Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 資訊網路與多媒體研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/101571
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor蔡欣穆zh_TW
dc.contributor.advisorHsin-Mu Tsaien
dc.contributor.author林紹維zh_TW
dc.contributor.authorShao-Wei Linen
dc.date.accessioned2026-02-11T16:26:57Z-
dc.date.available2026-02-12-
dc.date.copyright2026-02-11-
dc.date.issued2026-
dc.date.submitted2026-02-03-
dc.identifier.citationY. Sugiyama, M. Fukui, M. Kikuchi, K. Hasebe, A. Nakayama, K. Nishinari, S.-i. Tadaki, and S. Yukawa, “Traffic jams without bottlenecks—experimental evidence for the physical mechanism of the formation of a jam,”New Journal of Physics, vol.10,no.3,p.033001,mar2008.
M. Barth and K. Boriboonsomsin, “Real-world carbon dioxide impacts of traffic congestion,”Transportation Research Record,vol.2058,no.1,pp.163–171,2008.
P.A.Lopez,M.Behrisch,L.Bieker-Walz,J.Erdmann,Y.-P.Flötteröd,R.Hilbrich, L.Lücken, J. Rummel, P.Wagner, andE. Wießner, “Microscopictrafficsimulation usingsumo,”in The 21st IEEE International Conference on Intelligent Transporta- tion Systems. IEEE,2018.
B. Heydecker and J. Addison, “Analysis and modelling of traffic flow under variable speed limits,”Transportation Research Part C: Emerging Technologies, vol. 19, no. 2, pp. 206–217, 2011, emerging theories in traffic and transportation and methods for transportation planning and operations.
M.Papageorgiou, E.Kosmatopoulos, and I.Papamichail,“Effects of variable speed limits on motorway traffic flow,” Transportation Research Record, vol.2047,no.1, pp.37–48,2008.
A. Hegyi, S. Hoogendoorn, M. Schreuder, H. Stoelhorst, and F. Viti, “Specialist: A dynamic speed limit control algorithm based on shock wave theory,” in2008 11th International IEEE Conference on Intelligent Transportation Systems, 2008, pp.827–832.
A. Ghiasi, O. Hussain, Z. S. Qian, and X. Li, “A mixed traffic capacity analysis and lane management model for connected automated vehicles: A markov chain method,”Transportation Research Part B: Methodological, vol. 106, pp. 266–292, 2017.
H. Abdulsattar, M. R. K. Siam, and H. Wang, “Characterisation of the impacts of autonomousdrivingonhighwaycapacityinamixedtrafficenvironment: Anagent- based approach,”IET Intelligent Transport Systems, vol. 14, no. 9, pp. 1132–1141, 2020.
M.GuériauandI.Dusparic,“Quantifyingtheimpactofconnectedandautonomous vehiclesontrafficefficiencyandsafetyinmixedtraffic,”in 2020 IEEE 23rd Inter- national Conference on Intelligent Transportation Systems (ITSC). IEEE, 2020, pp.1–8.
M. Sala and F. Soriguera, “Capacity of a freeway lane with platoons of autonomous vehicles mixed with regular traffic,” Transportation Research Part B: Methodological , vol. 147, pp. 116–131, 2021.
J.Wang,Y.Zheng,C.Chen,Q.Xu,andK.Li,“Leadingcruisecontrolinmixedtraf- ficflow: Systemmodeling, controllability, andstringstability,” IEEE Transactions on Intelligent Transportation Systems,vol.23,no.8,pp.12861–12876,2022.
C. Liu, F. Zheng, H. X. Liu, and X. Liu, “Optimizing mixed traffic flow: Longitu- dinal control of connected and automated vehicles to mitigate traffic oscillations,” IEEE Transactions on Intelligent Transportation Systems,2025
K. Li, J. Wang, and Y. Zheng, “Cooperative formation of autonomous vehicles in mixed traffic flow: Beyond platooning,”IEEE Transactions on Intelligent Trans- portation Systems,vol.23,no.9,pp.15951–15966,2022.
C.Wu,A.R.Kreidieh,K.Parvate,E.Vinitsky,andA.M.Bayen,“Flow: Amodular learning framework for mixed autonomy traffic,”IEEE Transactions on Robotics, vol.38,no.2,pp.1270–1286,2022.
B. Chen, D. Sun, J. Zhou, W. Wong, and Z. Ding, “A future intelligent traffic system with mixed autonomous vehicles and human-driven vehicles,” Information Sciences, vol. 529, pp. 59–72, 2020.
Y. Pan, Y. Wu, L. Xu, C. Xia, and D. L. Olson, “The impacts of connected au- tonomous vehicles on mixed traffic flow: A comprehensive review,”Physica A: Statistical Mechanics and its Applications,vol.635,p.129454,2024.
