Please use this identifier to cite or link to this item:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/101589Full metadata record
| ???org.dspace.app.webui.jsptag.ItemTag.dcfield??? | Value | Language |
|---|---|---|
| dc.contributor.advisor | 鄭光成 | zh_TW |
| dc.contributor.advisor | Kuan-Chen Cheng | en |
| dc.contributor.author | 蔡聖奇 | zh_TW |
| dc.contributor.author | Sheng-chi Tsai | en |
| dc.date.accessioned | 2026-02-11T16:35:14Z | - |
| dc.date.available | 2026-02-12 | - |
| dc.date.copyright | 2026-02-11 | - |
| dc.date.issued | 2026 | - |
| dc.date.submitted | 2026-02-01 | - |
| dc.identifier.citation | 菸酒管理法 (中華民國106年12月27日)
財政部優質酒類認證評審基準-葡萄酒 (2017)。財政部國庫署中華民國衛生福利部-食品微生物檢驗方法 (2013)。臺北,臺灣。 黃愷樂 (2025) 由水果篩選酵母菌於米啤酒釀造之應用。國立臺灣大學食品科技 研究所學位論文。臺北,臺灣。 楊承勳 (2024) 結合米麴與酵母菌共培養發酵製程之米啤酒性質分析。國立臺灣 大學食品科技研究所學位論文。臺北,臺灣。 蔡雨臻 (2024) 利用非釀酒酵母菌共培養提升小米啤酒香氣之探討。國立臺灣大學食品科技研究所學位論文。臺北,臺灣。 賴沿佐 (2023) 酵母菌共發酵於巨峰葡萄酒類釀造之研究。國立臺灣大學生物科 技研究所學位論文。臺北,臺灣。 林歆珮 (2023) 利用非釀造清酒酵母菌共培養製備清酒之品質分析。國立臺灣大 學食品科技研究所學位論文。臺北,臺灣。 許婷羽 (2022) 非釀酒酵母及乳酸菌對鳳梨酒發酵製程之影響。國立臺灣大學食品科技研究所學位論文。臺北,臺灣。 惠蘭舟 (2022) 以 Saccharomyces cerevisiae 及 Jorlaspora delbrueckil 共培養提升蜂蜜酒辛酸乙酸含量。國立臺灣大學食品科技研究所學位論文。臺北,臺灣。 陳宏岳 (2021) 建立漆酶固定化系統降解銀杏葉萃取物中銀杏酸。國立臺灣大學 食品科技研究所學位論文。臺北,臺灣。 鄭磾 (2020) 篩選與鑑定臺灣本土乳酸菌進行黑后葡萄之蘋果酸-乳酸發酵。國立 臺灣大學食品科技研究所學位論文。臺北,臺灣。 黃珮秀 (2020) 篩選水果中酵母菌並以共培養生產蘋果酒。國立臺灣大學食品科 技研究所學位論文。臺北,臺灣。 林典翰 (2019) 由水果篩選酵母菌以生產葡萄酒。國立臺灣大學生物科技研究所 學位論文。臺北,臺灣。 孫翊洲 (2019) 酵母菌的篩選及混合發酵生產金香白葡萄酒。國立臺灣大學食品 科技研究所學位論文。臺北,臺灣。 黃仲豪 (2018) 啤酒芳香化合物之分析。國立臺灣大學食品科技研究所學位論文。臺北,臺灣。 Albergaria, H., Torrão, A. R., Hogg, T., & Gírio, F. M. (2003). Physiological behaviourof Hanseniaspora guilliermondii in aerobic glucose-limited continuous cultures. FEMS Yeast Research, 3(2), 211-216. Albertin, W., Setati, M. E., Miot-Sertier, C., Mostert, T. T., Colonna-Ceccaldi, B., Coulon, J., Girard, P., Moine, V., Pillet, M., Salin, F., Bely, M., Divol, B., & Masneuf-Pomarede, I. (2016). Hanseniaspora uvarum from winemaking environments show spatial and temporal genetic clustering. Frontiers in Microbiology, 6, 1569. Alperstein, L., Gardner, J. M., Sundstrom, J. F., Sumby, K. M., & Jiranek, V. (2020). Yeast bioprospecting versus synthetic biology—which is better for innovative beverage fermentation? Applied Microbiology and Biotechnology, 104(5), 1939–1953. Andorrà, I., Berradre, M., Mas, A., Esteve-Zarzoso, B., & Guillamón, J. M. (2012). Effect of mixed culture fermentations on yeast populations and aroma profile. LWT, 49(1), 8–13. Arneborg, N., Siegumfeldt, H., Andersen, G. H., Nissen, P., Daria, V. R., Rodrigo, P. J., & Glückstad, J. (2005). Interactive optical trapping shows that confinement is a determinant of growth in a mixed yeast culture. FEMS Microbiology Letters, 245(1), 155–159. Arnink, K., & Henick-Kling, T. (2005). Influence of Saccharomyces cerevisiae and Oenococcus oeni strains on successful malolactic conversion in wine. American Journal of Enology and Viticulture, 56(3), 228–237. Azzolini, M., Fedrizzi, B., Tosi, E., Finato, F., Vagnoli, P., Scrinzi, C., & Zapparoli, G. (2012). Effects of Torulaspora delbrueckii and Saccharomyces cerevisiae mixed cultures on fermentation and aroma of Amarone wine. European Food Research and Technology, 235(2), 303–313. Bartowsky, E. J., & Pretorius, I. S. (2009). Microbial formation and modification of flavor and off-flavor compounds in wine. Australian Journal of Grape and Wine Research, 15(1), 3–19. Belda, I., Navascués, E., Marquina, D., Santos, A., Calderon, F., & Benito, S. (2015). Dynamic analysis of physiological properties of Torulaspora delbrueckii in wine fermentations and its incidence on wine quality. Applied Microbiology and Biotechnology, 99(4), 1911–1922. Belda, I., Ruiz, J., Esteban-Fernández, A., Navascués, E., Marquina, D., Santos, A., & Moreno-Arribas, M. V. (2017). Microbial contribution to wine aroma and its intended use for wine quality improvement. Molecules, 22(2), 189. Bellut, K., Michel, M., Zarnkow, M., Hutzler, M., Jacob, F., Atzler, J. J., & Arendt, E. K. (2019). Screening and application of Cyberlindnera yeasts to produce a fruity, non-alcoholic beer. Fermentation, 5(4), 103. Bruner, J., & Fox, G. (2020). Novel non-Cerevisiae Saccharomyces yeast species used in beer and alcoholic beverage fermentations. Fermentation, 6(4), 116. Bruner, J., Marcus, A., & Fox, G. (2021). Brewing efficacy of non-conventional Saccharomyces non-cerevisiae yeasts. Beverages, 7(3), 68. Callejo, M. J., García Navas, J. J., Alba, R., Escott, C., Loira, I., González, M. C., & Morata, A. (2019). Wort