior hybrid hydrogels of polyacrylamide enhanced by bacterial cellulose nanofiber clusters. Materials Science and Engineering: C, 67, 221-230. Zeng, P., Chen, X., Qin, Y.-R., Zhang, Y.-H., Wang, X.-P., Wang, J.-Y., Ning, Z.-X., Ruan, Q.-J., & Zhang, Y.-S. (2019). Preparation and characterization of a novel colorimetric indicator film based on gelatin/polyvinyl alcohol incorporating mulberry anthocyanin extracts for monitoring fish freshness. Food Research International, 126, 108604. Zhai, X., Li, Z., Shi, J., Huang, X., Sun, Z., Zhang, D., Zou, X., Sun, Y., Zhang, J., & Holmes, M. (2019). A colorimetric hydrogen sulfide sensor based on gellan gum-silver nanoparticles bionanocomposite for monitoring of meat spoilage in intelligent packaging. Food Chemistry, 290, 135-143. Zhang, J., Zhang, J., Huang, X., Shi, J., Muhammad, A., Zhai, X., Xiao, J., Li, Z., Povey, M., & Zou, X. (2023). Study on cinnamon essential oil release performance based on pH-triggered dynamic mechanism of active packaging for meat preservation. Food Chemistry, 400, 134030. Zhang, X., Sun, G., Xiao, X., Liu, Y., & Zheng, X. (2016). Application of microbial TTIs as smart label for food quality: Response mechanism, application and research trends. Trends in Food Science & Technology, 51, 12-23. Zhang, Y., Lu, L., Xu, J., Ning, H., & Lu, L. (2023). Development of chitosan-based antibacterial and antioxidant bioactive film incorporated with carvacrol-loaded modified halloysite nanotube. Food Hydrocolloids, 145, 109102. Zhou, W., He, Y., Liu, F., Liao, L., Huang, X., Li, R., Zou, Y., Zhou, L., Zou, L., & Liu, Y. (2021). Carboxymethyl chitosan-pullulan edible films enriched with galangal essential oil: Characterization and application in mango preservation. Carbohydrate Polymers, 256, 117579. Zhou, X., Yang, R., Wang, B., & Chen, K. (2019). Development and characterization of bilayer films based on pea starch/polylactic acid and use in the cherry tomatoes packaging. Carbohydrate Polymers, 222, 114912. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/101599 | - |
| dc.description.abstract | 近年來,活性包材因能吸收或釋放功能性成分以抑菌、抗氧化而受到關注。細菌性纖維素 (bacterial cellulose, BC) 因兼具優良機械性與生物可降解性,使其具備成為環保活性包材之潛力,惟其高孔隙結構導致活性物質快速逸散,限制了 BC 之應用。本研究以泡沫系統製備高吸附性泡沫細菌纖維素 (foaming bacterial cellulose, FBC),並以異位修飾方式將 Eudragit® (Eu) 與 FBC 結合形成具酸鹼響應溶解性的 Eu/FBC,再透過負載天然抗菌劑香芹酚 (carvacrol) 以開發兼具緩釋與抑菌功能之活性材料 Eu/Car/FBC。形態結果顯示,負載 Eu 與 carvacrol 不影響 FBC 外觀與完整性,且乾重與釋放量均呈 Eu 濃度依賴性,證明 Eu 可提升 carvacrol 之吸附與控制釋放能力。釋放實驗顯示,Eu/Car/FBC 在 pH 值為 6 和 7 之環境下,於 16 小時內快速釋放 carvacrol,而在 pH 值為 4 和 5 之環境可延緩釋放超過 72 小時,展現明顯的 pH 響應控釋特性。傅立葉轉換紅外光譜結果可於 990 cm−1 發現 carvacrol 特徵峰,證實 carvacrol 成功被負載進入 Eu/FBC;熱重分析顯示 carvacrol 修飾使 FBC 中溫區出現重量損失,而 Eu 的加入可進一步提升熱穩定性。掃描式電子顯微鏡觀察到 carvacrol 團聚於纖維表面;Eu 修飾則填補奈米纖維網絡,形成更緻密且連續之結構,推測有助於延緩釋放並提高活性成分穩定性。於抗氧化性測試中,Eu/Car/FBC 之 DPPH 與 ABTS 清除率分別達 0.09 與 2.7 mg TE/cm2。抗菌性評估結果亦顯示 Eu/Car/FBC 薄膜對 Escherichia coli 與 Staphylococcus aureus 具顯著抑菌能力,其抑菌圈直徑分別為 41.21 mm 與 49.55 mm,顯示其優異的廣效抗菌效果。應用於金目鱸魚片包裝時,Eu/Car/FBC 使總生菌數超過腐敗臨界值的時間延長 3 天以上;總揮發性鹽基態氮全程維持 15 mg/100 g 以下;脂質氧化指標亦顯著低於對照組。綜合而言,Eu/Car/FBC 展現優異的抑菌、抗氧化與緩釋性能,可望成為高風險魚類產品之創新活性包裝材料。 | zh_TW |