W. J. Schakel, B. van Arem, and B. D. Netten, “Effects of cooperative adaptive cruise control on traffic flow stability,” in13th International IEEE Conference on Intelligent Transportation Systems,2010,pp.759–764.
M.Di Vaio, G.Fiengo, A.Petrillo, A. Salvi, S.Santini, andM. Tufo, “Cooperative shock waves mitigation in mixed traffic flow environment,”IEEE Transactions on Intelligent Transportation Systems,vol.20,no.12,pp.4339–4353,2019.
M. Garg and M. Bouroche, “Can connected autonomous vehicles improve mixed traffic safety without compromising efficiency in realistic scenarios?” IEEE Trans- actions on Intelligent Transportation Systems,2023.
C. H. P. Nguyen, N. H. Hoang, S. Lee, and H. L. Vu, “A system optimal speed advisory framework for a network of connected and autonomous vehicles,”IEEE Transactions on Intelligent Transportation Systems, vol. 23, no. 6, pp. 5727–5739, 2022.
N. Wan, A. Vahidi, and A. Luckow, “Optimal speed advisory for connected vehiclesinarterialroadsandtheimpactonmixedtraffic,” Transportation Research Part C: Emerging Technologies, vol. 69, pp. 548–563, 2016.
H.-P. Wu, W.-H. Shen, Y.-L. Wei, H.-M. Tsai, and Q. Xie, “Traffic shockwave mitigation with human-driven vehicles: is it feasible?” in Proceedings of the First ACM International Workshop on Smart, Autonomous, and Connected Vehicular Systems and Services , ser. CarSys ’16. New York, NY, USA: Association for Computing Machinery, 2016, p. 38–43.
S.Krauß,“Microscopicmodelingoftrafficflow: Investigationofcollisionfreevehi- cledynamics,”Ph.D.dissertation,UniversitätzuKöln,1998,
M. Treiber, A. Hennecke, and D. Helbing, “Congested traffic states in empirical observations and microscopic simulations,”Physical Review E, vol. 62, no. 2, p. 1805–1824, Aug. 2000.
W.-X. Zhu and H. Zhang, “Analysis of mixed traffic flow with human-driving and autonomous cars based on car-following model,”Physica A: Statistical Mechanics and its Applications,vol.496,pp.274–285,2018.
M.Alturki,N.Ratrout,S.M.Rahman,andI.Reza,“Impactsofautonomousvehicles ontrafficflowcharacteristicsundermixedtrafficenvironment: Futureperspectives,” Sustainability,vol.13,p.11052,102021.
J. Sun, Z. Zheng, and J. Sun, “The relationship between car following string insta- bilityandtrafficoscillationsinfinite-sizedplatoonsanditsuseineasingcongestion via connected and automated vehicles with idm based controller,”Transportation Research Part B: Methodological,vol.142,pp.58–83,2020.
M. Treiber, A. Kesting, and D. Helbing, “Delays, inaccuracies and anticipation in microscopic traffic models,” Physica A: Statistical Mechanics and its Applications, vol. 360, no. 1, pp. 71–88, 2006.
X. Li, Y. Xiao, X. Zhao, X. Ma, and X. Wang, “Modeling mixed traffic flows of human-driving vehicles and connected and autonomous vehicles considering humandrivers'cognitivecharacteristicsanddrivingbehaviorinteraction,” Physica A: Statistical Mechanics and its Applications, vol. 609, p. 128368, 2023.
E. H. Weber,De Tactu: Annotationes Anatomicae et Physiologicae. Leipzig: Koehler,1834.
X.-Y. Guo, G. Zhang, and A.-F. Jia, “Study on mixed traffic of autonomous vehicles and human-driven vehicles with different cyber interaction approaches,” Vehicular Communications, vol. 39, p. 100550, 2023.
M. Green, “”how long does it take to stop?” methodological analysis of driver perception-brake times,”Transportation Human Factors, vol. 2, pp. 195–216, 09 2000.
W.E.Hick,“Ontherateofgainofinformation,” Quarterly Journal of Experimental Psychology,vol.4,no.1,pp.11–26,1952.
R. Hyman, “Stimulus information as a determinant of reaction time,”Journal of Experimental Psychology,vol.45,no.3,p.188,1953.
B. Coll-Perales, M. C. Lucas-Estañ, T. Shimizu, J. Gozalvez, T. Higuchi, S. Avedisov, O. Altintas, and M. Sepulcre, “End-to-end v2x latency modeling and analysisin5gnetworks,” IEEE Transactions on Vehicular Technology,vol.72,no.4, pp.5094–5109,2023.