fermentation and beer conditioning with selected non-Saccharomyces yeasts in craft beers. European Food Research and Technology, 245, 1229–1238. Carrascón, V., Vallverdú-Queralt, A., Meudec, E., Sommerer, N., Fernandez-Zurbano, P., & Ferreira, V. (2018). The kinetics of oxygen and SO₂ consumption by red wines. Food Chemistry, 241, 206–214. Ciani, M., & Comitini, F. (2015). Yeast interactions in multi-starter wine fermentation. Current Opinion in Food Science, 1, 1–6. Cocolin, L., Bisson, L. F., & Mills, D. A. (2000). Direct profiling of the yeast dynamics in wine fermentations. FEMS Microbiology Letters, 189(1), 81–87. Crépin, L., Truong, N. M., Bloem, A., Sanchez, I., Dequin, S., & Camarasa, C. (2017). Management of multiple nitrogen sources during wine fermentation by Saccharomyces cerevisiae. Applied and Environmental Microbiology, 83(5), e02617-16. Diez-Ozaeta, I., Lavilla, M., & Amárita, F. (2023). Effect of inoculation strategy with autochthonous Oenococcus oeni strains on aroma development in Rioja Alavesa Tempranillo wines. LWT – Food Science and Technology, 162, 113582. Droulia, F., & Charalampopoulos, I. (2021). Future climate change impacts on European viticulture: A review on recent scientific advances. Atmosphere, 12(4), 495. Dzialo, M. C., Park, R., Steensels, J., Lievens, B., & Verstrepen, K. J. (2017). Physiology, ecology, and industrial applications of aroma formation in yeast. FEMS Microbiology Reviews, 41, S95–S128. European Commission. (2009). Regulation (EC) No 607/2009 of 14 July 2009 laying down certain detailed rules for the implementation of Council Regulation (EC) No 479/2008, as regards protected designations of origin and geographical indications, traditional terms, labeling and presentation of certain wine sector products. Official Journal of the European Union, L193, 60–94. FAOSTAT. (2015). Food and Agriculture Organization of the United Nations. Global fruit production statistics. Huang, Y.-C., Khumsupan, D., Lin, S.-P., Jantama, K., Santoso, S. P., Hsieh, C.-W., Lin, H.-W., & Cheng, K.-C. (2024). Sustainable 3D-printed immobilization system with soybean meal coating for high-yield Lactococcus lactis bioprocessing. Food and Bioproducts Processing, 144, 49–60. Huo, J., Ni, Y., Li, D., Qiao, J., Huang, D., Sui, X., & Zhang, Y. (2023). Comprehensive structural analysis of polyphenols and their enzymatic inhibition activities and antioxidant capacity of black mulberry (Morus nigra L.). Food Chemistry, 429, 136845. Jolly, N. P., Varela, C., & Pretorius, I. S. (2014). Not your ordinary yeast: Non-Saccharomyces yeasts in wine production uncovered. FEMS Yeast Research, 14(2), 215–237. Kaur, P., Kocher, G. S., & Keshani. (2025). Development of a yeast co-culture inoculum for improved red wine metabolome from Punjab MACS Purple variety of grapes. LWT – Food Science and Technology, 195, 113130. Krieger-Weber, S., Heras, J. M., & Suarez, C. (2020). Lactobacillus plantarum, a new biological tool to control malolactic fermentation: A review and an outlook. Beverages, 6(2), 23. Lai, Y.-T., Chen, C.-H., Lo, Y.-C., Hsich, C.-W., Hsu, F.-C., & Cheng, K.-C. (2023a). Application of aroma-producing yeasts and ageing technology in Kyoho-fortified wine. European Food Research and Technology, 249(11), 2849–2860. Lai, Y.-T., Hou, C.-Y., Lin, S.-P., Lo, Y.-C., Chen, C.-H., Hsich, C.-W., & Cheng, K.-C. (2023b). Sequential culture with aroma-producing yeast strains to improve the quality of Kyoho wine. Journal of Food Science, 88(3), 1114–1127. Lai, Y.-T., Hsich, C.-W., Lo, Y.-C., Liou, B.-K., Lin, H.-W., Hou, C.-Y., & Cheng, K.-C. (2022). Isolation and identification of aroma-producing non-Saccharomyces yeast strains and the enological characteristic comparison in wine making. LWT, 154, 112653. Lai, Y.-T., Cheng, K.-C., Lai, C.-N., & Lai, Y.