| dc.description.abstract | In recent years, active packaging materials have attracted increasing attention for their ability to absorb or release functional compounds to achieve antimicrobial and antioxidant effects. Bacterial cellulose (BC), which possesses excellent mechanical properties and biodegradability, has great potential to serve as an eco-friendly active packaging material. However, its highly porous structure leads to rapid loss of active substances, thereby limiting its applications. In this study, a highly adsorptive foaming bacterial cellulose (FBC) was prepared using a foaming system, and Eudragit® (Eu) was combined with FBC via ex situ modification to obtain Eu/FBC with pH-responsive solubility. The natural antimicrobial agent carvacrol was further loaded to develop Eu/Car/FBC, an active material with both sustained-release and antimicrobial functions. Morphological observations indicated that the incorporation of Eu and carvacrol did not affect the appearance or structural integrity of FBC. Both dry weight and release amount exhibited Eu concentration dependence, confirming that Eu enhanced the adsorption and sustained release of carvacrol. Release experiments revealed that Eu/Car/FBC rapidly released carvacrol within 16 hours at pH 6 and 7, while release was delayed for more than 72 hours at pH 4 and 5, demonstrating distinct pH-responsive sustained-release behavior. Fourier-transform infrared spectroscopy identified a characteristic peak of carvacrol at 990 cm⁻¹, confirming its successful incorporation into Eu/FBC. Thermogravimetric analysis showed that carvacrol loading led to weight loss in the medium temperature range, while the addition of Eu further improved thermal stability. Scanning electron microscopy revealed carvacrol aggregation on the fiber surface, whereas Eu modification filled the nanofiber network, forming a denser and more continuous structure, which was presumed to contribute to sustained release and enhanced stability of active components. In antioxidant activity testing, Eu/Car/FBC film exhibited excellent DPPH and ABTS radical scavenging capacities of 0.09 and 2.7 mg TE/cm², respectively. Antibacterial assessment further demonstrated that Eu/Car/FBC films had significant inhibitory effects against Escherichia coli and Staphylococcus aureus, with inhibition zone diameters of 41.21 mm and 49.55 mm, respectively, highlighting excellent broad-spectrum antibacterial activity. When applied to barramundi fillet packaging, Eu/Car/FBC extended the time for the total viable count to exceed the spoilage threshold by more than 3 days, maintained total volatile basic nitrogen below 15 mg/100 g throughout storage, and significantly reduce lipid oxidation compared with the control group. Overall, Eu/Car/FBC film exhibited excellent antimicrobial, antioxidant, and sustained-release properties, suggesting its strong potential as an innovative active packaging material for high-risk fish products. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2026-02-11T16:40:04Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2026-02-11T16:40:04Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 謝誌 i
摘要 ii Abstract iii 目次 v 圖次 x 表次 xii List of Figures xiii List of Tables xv 壹、前言 1 貳、文獻回顧 2 2.1食品腐敗 2 2.2食源性疾病 2 2.3食品包裝材料 3 2.3.1智慧食品包裝材料 3 2.3.2活性食品包裝材料 8 2.3.2.1乙烯吸附 8 2.3.2.2氧氣移除 8 2.3.2.3水氣吸附 9 2.3.2.4二氧化碳釋放 9 2.3.2.5乙醇釋放 9 2.3.2.6二氧化硫釋放 10 2.3.2.7抗氧化劑釋放 10 2.3.2.8抗菌劑釋放 10 2.3.3食品包裝材料之未來趨勢 15 2.4細菌性纖維素 16 2.4.1細菌性纖維素生產菌株 16 2.4.2細菌性纖維素生合成途徑 16 2.4.3細菌性纖維素特性 18 2.4.4細菌性纖維素應用 18 2.4.4.1生物醫學材料 18 2.4.4.2食品包裝材料 18 2.4.5細菌性纖維素修飾 21 2.4.5.1異位修飾 21 2.4.5.2原位修飾 21 2.5泡沫細菌性纖維素 24 2.5.1泡沫細菌性纖維素之應用 24 2.6 Eudragit® 簡介 26 2.6.1 Eudragit® 之pH依賴溶解作用原理及機制 26 2.6.2 Eudragit® 之應用 26 2.6.2.1 Eudragit® 藥物載體 28 2.6.2.2 Eudragit® 食品包材 28 2.7香芹酚 29 2.7.1香芹酚之抗氧化性 29 2.7.2香芹酚之抗菌性 29 2.8食品包材相關法規 31 2.8.1活性包裝材料的法規與國際規範 31 2.8.1.1美國活性食品包裝材料法規 32 2.8.1.2歐盟活性食品包裝材料法規 32 參、研究目的與架構 33 3.1研究目的 33 3.2研究架構 33 肆、材料與方法 35 4.1實驗材料 35 4.1.1實驗菌株及細胞 35 4.1.2實驗藥品 35 4.2儀器設備 36 4.3實驗方法 38 4.3.1菌種保存 38 4.3.2細菌纖維素製作 38 4.3.2.1種菌預培養 38 4.3.2.2細菌纖維素培養 38 4.3.2.3泡沫細菌纖維素製作 38 4.3.2.4 Eu/Car/FBC複合材料製作 41 4.3.3材料特性分析 41 4.3.3.1乾重分析 41 4.3.3.2含水量分析 41 4.3.3.3掃描式電子顯微鏡 41 4.3.3.4傅立葉轉換紅外線光譜 42 4.3.3.5 X射線繞射分析儀 42 4.3.3.6熱重分析儀測定 42 4.3.4香芹酚釋放試驗 43 4.3.4.1 Eudragit® 濃度對香芹酚釋放之影響 43 4.3.4.2香芹酚持續釋放試驗 43 4.3.5生物特性分析 43 4.3.5.1抗菌試驗 43 4.3.5.2抗氧化試驗 45 4.3.5.3細胞毒性 46 4.3.6金目鱸魚片儲藏性實驗 46 4.3.6.1微生物分析 47 4.3.6.2總揮發性鹽基態氮 47 4.3.6.3總硫代巴比妥酸反應物 48 4.3.7統計分析 48 伍、結果與討論 49 5.1製備Eu/Car/FBC 49 5.2材料特性分析 51 5.2.1 Eu/Car/FBC薄膜乾重 51 5.2.2 Eu/Car/FBC薄膜含水量 54 5.2.3掃描式電子顯微鏡 57 5.2.4傅立葉轉換紅外線光譜 62 5.2.5 X射線繞射分析儀 66 5.2.6熱重分析儀測定 68 5.3香芹酚釋放試驗 71 5.3.1不同Eudragit® 含量對泡沫細菌纖維素中香芹酚釋放量的影響 71 5.3.2在不同pH值環境下Eu/Car/FBC之香芹酚持續釋放實驗 76 5.4生物特性分析 78 5.4.1 Eu/Car/FBC之抗氧化活性分析 78 5.4.2 Eu/Car/FBC對E. coli和S. aureus之抑菌圈 83 5.4.3 Eu/Car/FBC於72小時內之連續抗菌試驗 86 5.4.4 Eu/Car/FBC之細胞毒性 88 5.5魚片包裝試驗 90 5.5.1 分析包裝金目鱸魚片之總生菌數 92 5.5.2 分析包裝金目鱸魚片之總揮發性鹽基態氮 95 5.5.3 分析包裝金目鱸魚片之硫代巴比妥酸反應物 98 陸、結論與未來展望 101 柒、參考文獻 103 捌、附錄 126 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 活性包裝 | - |
| dc.subject | 泡沫細菌纖維素 | - |
| dc.subject | 香芹酚 | - |
| dc.subject | Eudragit® | - |
| dc.subject | 控制釋放 | - |
| dc.subject | active packaging | - |
| dc.subject | foaming bacterial cellulose | - |
| dc.subject | carvacrol | - |
| dc.subject | Eudragit® | - |
| dc.subject | controlled-release | - |
| dc.title | 經 Eudragit® 修飾泡沫細菌纖維素應用於食品活性包裝開發 | zh_TW |
| dc.title | Eudragit®-modified foaming bacterial cellulose for active food packaging applications | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 114-1 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.coadvisor | 陳明煦 | zh_TW |
| dc.contributor.coadvisor | Ming-Hsu Chen | en |
| dc.contributor.oralexamcommittee | 林欣平;黃崇雄;林詠凱 | zh_TW |
| dc.contributor.oralexamcommittee | Shin-Ping Lin;Chung-Hsiung Huang;Yung-Kai Lin | en |
| dc.subject.keyword | 活性包裝,泡沫細菌纖維素香芹酚Eudragit®控制釋放 | zh_TW |
| dc.subject.keyword | active packaging,foaming bacterial cellulosecarvacrolEudragit®controlled-release | en |
| dc.relation.page | 154 | - |
| dc.identifier.doi | 10.6342/NTU202600129 | - |
| dc.rights.note | 未授權 | - |
| dc.date.accepted | 2026-01-20 | - |
| dc.contributor.author-college | 生物資源暨農學院 | - |
| dc.contributor.author-dept | 食品科技研究所 | - |
| dc.date.embargo-lift | N/A | - |
| Appears in Collections: | 食品科技研究所 | |
Files in This Item:
| File | Size | Format | |
|---|---|---|---|
| ntu-114-1.pdf Restricted Access | 9.81 MB | Adobe PDF |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.