J.ErdmannandP.Wagner,“Sumo 'sinterpretationofthekraußmodel,”Pre‑print, SUMO User Conference, May 2025,
G.E.UhlenbeckandL.S.Ornstein,“Onthetheoryofthebrownianmotion,” Phys- ical review,vol.36,no.5,p.823,1930.
H.M.Zhang,“Amathematicaltheoryoftraffichysteresis,” Transportation Research Part B: Methodological,vol.33,no.1,pp.1–23,1999.
H. Yeo and A. Skabardonis, “Understanding stop-and-go traffic in view of asym- metric traffic theory,” inTransportation and Traffic Theory 2009: Golden Jubilee. Springer,2009,pp.99–115.
U.S. Department of Transportation Federal Highway Administration, “Next generation simulation (NGSIM) vehicle trajectories and sup- porting data,”
Freeway Bureau, MOTC, “Traffic information system: Historical data,”
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/101571-
dc.description.abstract高速公路的交通流經常因「幽靈塞車 (Phantom Jams)」而陷入不穩定,此現象主要源於人類駕駛的反應延遲。儘管聯網自駕車 (CAVs) 被廣泛視為解決此問題的終極方案,但受限於混合自動駕駛環境的複雜性與法律規範,其全面部署仍難以在短期內實現。為解決此過渡期缺口,本研究提出一套速度建議系統 (SAS),透過 V2X 通訊技術賦予人類駕駛車輛 (HDVs) 前瞻性的預判能力。
鑑於現有標準模型無法重現導致交通震盪的特定人類駕駛失誤,本研究首先在 SUMO 模擬環境中開發了一套「以人為本跟車模型 (HCCFM)」。該架構明確納入了人類駕駛固有的生理與心理限制——具體整合了韋伯定律 (Weber's Law) 與非對稱風險感知——以精確重現真實的駕駛動態。
實驗結果證實,SAS 發揮了強大的「消波 (Wave-Breaker)」作用,將震盪波傳播距離減少了 94.9%,並將總延遲時間降低了 90.4%。在巨觀層面上,該系統在瓶頸場景中使道路容量提升了 21.2%。敏感度分析顯示,效率顯著提升的關鍵規模 (Critical Mass) 位於 50% 的市場滲透率。關鍵的是,穩健性測試證實即便在 50% 封包遺失率下,系統運作效率仍優於純人類駕駛;且其失效安全機制確保了即使在 100% 通訊中斷的情況下,仍能維持零碰撞紀錄。
zh_TW
dc.description.abstractHighway traffic is frequently destabilized by "phantom jams'' driven by human reaction latency. While Connected and Autonomous Vehicles (CAVs) are widely proposed as the ultimate solution, their immediate deployment is constrained by the complexities of mixed autonomy and legal regulations. To address this gap, we propose a Speed Advisory System (SAS) that empowers Human-Driven Vehicles (HDVs) with V2X-enabled foresight. Since standard models fail to replicate the specific human errors that propagate these instabilities, we first develop a Human-Centric Car-Following Model (HCCFM) within SUMO. This framework explicitly accounts for the innate physiological and psychological constraints of human drivers---specifically integrating Weber's Law and asymmetric risk perception---to accurately reproduce realistic driving dynamics. Experimental results demonstrate that the SAS acts as a strong "wave-breaker,'' reducing shockwave propagation distance by 94.9% and total delay by 90.4%. Macroscopically, the system increases the capacity by 21.2% in the bottleneck scenarios. Sensitivity analysis reveals a critical mass at 50% penetration for efficiency gains. In particular, robustness tests confirm that the system remains more efficient than human driving even under 50% packet loss, and the fail-safe mechanism ensures zero collisions even under 100% communication failure.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2026-02-11T16:26:57Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2026-02-11T16:26:57Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents口試委員會審定書:i
誌謝:iii
摘要:iv
Abstract:v
Contents:vii
List of Figures:xi
List of Tables:xiv
Chapter 1: Introduction:1
1.1 Background and Motivation:1
1.2 Problem Statement:2
1.3 Proposed Solution:3
1.4 Thesis Contributions:3
1.5 Thesis Organization:5
Chapter 2: Related Work:6
2.1 Traffic Shockwave Mitigation in Mixed Autonomy:6
2.2 Car-Following Models:8
2.3 Driver Reaction Dynamics and Cognitive Load:9
2.4 Research Gaps and Thesis Positioning:10
Chapter 3: System Design:12
3.1 Overview:12
3.2 System Architecture:12
3.3 SUMO Simulation Environment:15
3.3.1 Temporal Resolution and Action Granularity:15