-J. (2019). Isolation and identification of aroma producing strain with esterification capacity from yellow water. PLoS One, 14(2), e0211356. Lambrechts, M., & Pretorius, I. S. (2000). Yeast and its importance to wine aroma—a review. South African Journal of Enology and Viticulture, 21(1), 97–129. Lonvaud-Funel, A. (1999). Lactic acid bacteria in the quality improvement and depreciation of wine. In W. N. Konings, O. P. Kuipers, & J. H. J. Huis in’t Veld (Eds.), Lactic Acid Bacteria: Genetics, Metabolism and Applications (pp. 317–331). Springer. Michel, M., Meier-Dörnberg, T., Jacob, F., Methner, F. J., Wagner, R. S., & Hutzler, M. (2016). Pure non-Saccharomyces starter cultures for beer fermentation with a focus on secondary metabolites and practical applications. Journal of the Institute of Brewing, 122(4), 569–587. Nehme, N., Mathieu, F., & Taillandier, P. (2010). Impact of the co-culture of Saccharomyces cerevisiae–Oenococcus oeni on malolactic fermentation and partial characterization of a yeast-derived inhibitory peptidic fraction. Food Microbiology, 27(1), 150–157. Osborne, J. P., & Edwards, C. G. (2006). Inhibition of malolactic fermentation by Saccharomyces during alcoholic fermentation under low‐ and high‐nitrogen conditions: A study in synthetic media. Australian Journal of Grape and Wine Research, 12(1), 69–78. Ribeiro, J., Augusto, F., Salva, T., Thomaziello, R., & Ferreira, M. (2009). Prediction of sensory properties of Brazilian Arabica roasted coffees by headspace solid phase microextraction-gas chromatography and partial least squares. Analytica Chimica Acta, 634(2), 172–179. Rodríguez, H., Curiel, J. A., Landete, J. M., de las Rivas, B., de Felipe, F. L., Gómez-Cordovés, C., Mancheño, J. M., & Muñoz, R. (2009). Food phenolics and lactic acid bacteria. International Journal of Food Microbiology, 132(2-3), 79–90. Saerens, S. M., Delvaux, F. R., Verstrepen, K. J., & Thevelein, J. M. (2010). Production and biological function of volatile esters in Saccharomyces cerevisiae. Microbial Biotechnology, 3(2), 165–177. Shiraishi, M. (2000). Comparison in changes in sugars, organic acids and amino acids during berry ripening of sucrose- and hexose-accumulating grape cultivars. Journal of the Japanese Society for Horticultural Science, 69(2), 141–148. Siezen, R. J., Tzeneva, V. A., Castioni, A., Wels, M., Phan, H. T., Rademaker, J. L., Starrenburg, M. J., Kleerebezem, M., Molenaar, D., & van Hylckama Vlieg, J. E. (2010). Phenotypic and genomic diversity of Lactobacillus plantarum strains isolated from various environmental niches. Environmental Microbiology, 12(3), 758–773. Spano, G., Rinaldi, A., Ugliano, M., Moio, L., Beneduce, L., & Massa, S. (2005). A beta-glucosidase gene isolated from wine Lactobacillus plantarum is regulated by abiotic stresses. Journal of Applied Microbiology, 98(4), 855–861. Styger, G., Prior, B., & Bauer, F. F. (2011). Wine flavor and aroma. Journal of Industrial Microbiology & Biotechnology, 38(9), 1145–1159. Sumby, K. M., Grbin, P. R., & Jiranek, V. (2010). Microbial modulation of aromatic esters in wine: Current knowledge and future prospects. Food Chemistry, 121(1), 1–16. Taniasuri, F., Lee, P.-R., & Liu, S.-Q. (2016). Induction of simultaneous and sequential malolactic fermentation in durian wine. International Journal of Food Microbiology, 232, 1-6. Takahashi, M., Ohta, T., Masaki, K., Mizuno, A., & Goto-Yamamoto, N. (2014). Evaluation of microbial diversity in sulfite-added and sulfite-free wine by culture-dependent and-independent methods. Journal of Bioscience and Bioengineering, 117(5), 569–575. Taglieri, I., Sanmartin, C., Bianchi, A., Dìaz-Guerrero, P., Ferroni, G., Tonacci, A., & Venturi, F. (2025). Emotional impact of red wine assessed through a multidisciplinary approach. Applied Food Research, 5, 101497. Tamura, K., Nei, M., & Kumar, S. (2004). Prospects for inferring very large phylogenies by using the neighbor-joining method. Proceedings of the National Academy of Sciences, 101(30), 11030–11035. Tonon, T., & Lonvaud-Funel, A. (2002). Arginine metabolism by wine Lactobacilli isolated from wine. Food Microbiology, 19(5), 451–461. Tromp, A., & Agenbach, W. (1981). Sorbic acid as a wine preservative—its efficacy and organoleptic threshold. South African Journal of Enology and Viticulture, 2(1), 1–5. Ugliano, M., Genovese, A., & Moio, L. (2003). Hydrolysis of wine aroma precursors during malolactic fermentation with four commercial starter cultures of Oenococcus oeni. Journal of Agricultural and Food Chemistry, 51(17), 5073–5078. Van Vuuren, H. J. J., & Dicks, L. M. T. (1993). Leuconostoc oenos: A review. American Journal of Enology and Viticulture, 44(1), 99–112. Vargas-Luna, C., Ceppi de Lecco, C., Godoy, L., & Franco, W. (2025). Influences of Lactiplantibacillus plantarum and Levilactobacillus brevis strain in simultaneous inoculation with Saccharomyces cerevisiae on the sensory and chemical profiles in chardonnay wine. Food Research International, 214, 116639. Vaudour, E. (2002). The quality of grapes and wine in relation to geography: Notions of terroir at various scales. Journal of Wine Research, 13(2), 117–141. Vaudour, E., Carey, V. A., & Gilliot, J.-M. (2010). Digital zoning of South African viticultural terroirs using bootstrapped decision trees on morphometric data and multitemporal SPOT images. Remote Sensing of Environment, 114(12), 2940–2950. Velázquez, R., Zamora, E., Álvarez, M. L., & Ramírez, M. (2015). Wine contamination and spoilage by non-Saccharomyces yeasts: A review. Food Microbiology, 46, 146–156. Volschenk, H., Van Vuuren, H., & Viljoen-Bloom, M. (2006). Malic acid in wine: Origin, function, and metabolism during vinification. South African Journal of Enology and Viticulture, 27(2), 113–136. Wang, J., Li, M., Zheng, F., Niu, C., Liu, C., Li, Q., & Sun, J. (2018). Cell wall polysaccharides: Before and after autolysis of brewer’s yeast. World Journal of Microbiology and Biotechnology, 34(9), 137. Wang, T., Li, H., Wang, H., & Su, J. (2015). Multilocus sequence typing and pulsed-field gel electrophoresis analysis of Oenococcus oeni from different wine-producing regions of China. International Journal of Food Microbiology, 199, 47–53. Waterhouse, A. L. (2002). Wine phenolics. Annals of the New York Academy of Sciences, 957(1), 21–36. Weisburg, W. G., Barns, S. M., Pelletier, D. A., & Lane, D. J. (1991). 16S ribosomal DNA amplification for phylogenetic study. Journal of Bacteriology, 173(2), 697–703. Wells, A., & Osborne, J. (2012). Impact of acetaldehyde and pyruvic acid‐bound sulphur dioxide on wine lactic acid bacteria. Letters in Applied Microbiology, 54(3), 187–194. Wibowo, D., Eschenbruch, R., Davis, C., Fleet, G., & Lee, T. (1985). Occurrence and growth of lactic acid bacteria in wine: A review. American Journal of Enology and Viticulture, 36(4), 302–313. Wu, Y., Li, S., Sun, B., Xi, Z., Zhang, Q., & Luo, L. (2017). Changes of phenolic compounds in red wine during malolactic fermentation by Oenococcus oeni. European Food Research and Technology, 243(8), 1367–1374. Xu, X.-Y., Wei, J.-B., Hou, R.-T., Li, M.-Q., Wang, Y., Gao, X.-L., Liang, J., & Zhang, H.-W. (2025). Sequential inoculation of non-Saccharomyces yeasts and Saccharomyces cerevisiae modulates strawberry wine quality: Physicochemical Xu, H., Liu, W., Zhang, W., Yu, J., Song, Y., Menhe, B., Zhang, H., & Sun, Z. (2015). Use of multilocus sequence typing to infer genetic diversity and population structure of Lactobacillus plantarum isolates from different sources. BMC Microbiology, 15(1), 241. Xu, A., Xie, L., Ouyang, Y., Liu, P., Xiao, Y., Wang, Y., Liu, J., Liu, B., Gao, B., & Zhu, D. (2023). Synergistic co-fermentation of non-Saccharomyces yeasts enhanced fermentation performance and aroma characteristics of citrus wine. Food Chemistry, 426, 136605. Yanagida, F., Srionnual, S., & Chen, Y. S. (2008). Isolation and characteristics of lactic acid bacteria from koshu vineyards in Japan. Letters in Applied Microbiology, 47(2), 134–139. Yannam, S. K., Takagi, T., Tamura, T., Yoshida, S., Kameoka, T., & Takamine, K. (2019). Evaluation of fermentation-derived aroma compounds in red wine using GC-MS and sensory analysis. Journal of Food Science and Technology, 56(7), 3251–3260. Yokotsuka, K., & Singleton, V. L. (1997). Lactic acid bacteria and their role in malolactic fermentation: A review. American Journal of Enology and Viticulture, 48(1), 127–144. Yu, Y., Zhao, L., Zhao, J., & Zhang, H. (2021). Influence of different lactic acid bacteria on wine aroma composition during fermentation. Food Bioscience, 39, 100937. Zaldivar, J., Nielsen, J., & Olsson, L. (2001). Fuel ethanol production from lignocellulose: A challenge for metabolic engineering and process integration. Applied Microbiology and Biotechnology, 56(1-2), 17–34. Zamora, F., & Guadayol, J. M. (2018). The effect of winemaking techniques on wine aroma and flavour: A review. International Journal of Food Science & Technology, 53(1), 9–25. Zapparoli, G., Tosi, E., Azzolini, M., Vagnoli, P., & Krieger, S. (2009). Bacterial inoculation strategies for the achievement of malolactic fermentation in high-alcohol wines. South African Journal of Enology and Viticulture, 30(1), 49–55. Zhao, X., Jia, B., Huang, W., Xiang, X., & Wang, D. (2018). Role of Oenococcus oeni in the aroma compound formation of red wine using LC-MS analysis. Food Chemistry, 250, 268–273. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/101589 | - |
| dc.description.abstract | 紅酒 (red wine) 是一款歷史悠久且被廣泛飲用的酒精飲品,隨著極端氣候對葡萄熟成與酒質帶來的挑戰,越來越多研究關注微生物作為改善問題的角色。例如近年使用酵母共培養以提升芳香複雜度,然而較少研究探討紅酒中酵母菌與乳酸菌的交互作用,酵母菌發酵中或發酵後的基質很大程度影響後續乳酸菌的發酵,因此本研究旨在評估酵母菌與乳酸菌之接種策略對巨峰葡萄酒化學成分的影響,透過優化紅酒的釀製過程,以提升葡萄酒品質。原料選自台灣果園的巨峰紅葡萄,組成份結果指出冬果有機酸含量明顯高於夏果,特別是蘋果酸濃度可達到2.50 ± 0.27 mg/L,此酸度達乳酸菌啟動發酵的最低閾值,有助於後期的生長與香氣代謝。非釀酒酵母分離自台灣本土葡萄果皮中,Saccharomyces cerevisiae NTUAFM-Gr112 與十株潛在蘋果酸乳酸菌則取自實驗室菌種庫,經篩選後確定實驗菌株以及發酵條件,最後比較順序式與同時蘋果酸乳酸發酵 (malolactic fermentation, MLF) 對巨峰葡萄酒品質影響。實驗結果顯示在酯類香氣分析中,酵母共發酵組 (HP+SC) 可有效提升酯類香氣,其中又以乙酸乙酯 (Ethyl acetate)、癸酸乙酯 (Ethyl decanoate) 與乙酸苯乙酯 (Phenylethyl acetate) 等較為顯著,使得總酯含量與純S. cerevisiae Gr112組 (SC) 相比顯著提升。在MLF組中,則是以乳酸乙酯、丁二酸二乙酯和雙乙醯的濃度有顯著增加,其中又以SIM-MLF表現較佳,這點也在感官品評中的得到驗證,呈現 「花香味」、「黑莓果味」、「奶油味」等描述詞,顯示本研究中SIM-MLF組相較於SEQ-MLF組更能透過MLF發酵提升巨峰葡萄酒的感官特性,可作為提升風味表現與整體感官的有效策略。 | zh_TW |
| dc.description.abstract | Red wine is a historically long-standing alcoholic beverage widely consumed worldwide. With the increasing challenges posed by climate change to grape ripening and wine quality, growing attention has been directed toward the role of microorganisms in improving wine quality. In recent years, mixed yeast fermentations have been applied to enhance aroma complexity; however, limited studies have investigated the interactions between yeasts and lactic acid bacteria (LAB) in red wine. The metabolites produced by yeasts during and after alcoholic fermentation can substantially influence subsequent malolactic fermentation (MLF). Therefore, this study aimed to evaluate the effects of different yeast–LAB inoculation strategies on the chemical composition of Kyoho red wine, with the goal of optimizing the winemaking process and improving wine quality. Kyoho grapes cultivated in Taiwan were used as the raw material. The grape composition analysis indicated a relatively high organic acid content, particularly malic acid, which reached 2.50 ± 0.27 mg/L. This concentration met the minimum requirement for LAB to initiate malolactic fermentation and was beneficial for subsequent aroma development. A non-Saccharomyces yeast isolated from Taiwanese indigenous grapes and Saccharomyces cerevisiae NTUAFM-Gr112, together with ten LAB strains isolated from grapes, were selected from an in-house culture collection. Appropriate strains and fermentation conditions were screened, and the effects of sequential and simultaneous malolactic fermentation on Kyoho red wine quality were evaluated. The results showed that in the aroma compound analysis, the yeast co-fermentation group (HP+SC) significantly enhanced ester formation. Notably, ethyl acetate, ethyl decanoate, and phenylethyl acetate exhibited pronounced increases, with total ester content being 4.21 times higher than that of the pure S. cerevisiae Gr112 fermentation group (SC). In the MLF-treated wines, concentrations of ethyl lactate, diethyl succinate, and isoamyl acetate increased significantly, with the simultaneous malolactic fermentation (SIM-MLF) group showing the most pronounced effects. These chemical changes were consistent with sensory evaluation results, in which the SIM-MLF wines were characterized by descriptors such as “floral,” “blackcurrant,” and “creamy.” Overall, the results demonstrate that SIM-MLF was more effective than sequential malolactic fermentation (SEQ-MLF) in enhancing the sensory characteristics of Kyoho red wine. This strategy represents an effective approach for improving flavor expression and overall sensory quality through malolactic fermentation. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2026-02-11T16:35:14Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2026-02-11T16:35:14Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 目次
口試委員會審定書........................................................................................................ I 謝誌 ........................................................................................................................... II 摘要 .......................................................................................................................... III Abstract ..................................................................................................................... IV 目次 .......................................................................................................................... VI 圖次 ......................................................................................................................... XI 表 次 ......................................................................................................................... XIII List of Figures ........................................................................................................... XV List of Tables .......................................................................................................... XVII 壹、前言 ..................................................................................................................... 1 貳、文獻回顧 ............................................................................................................. 2 2.1 葡萄..................................................................................................................... 2 2.1.1 葡萄分類...................................................................................................... 3 2.1.1.1 釀酒葡萄......................................................................................... 3 2.1.1.2 鮮食葡萄............................................................................................. 3 2.1.2 極端氣候影響............................................................................................ 5 2.1.3 巨峰葡萄應用.............................................................................................. 7 2.2 酒….................................................................................................................... 8 2.2.1 定義與分類.................................................................................................. 8 2.2.2 衛生安全標準.............................................................................................. 8 2.2.3 葡萄酒........................................................................................................ 11 2.2.3.1 葡萄酒定義....................................................................................... 11 2.2.3.2 葡萄酒製程....................................................................................... 13 2.3 釀酒微生物群落 (Wine microbiota)........................................................... 16 2.3.1 原生微生物群 (Indigenous microbiota)............................................... 17 2.3.2 酵母菌分類 (Type of yeasts)...................................................................... 18 2.3.3 蘋果酸乳酸菌 (Malolactic bacteria, MLB)............................................... 19 2.3.4 生長週期與數量........................................................................................ 21 2.4 酵母菌株發酵特性................................................................................ 23 2.4.1 葡萄之原生酵母........................................................................................ 23 2.4.1.1 有孢漢遜酵母屬 (Hanseniaspora spp.).............................................. 23 2.4.1.2 異常威克漢姆酵母屬 (Wickerhamomyces anomalus) ....................... 24 2.4.1.3 桿狀星形假絲酵母 (Starmerella bacillaris)...................................... 25 2.4.2 揮發性化合物代謝機理 (Metabolic mechanism of aroma)…................. 26 2.4.3 果酒中共培養應用 (Co-culture applications)........................................... 28 2.5 蘋果酸乳酸發酵 (Malolactic fermentation, MLF)............................ 29 2.5.1 MLF 方法與種類....................................................................................... 30 2.5.2 影響 MLF 的因素..................................................................................... 30 2.5.3 MLF 相關酵素與代謝物........................................................................... 32 2.5.3.1 羰基化合物 (Carbonyl compounds) .................................................. 32 2.5.3.2 萜類化合物 (Terpenoids) ................................................................. 32 2.5.3.3 酚類化合物 (Phenolic compounds) ................................................... 33 2.5.3.4胜肽與胺基酸 (Peptides and amino acids) ....................................... 33 參、研究目的與架構................................................................................................ 34 3.1 研究目的 .......................................................................................................... 34 3.2 研究架構 .......................................................................................................... 34 肆、實驗材料............................................................................................................ 36 4.1 原料與菌株 ……….......................................................................................... 36 4.1.1 實驗菌株.................................................................................................... 36 4.1.2 實驗原料.................................................................................................... 37 4.2 實驗藥品........................................................................................................... 38 4.2.1 培養基藥品................................................................................................ 38 4.2.2 菌株鑑定藥品............................................................................................ 39 4.2.3 生化試驗藥品............................................................................................ 39 4.2.4 定量分析藥品............................................................................................ 40 4.2.5 儀器與耗材................................................................................................ 42 伍、實驗方法............................................................................................................ 44 5.1 酵母菌定序與篩選 .......................................................................................... 44 5.1.1 菌株純化分離............................................................................................ 44 5.1.2 基因定序與鑑定........................................................................................ 45 5.1.3 菌株貯藏與活化........................................................................................ 46 5.1.3.1 凍管製備......................................................................................... 46 5.1.3.2 菌株活化......................................................................................... 46 5.1.4生理生化特性試驗..................................................................................... 47 5.1.4.1 碳氮源同化試驗............................................................................. 47 5.1.4.2 發酵能力試驗................................................................................. 48 5.1.4.3 溫度耐受性試驗............................................................................. 49 5.1.4.4 滲透壓力試驗................................................................................. 49 5.1.5 產香能力試驗............................................................................................ 50 5.2 乳酸菌篩選 ….................................................................................................. 54 5.2.1 蘋果酸降解能力試驗................................................................................ 54 5.2.2 環境壓力耐受性試驗................................................................................ 55 5.3 巨峰葡萄微釀造 .............................................................................................. 56 5.3.1 果醪發酵前準備 ........................................................................................ 56 5.3.2 酒精發酵-確定初期接種策略.................................................................. 56 5.3.3 蘋果酸乳酸發酵策略................................................................................ 57 5.4 分析檢驗........................................................................................................... 58 5.4.1 微生物菌落計數........................................................................................ 58 5.4.2 糖類與乙醇分析........................................................................................ 59 5.4.3 有機酸含量分析........................................................................................ 60 5.4.4 可滴定酸 (Total/Titratable acidity)........................................................... 61 5.4.5 顏色分析.................................................................................................... 62 5.4.6 揮發性化合物分析.................................................................................... 63 5.5 感官品評........................................................................................................... 66 5.5.1 消費者接受度九分法................................................................................ 66 5.5.2 選擇適合項目分析法 (Check all that apply, CATA) .............................. 66 5.5.3 品評流程.................................................................................................... 67 5.5.4 統計分析.................................................................................................... 67 陸、結果與討論....................................................................................................... 68 6.1 酵母菌分離與鑑定........................................................................................... 68 6.1.1 菌株分離純化............................................................................................ 68 6.1.2 電泳分析與菌種鑑定................................................................................ 69 6.2 酵母菌之篩選 ................................................................................................. 71 6.2.1 實驗菌株選用............................................................................................ 71 6.2.2 生理生化特性試驗.................................................................................... 72 6.2.2.1菌落外觀型態............................................................................. 72 6.2.2.2 氮源同化試驗結果....................................................................... 73 6.2.2.3 碳源同化試驗結果....................................................................... 73 6.2.2.4 液態發酵能力試驗結果................................................................. 77 6.2.2.5 滲透壓耐受力試驗結果................................................................. 77 6.2.2.6 溫度耐受性試驗結果.................................................................... 77 6.2.3 產香能力試驗結果 .................................................................................... 81 6.3 發酵特性評估 ................................................................................................. 83 6.3.1鮮榨葡萄汁組成分分析............................................................................ 85 6.3.2 酵母族群變化............................................................................................ 87 6.3.3 殘糖與酒精變化........................................................................................ 89 6.3.4香氣指標含量分析.................................................................................... 92 6.3.5 蘋果酸代謝分析........................................................................................ 93 6.3.6 蘋果酸乳酸菌環境耐受力測試................................................................ 95 6.4 巨峰葡萄微釀造結果探討.............................................................................. 98 6.4.1 基本物化性質分析.................................................................................... 98 6.4.2 揮發性化合物分析............................................................................... 100 6.4.2. 酯類............................................................................................... 100 6.4.2.2 高級醇............................................................................................. 101 6.4.2.3 萜烯................................................................................................. 102 6.4.2.4 酸類和其他化合物........................................................................ 102 6.5 紅酒感官品評................................................................................................. 105 6.5.1 消費者喜好性九分法調查..................................................................... 106 6.5.2 選擇適合項目分析法調查.....................................................................107 柒、結論與未來展望...............................................................................................109 捌、參考文獻.......................................................................................................... 110 玖、附錄.................................................................................................................. 122 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 紅酒 | - |
| dc.subject | 巨峰葡萄 | - |
| dc.subject | 非釀酒酵母 | - |
| dc.subject | 揮發性香氣 | - |
| dc.subject | 蘋果酸乳酸發酵 | - |
| dc.subject | red wine | - |
| dc.subject | Kyoho grape | - |
| dc.subject | non-Saccharomyces | - |
| dc.subject | volatiles | - |
| dc.subject | malolactic fermentation | - |
| dc.title | 酵母菌與乳酸菌共發酵對巨峰葡萄酒風味與化學特性之影響 | zh_TW |
| dc.title | Effects of Yeast and Lactic Acid Bacteria Co-Fermentation on the Flavor and Chemical Characteristics of Kyoho Wine | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 114-1 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.coadvisor | 陳明煦 | zh_TW |
| dc.contributor.coadvisor | Ming-Hsu Chen | en |
| dc.contributor.oralexamcommittee | 陳千浩;賴沿佐;朱永麟 | zh_TW |
| dc.contributor.oralexamcommittee | Chien-Hao Chen;Yen-Tso Lai;Yung-Lin Chu | en |
| dc.subject.keyword | 紅酒,巨峰葡萄非釀酒酵母揮發性香氣蘋果酸乳酸發酵 | zh_TW |
| dc.subject.keyword | red wine,Kyoho grapenon-Saccharomycesvolatilesmalolactic fermentation | en |
| dc.relation.page | 132 | - |
| dc.identifier.doi | 10.6342/NTU202600252 | - |
| dc.rights.note | 同意授權(全球公開) | - |
| dc.date.accepted | 2026-02-03 | - |
| dc.contributor.author-college | 生物資源暨農學院 | - |
| dc.contributor.author-dept | 食品科技研究所 | - |
| dc.date.embargo-lift | 2026-02-12 | - |
| Appears in Collections: | 食品科技研究所 | |
Files in This Item:
| File | Size | Format | |
|---|---|---|---|
| ntu-114-1.pdf | 4.88 MB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.