3.3.2 Car-Following Parameters:16
3.4 Krauss Model:16
3.5 Human-Centric Car Following Model:19
3.5.1 Delayed Perception:19
3.5.2 Imperfect Estimation:20
3.5.3 Asymmetric Risk Assessment:21
3.5.4 Final Action Determination:23
3.6 Speed Advisory System (SAS) Design:24
3.6.1 Digital State Acquisition and Latency Mitigation:24
3.6.2 Cognitive Load Reduction: From Choice Reaction Time to Simple Reaction Time:25
3.6.3 Precision-Enabled Stability and Error Elimination:26
3.6.4 Fail-Safe State Machine and Handover Protocol:28
Chapter 4: Implementation:31
4.1 Simulation Environment:31
4.2 Vehicle Model Implementation and Calibration:32
4.2.1 Calibration Methodology:32
4.2.2 Parameter Configuration:35
4.2.3 Baseline Models Configuration:36
4.2.4 Evaluation Metrics:37
4.3 Experimental Scenarios:37
4.3.1 Pulse Step Test Scenario:37
4.3.2 Virtual Bottleneck Scenario:38
4.3.3 Penetration Rate Sensitivity:40
4.3.4 Network Reliability and Fail-Safe Mechanism:42
4.3.5 Two-Lane Capacity Scenario with Lane Changing Dynamics:45
Chapter 5: Evaluation:47
5.1 Overview:47
5.2 Model Calibration and Validation:48
5.2.1 Trajectory Reproduction Capability:49
5.2.2 Probabilistic Error Analysis (KDE & CDF):50
5.3 Microscopic String Stability of SAS:52
5.3.1 Qualitative Analysis: Space-Time Heatmaps:52
5.3.2 Quantitative Impact: Propagation Distance and Delay:54
5.3.3 Mechanism Verification: Perturbation Amplification Ratio:55
5.4 Macroscopic Capacity Analysis:56
5.4.1 Fundamental Diagram Analysis:57
5.4.2 Capacity Improvement Quantification:58
5.4.3 Mechanism of Improvement and Breakdown:59
5.4.4 Sensitivity Analysis: Impact of Reaction Time on Capacity:59
5.5 Sensitivity Analysis: Penetration Rate:61
5.5.1 Quantitative Improvements:62
5.5.2 Interpretative Summary: The Phases of Deployment:64
5.5.3 Damping Effect Analysis:65
5.5.4 Visual Verification: Shockwave Propagation:66
5.6 Impact of Network Reliability:68
5.6.1 The Peril of Blind Estimation:69
5.6.2 Robustness via Fail-Safe Mechanism:69
5.7 Two-Lane Capacity with Lane Changing Analysis:69
5.8 Discussion:71
5.8.1 Linking Microscopic Stability to Macroscopic Capacity:71
5.8.2 The Trade-off between Handover Safety and Maximum Efficiency:73
5.8.3 Phased Evolution of System Benefits:73
Chapter 6: Conclusion:75
6.1 Summary of Work:75
6.2 Key Findings:76
6.3 Limitations:77
6.4 Future Work:78
References:80
-
dc.language.isoen-
dc.subject混合自動駕駛-
dc.subjectV2X-
dc.subject交通震盪緩解-
dc.subject跟車模型-
dc.subjectSUMO模擬-
dc.subject速度建議系統(SAS)-
dc.subjectMixed Autonomy-
dc.subjectV2X Communication-
dc.subjectSpeed Advisory System(SAS)-
dc.subjectCar-Following Model-
dc.subjectTraffic Shockwaves-
dc.subjectHuman-Centric Design-
dc.title混合自動駕駛環境中 V2X 速度建議系統之成效評估:人本導向之研究zh_TW
dc.titleImpact Assessment of V2X Speed Advisory System in Mixed Autonomy Environment : Human-Centric Approachen
dc.typeThesis-
dc.date.schoolyear114-1-
dc.description.degree碩士-
dc.contributor.oralexamcommittee林忠緯;陳柏華;林靖茹zh_TW
dc.contributor.oralexamcommitteeChung-Wei Lin;Po-Hua Chen;Ching-Ju Linen
dc.subject.keyword混合自動駕駛,V2X交通震盪緩解跟車模型SUMO模擬速度建議系統(SAS)zh_TW
dc.subject.keywordMixed Autonomy,V2X CommunicationSpeed Advisory System(SAS)Car-Following ModelTraffic ShockwavesHuman-Centric Designen
dc.relation.page86-
dc.identifier.doi10.6342/NTU202600337-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2026-02-05-
dc.contributor.author-college電機資訊學院-
dc.contributor.author-dept資訊網路與多媒體研究所-
dc.date.embargo-lift2026-02-12-
顯示於系所單位:資訊網路與多媒體研究所

文件中的檔案:
檔案 大小格式 
ntu-114-1.pdf9.24 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved