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摘要

高速公路的交通流經常因「幽靈塞車 (Phantom Jams)」而陷入不穩定，此現象

主要源於人類駕駛的反應延遲。儘管聯網自駕車 (CAVs)被廣泛視為解決此問題的

終極方案，但受限於混合自動駕駛環境的複雜性與法律規範，其全面部署仍難以

在短期內實現。為解決此過渡期缺口，本研究提出一套速度建議系統 (SAS)，透

過 V2X通訊技術賦予人類駕駛車輛 (HDVs)前瞻性的預判能力。

鑑於現有標準模型無法重現導致交通震盪的特定人類駕駛失誤，本研究首先

在 SUMO模擬環境中開發了一套「以人為本跟車模型 (HCCFM)」。該架構明確納

入了人類駕駛固有的生理與心理限制——具體整合了韋伯定律 (Weber’s Law)與非

對稱風險感知——以精確重現真實的駕駛動態。

實驗結果證實，SAS發揮了強大的「消波 (Wave-Breaker)」作用，將震盪波

傳播距離減少了 94.9%，並將總延遲時間降低了 90.4%。在巨觀層面上，該系統

在瓶頸場景中使道路容量提升了 21.2%。敏感度分析顯示，效率顯著提升的關鍵

規模 (Critical Mass)位於 50%的市場滲透率。關鍵的是，穩健性測試證實即便在

50%封包遺失率下，系統運作效率仍優於純人類駕駛；且其失效安全機制確保了

即使在 100%通訊中斷的情況下，仍能維持零碰撞紀錄。

關鍵字：混合自動駕駛︑V2X︑交通震盪緩解︑跟車模型︑SUMO模擬︑速度建
議系統 (SAS)
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Abstract

Highway traffic is frequently destabilized by “phantom jams” driven by human re-

action latency. While Connected and Autonomous Vehicles (CAVs) are widely proposed

as the ultimate solution, their immediate deployment is constrained by the complexities of

mixed autonomy and legal regulations. To address this gap, we propose a Speed Advisory

System (SAS) that empowers Human-Driven Vehicles (HDVs) with V2X-enabled fore-

sight. Since standardmodels fail to replicate the specific human errors that propagate these

instabilities, we first develop a Human-Centric Car-Following Model (HCCFM) within

SUMO. This framework explicitly accounts for the innate physiological and psycholog-

ical constraints of human drivers—specifically integrating Weber’s Law and asymmetric

risk perception—to accurately reproduce realistic driving dynamics. Experimental results

demonstrate that the SAS acts as a strong “wave-breaker,” reducing shockwave propaga-

tion distance by 94.9% and total delay by 90.4%. Macroscopically, the system increases

the capacity by 21.2% in the bottleneck scenarios. Sensitivity analysis reveals a critical

v
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mass at 50% penetration for efficiency gains. In particular, robustness tests confirm that

the system remains more efficient than human driving even under 50% packet loss, and

the fail-safe mechanism ensures zero collisions even under 100% communication failure.

Keywords:Mixed Autonomy, V2X Communication, Speed Advisory System(SAS),

Car-Following Model, Traffic Shockwaves, Human-Centric Design.
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Chapter 1

Introduction

1.1 Background and Motivation

In recent decades, the rapid growth of vehicular traffic has outpaced the expansion

of road infrastructure, leading to severe congestion on highways worldwide. A prominent

example is the recurrent congestion on the National Highway No. 5 corridor in Taiwan,

particularly during peak intercity travel periods. Traffic engineering studies have iden-

tified that a significant portion of this congestion is not caused by physical bottlenecks

(such as accidents or lane closures) but by the phenomenon known as traffic shockwaves

(or phantom traffic jams) [1].

Traffic shockwaves are typically triggered by minor disturbances, such as a driver

braking abruptly. Due to the inherent reaction latency and perception errors of human

drivers, following vehicles must brake harder to maintain safety, causing the disturbance

to amplify as it propagates upstream. This “stop-and-go” dynamic not only degrades road

capacity but also increases fuel consumption and collision risks [2].

While Connected and Autonomous Vehicles (CAVs) offer a theoretical solution to

1
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eliminate these inefficiencies, the transition to a fully autonomous future is expected to

take decades. Traffic environments are evolving into a stage ofMixed Autonomy, where a

small percentage of automated vehicles share the road with a majority of Human-Driven

Vehicles (HDVs). In this transitional phase, existing solutions like Cooperative Adaptive

Cruise Control (CACC) have limited impact due to low market penetration rates.

Therefore, there is an urgent need for solutions that leverage available Vehicle-to-

Everything (V2X) technologies to enhance the performance of human drivers. This study

focuses on Connected Human-Driven Vehicles (CHVs)—vehicles that remain under man-

ual control but are augmented by real-time V2X information. By providing proactive

speed advisories, such a system can mitigate human perception errors and reaction delays,

offering a scalable pathway to stabilize traffic flow without waiting for full automation.

1.2 Problem Statement

The core problem addressed in this thesis is the string instability inherent in human-

dominated traffic flows. Human drivers suffer from two fundamental limitations:

1. ReactionLatency: The time delay between perceiving a stimulus (e.g., brake lights)

and executing an action.

2. Perception Error: The inaccuracy in the relative distance and speed estimation

performed by human drivers, often described by Weber’s Law.

Existingmicroscopic simulationmodels such as the standardKraussmodel in SUMO [3]

often simplify these human factors, leading to an inability to accurately replicate the

formation of shockwaves. Furthermore, current Advanced Driver Assistance Systems

2
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(ADAS) mainly focus on safety (collision avoidance) rather than flow efficiency. One

key reason is the lack of deployment of V2X communication technologies in current ve-

hicle products. To be able to dampen the shockwave, such communications among nearby

vehicles in the same lane is crucial.

1.3 Proposed Solution

To address these challenges, this thesis proposes an Speed Advisory System (SAS).

The SAS is a “Human-in-the-Loop” cooperative system that utilizes V2X communication

to look ahead of the immediate traffic. Instead of taking over control, it provides preemp-

tive kinematic advisories (acceleration/deceleration suggestions) to the driver. By alerting

the driver to downstream disturbances before they are visually perceptible, the system ef-

fectively reduces the aggregate reaction time and smooths out the braking trajectory.

To rigorously evaluate this system, we also develop a novel Human-Centric Car-

FollowingModel (HCCFM). Unlike traditionalmodels, theHCCFM incorporates distance-

dependent estimation errors based onWeber’s Law and asymmetric risk perception, ensur-

ing that the simulation environment accurately reflects the instability of real-world mixed

traffic.

1.4 Thesis Contributions

The main contributions of this thesis are summarized as follows:

1. Development of a Human-Centric Car-FollowingModel (HCCFM):We formu-

lated a stochastic driver model that integrates variable reaction times and perception

3
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errors governed by Weber’s Law. The model was rigorously calibrated against the

NGSIM trajectory dataset to reproduce realistic stop-and-go behaviors.

2. Design of the Speed Advisory System (SAS):We designed a cooperative control

logic that calculates optimal acceleration suggestions based on V2X data. Specif-

ically, the system addresses the efficiency loss caused by the conservative mind-

set of human drivers, quantified as “Conservative Coefficients” (asymmetric risk

perception) in our work. By providing preemptive advisories, the SAS effectively

neutralizes the behavioral hysteresis found in manual driving, allowing for tighter

yet safer gap management.

3. Validation of Microscopic Stability Mechanism: Through pulse step stress tests,

we demonstrated that the SAS acts as a shockwave damper. The system reduced the

upstream propagation distance of shockwaves by over 94% and reduced the total

delay time by approximately 90% compared to the HDV baseline.

4. Quantification of Macroscopic Capacity Gains: In a virtual bottleneck scenario,

the SAS demonstrated a capacity improvement of approximately 22% to 46%, de-

pending on the safety configuration.

5. Sensitivity and Robustness Analysis: We analyzed the system performance across

varying market penetration rates, demonstrating that shockwave propagation de-

creases linearly with adoption, and road capacity is effectively increased at around

50% penetration rate. Furthermore, we evaluated the system robustness against net-

work instability. Using a Gilbert-Elliot model to simulate bursty packet losses, we

validated a fail-safe mechanism that ensures zero collisions and graceful perfor-

mance degradation during communication blackouts.

4
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1.5 Thesis Organization

The remainder of this thesis is organized as follows: Chapter 2 reviews related work

on traffic flow theory and car-following models. Chapter 3 details the system design of

the HCCFM and SAS. Chapter 4 describes the implementation and calibration process in

the SUMO simulator. Chapter 5 presents the comprehensive evaluation results, including

microscopic stability, macroscopic capacity, and sensitivity analyses. Finally, Chapter 6

concludes the thesis and discusses future directions.

5
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Chapter 2

Related Work

2.1 Traffic Shockwave Mitigation in Mixed Autonomy

To address the traffic instabilities and congestion issues highlighted in Chapter 1,

traffic management strategies have evolved significantly from macroscopic infrastructure

controls to microscopic vehicular automation.

Historically, infrastructure-based strategies were the primary means of flow control.

Variable Speed Limits (VSL) and Ramp Metering (RM) have been widely adopted to

homogenize traffic speeds and reduce crash risks by adjusting limits based on real-time

density. The effects of VSL has been studied in many works [4, 5], while a dynamic

speed limiting method has been proposed to reduce shockwaves on freeway [6]. These

systems provide intuitive visual cues for driver to follow. However, such systems usually

only prescribe maximum speed limits rather than adjusting vehicle velocities to a specific

target speed. Additionally, this information is available only when vehicles pass fixed

checkpoints, limiting the continuity of the control.

To overcome the limitations of fixed infrastructure, extensive literature has investi-

6
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gated the potential of Connected and Autonomous Vehicles (CAVs). Foundational stud-

ies confirm that introducing CAVs significantly improves string stability and throughput.

Ghiasi et al. [7] and Abdulsattar et al. [8] demonstrated that highway capacity increases

with CAV penetration rates. Guériau et al. [9] further quantified this, showing that while

efficiency benefits are non-linear, a penetration rate between 20% and 40% often yields

near-maximum flow improvements. Similarly, Sala et al. [10] showed that replacing reg-

ular traffic with AV platoons can drastically increase lane capacity due to reduced reaction

times.

To actively manage these benefits, researchers have proposed various control frame-

works. Wang et al. [11] proposed the Leading Cruise Control (LCC) strategy, proving

that even a single CAV acting as a mobile actuator can stabilize mixed traffic flow. Liu

et al. [12] developed an oscillation mitigation MPC framework to optimize longitudinal

control. Furthermore, Li et al. [13] and Wu et al. [14] explored cooperative formations

and reinforcement learning approaches to stabilize mixed autonomy beyond simple pla-

tooning.

However, the transition to a fully autonomous future faces significant hurdles. As

noted in [15], legal frameworks, liability issues, and public acceptance currently hinder

the widespread deployment of Level 4/5 AVs. In the foreseeable future, traffic will operate

in a state of mixed autonomy, dominated by HDVs [16]. While Cooperative Adaptive

Cruise Control (CACC) leverages V2V communication to suppress shockwaves [17], its

effectiveness is often compromised by communication instability. Di Vaio et al. [18] and

Garg et al. [19] emphasized that control protocols must account for packet losses and

delays, which can force CAVs to degrade to standard ACC, negating their benefits.
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Consequently, there is an urgent need for “Human-in-the-Loop” solutions. Instead

of replacing the driver, recent research proposes empowering them via V2X advisories.

Nguyen et al. [20] and Wan et al. [21] proposed advisory frameworks for arterial roads.

Wu et al. [22] developed a real-time speed advisory system by presenting a LED strip to

the driver for acceleration and deceleration instructions, where the results demonstrate a

deduction of 76.4% reaction delay and the standard deviation of the distance between two

consecutive cars decreaseing by 40%. However, these systems lacks macroscopic quan-

tification and robustness analysis against communication failures. This thesis proposes

a SAS specifically designed to mitigate highway shockwaves by simplifying the human

cognitive task, serving as a robust transitional solution.

2.2 Car-Following Models

To accurately evaluate the impact of such advisory systems, the underlying simula-

tion environment must faithfully replicate the longitudinal interaction between vehicles.

Traditional models like Krauss [23] and the Intelligent Driver Model (IDM) [24]

have been adapted for mixed traffic of human-driven and autonomous vehicles. Zhu et

al. [25] and Alturki et al. [26] analyzed mixed flows by adjusting parameters to reflect

the heterogeneity between human and autonomous driving. Sun et al. [27] utilized IDM-

based controllers to analyze the link between string instability and traffic oscillations.

Despite these advancements, standardmodels often oversimplify human errors. Treiber

et al. [28] introduced the Human Driver Model (HDM) to incorporate reaction delays and

anticipation. However, as highlighted by Li et al. [29], simply adding a delay term is

insufficient. Real-world instability arises from specific cognitive characteristics:
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• Distance-Dependent PerceptionError: Drivers struggle to estimate relative speed

as the distance increases (Weber’s Law [30]).

• Asymmetric Risk Perception: Drivers exhibit behavioral hysteresis—being more

conservative when closing in than when falling behind [31].

Current simulations often assume perfect perception or simple white-noise errors,

which fail to capture the “stop-and-go” dynamics accurately. Consequently, this study

introduces theHuman-Centric Car-FollowingModel (HCCFM), which integrates these

psychological factors to provide a rigorous baseline for validating the proposed SAS.

2.3 Driver Reaction Dynamics and Cognitive Load

A critical theoretical foundation for the SAS lies in the decomposition of driver re-

action time (RT) and cognitive load.

As detailed by Green [32], the perception-reaction time (PRT) is not an instanta-

neous event but a sequence comprising sensation, perception, response selection—such

as determining whether to brake, accelerate, or change lanes—and movement. In typi-

cal unassisted driving, the driver faces a Choice Reaction Time (CRT) task. The driver

must continuously interpret ambiguous visual cues, e.g. distinguishing between a mild

deceleration and an emergency brake, and select an appropriate response.

According to Hick’s Law [33, 34], the time required to make a decision increases

logarithmically with the number of choices. This cognitive load inherently induces signif-

icant latency, often exceeding 1.2 seconds, which acts as the primary amplifier for traffic

shockwaves.
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The proposed SAS aims to fundamentally alter this dynamic by converting the driving

task from a CRT paradigm to a Simple Reaction Time (SRT) paradigm. By processing

V2X data to generate a difference to the target speed, such as a speed adjustment of +5 km/

h, the system offloads the complex “perception” and “response selection” phases from the

human driver. This theoretical reduction in cognitive load justifies the reduced effective

reaction time parameter used in our system design, enabling HDVs to achieve response

times comparable to semi-automated systems and effectively dampen traffic disturbances.

2.4 Research Gaps and Thesis Positioning

While existing traffic mitigation strategies such as variable speed limits or fully

autonomous platooning offer theoretical solutions to congestion, they often suffer from

deployment constraints including local legislation, commercial considerations, reliance

on extensive infrastructure or the requirement for high market penetration rates. Con-

sequently, current approaches struggle to effectively stabilize traffic during the transi-

tional phase of mixed autonomy. This limitation underscores the critical need for level

2/3 human-in-the-loop solutions, specifically speed advisory systems, which empower

connected HDVs to act as stabilizing agents without necessitating full automation.

Regarding microscopic simulation, standard car-following models often oversim-

plify human behavior by assuming perfect state perception or instantaneous reaction ca-

pabilities. These models fail to capture the specific physiological constraints that trigger

phantom traffic jams in real-world scenarios. To address this deficiency, this thesis pro-

poses HCCFM that explicitly incorporates distance-dependent perception errors governed

by Weber’s Law and asymmetric risk assessment known as hysteresis, thereby ensuring

the simulation faithfully reproduces the instability mechanisms of mixed traffic.
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Furthermore, current research rarely bridges the gap between behavioral psychology

and macroscopic traffic flow efficiency. This work integrates cognitive theory directly

into the control loop by designing a system that facilitates the transition from high-latency

choice reaction time to low-latency simple reaction time. By explicitly modeling this cog-

nitive offloading, the thesis demonstrates how reducing the mental burden on drivers can

serve as a fundamental yet effective mechanism for suppressing shockwaves and enhanc-

ing overall road capacity.
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Chapter 3

System Design

3.1 Overview

This chapter details the comprehensive design and implementation of the proposed

SAS. We begin in Section 3.2 by defining the System Architecture, illustrating how 5G

V2X communication and local sensing mechanisms are integrated to assist human drivers

in a mixed traffic environment. Subsequently, in Section 3.3, we introduce the SUMO

simulation environment and analyze the limitations of the standard Krauss car-following

model. Finally, we present the proposed Human-Centric Car-Following Model (HCCFM)

and the SAS control algorithms, demonstrating how the system incorporates variable hu-

man reaction times to improve traffic flow stability and road capacity.

3.2 System Architecture

This section outlines the physical architecture and communication framework de-

signed to implement the SAS. The system utilizes a cooperative “Human-in-the-Loop”

design to bridge the gap between automated data acquisition and human actuation.
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The proposed architecture comprises two consecutive vehicles in the same lane—a

leading vehicle acting as the front target and a following vehicle operating as the subject—

within a 5G-enabled environment. The data acquisition and advisory generation process

follows a four-stage loop, as illustrated in Figure 3.1:

1. V2N2V Communication (5G): The leading vehicle continuously uploads its kine-

matic states, i.e., velocity and acceleration, sampled at 10Hz, to a cloud-based V2X

application server via the 5G uplink. To identify the correct target, the following

vehicle utilizes a dashboard camera to capture the license plate number of the ve-

hicle directly in front. Using this license plate as a unique identifier, the following

vehicle subscribes to the leading vehicle’s data stream via the 5G downlink, ensur-

ing that the retrieved kinematic information corresponds to the vehicle directly in

front.

2. Local Sensing (ToF via Bluetooth): To ensure precise gap estimation, the follow-

ing vehicle is equipped with a Time-of-Flight (ToF) distance sensor mounted on the

front bumper. This sensor measures the physical headway g(t) and transmits the

reading to the driver’s smartphone via a high-speed Bluetooth Low Energy (BLE)

connection. While many ADAS systems do have the distance information, these are

often not externally accessible, thus we design the system as a fully self-contained

system.

3. Processing Unit (Mobile App): The SAS algorithm runs on the smartphone on the

following vehicle. It fuses the leader data with the local gap data to compute the

optimal advisory speed.

4. Human-Machine Interface (SmartphoneDisplay): The calculated advisory speed

13
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Figure 3.1: Overview of system architecture.

difference is displayed directly on the screen of the driver’s smartphone application.

The interface provides a clear numerical recommendation,such as a speed adjust-

ment of +5 km/h, allowing the driver to adjust their speed promptly.

The validity of this proposed architecture relies on the ability of the experimental

setup to accurately reflect real-world operational conditions, particularly regarding sys-

tem latency and communication stability. According to end-to-end (E2E) latency mod-

eling in [35], the temporal resolution of 0.1 seconds is sufficient to encapsulate 5G V2X

latencies, which ranges from 4 ms to 10 ms in MEC-based deployments, and 28 ms to 58

ms in centralized cloud deployments. Furthermore, the evaluation is grounded in two core

operational assumptions: (i) 100% compliance of the driver with speed advisories, and (ii)

a traffic flow consisting exclusively of standard passenger cars, while heavy vehicles such

as trucks or buses are excluded. These constraints ensure a controlled environment for as-

sessing the efficacy of V2X-enabled foresight.
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3.3 SUMO Simulation Environment

To validate the proposed SAS and analyze traffic shockwave propagation, this study

utilizes Simulation of Urban MObility (SUMO), an open-source, microscopic, multi-

modal traffic simulation package. SUMO was selected for its ability to model discrete

vehicle interactions with high fidelity and its support for the Traffic Control Interface

(TraCI). TraCI allows for real-time retrieval and manipulation of vehicle states including

position, speed and acceleration via external Python scripts, enabling the implementation

of the custom “Human-in-the-Loop” control logic and the HCCFM proposed in this thesis.

3.3.1 Temporal Resolution and Action Granularity

A critical requirement for modeling traffic instability is the precise simulation of re-

action latencies. Standard macroscopic models or coarse-grained microscopic simulations

(e.g., one-second step length) often fail to capture the high-frequency dynamics of “stop-

and-go” waves.

• Simulation Step Length (∆t): To ensure sufficient temporal resolution, the global

simulation step length is set to 0.1 seconds. This sub-second resolution is essential

for replicating the rapid deceleration events characteristic of shockwaves and allows

for the precise injection of V2X advisories.

• Action Step Length: To mirror the continuous nature of real-world driving, the

action step length is also set to 0.1 seconds. This fine temporal resolution prevents

vehicle behaviors from being artificially constrained to coarse, discrete decision

points, thereby allowing maneuvers to replicate the fluidity characteristic of physi-

cal reality.
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3.3.2 Car-Following Parameters

The longitudinal movement of vehicles in SUMO is governed by car-following mod-

els, which calculate the safe velocity vsafe to prevent collisions. The behavior is primarily

constrained by the following parameters:

• Minimum Time Headway (τ ): This parameter represents the desired minimum

time gap (in seconds) that a driver attempts to maintain from the rear bumper of the

leading vehicle. Physically, τ is the inverse of the maximum theoretical saturation

flow (Capacity≈ 3600/τ ). In this research, τ is a critical variable; for HDVs, it rep-

resents the safe breaking distance required by humans, whereas for SAS-equipped

vehicles, it represents the optimized gap enabled by machine precision.

• Apparent Reaction Time: While standard models often treat reaction time as a

fixed delay equal to the simulation step, this study redefines reaction time as a spe-

cific perception delays (treac), which will be mathematically formulated in the pro-

posed HCCFM (Section 3.5).

3.4 Krauss Model

The standard car-following model in SUMO is based on the work of Krauß [23], with

specific implementation details described by Erdmann andWagner [36]. The core concept

of the Krauss model is to ensure no collision occurrence; specifically, the model makes

sure that the gap g(t) between the rear bumper of the leader and the front bumper of the

follower remains positive at all times.
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A safe speed vsafe is calculated to ensure that the vehicle can come to a complete

stop without collision, even if the leading vehicle brakes abruptly. The fundamental safety

constraint is given by

v(t)2

2b
+ v(t) ∗ τ ≤ V (t)2

2B
+ g(t) (3.1)

where v(t) and V (t) are the speeds of the following and leading vehicles, b and B repre-

sent the maximum deceleration capabilities of the follower and leader, and τ denotes the

reaction of the driver. This is also configured in SUMO as the minimum time headway.

The term v(t)∗ τ accounts for the distance traveled by the follower before braking begins.

Derived from Eq. 3.1, the safe speed is theoretically obtained by solving for v(t).

To avoid computationally expensive square-root operations during simulation, SUMO

implements a rational approximation using Taylor expansion around the average speed

v(t) = (v(t) + V (t))/2, assuming a constant decleration b = B [36].

vsafe(t) = V (t) +
g(t)− V (t)τ
v(t)+V (t)

2b
+ τ

(3.2)

Finally, the speed for the next time step v(t+∆t) is determined by taking the mini-

mum of the desired speed constrained by the maximum acceleration amax of the vehicle,

the calculated safe speed, and the maximum mechanical speed of the vehicle as shown in

Eq. 3.3.

ṽ = min{v(t) + amax∆t, vsafe(t), vmax} (3.3)
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To capture the stochastic nature of human driving—specifically the tendency to daw-

dle or fail to utilize the vehicle’s full acceleration potential—a noise term is introduced.

Since the calculated speed ṽ represents the maximum allowable velocity under safety and

physical constraints, any stochastic deviation acts as a subtractive term to ensure safety

limits are not violated

v(t+∆t) = max{0, ṽ − amax∆t · σ · η} (3.4)

where σ denotes the imperfection of throttle control from the driver (default 0.5), reflect-

ing the magnitude of speed under-utilization, and η is a random variable drawn from the

uniform distribution U [0, 1]. This formulation ensures that human error manifests as con-

servative speed reduction rather than unsafe acceleration.

Limitation in Sub-Second Simulation: While theKraussmodel incorporates τ tomain-

tain a safe headway, it fundamentally assumes perfect state awareness. As shown in

Eq. 3.2, the calculation of vsafe(t) utilizes the exact gap g(t) and leader velocity V (t)

from the current simulation step. When the simulation step length is set to high resolu-

tions (e.g.,∆t = 0.1s), this implies that the driver can perceive changes of the state of the

leader and adjust braking strategy every 0.1 seconds.

In reality, human drivers suffer fromphysiological Perception-ReactionTime (PRT)

[32]. They do not react to the traffic state at time t, but rather to the state perceived at

t − treac. The standard Krauss model’s lack of this information delay leads to an overes-

timation of string stability, as vehicles react “super-humanly” fast to disturbances. This

discrepancy motivates the development of the HCCFM in the next section.
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3.5 Human-Centric Car Following Model

Standard car-following models, including the default Krauss model, operate on the

assumption of instantaneous perception and perfect state estimation. To address these

physiological implausibilities, this study proposes theHuman-Centric Car-FollowingModel

(HCCFM). This framework introduces a three-stage cognitive pipeline: delayed percep-

tion, imperfect estimation, and asymmetric risk assessment.

3.5.1 Delayed Perception

Human driving is fundamentally a Choice Reaction Time (CRT) task [32]. Drivers

must continuously interpret ambiguous visual cues, such as estimating relative speeds and

selecting appropriate responses. This cognitive load introduces a non-negligible latency,

typically ranging from 1.0 second to 1.5 seconds, during which the vehicle continues to

travel based on prior decisions.

In the HCCFM, this latency is explicitly modeled. Instead of calculating the safe

speed using the current state values at time t, the driver utilizes the states perceived treac

seconds ago, as illustrated in Figure 3.2. The effective input state Sinput(t) is defined as:

Sinput(t) = {g(t− treac), vleader(t− treac), vego(t− treac)} (3.5)

where treac is a stochastic variable drawn from a normal distribution N (µ, σ2) for each

driver, centered around 1.0 second – 1.2 seconds to reflect the CRT paradigm [32]. This

ensures that the simulated driver reacts to the “past reality”, naturally inducing the string

instability observed in real traffic.
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Figure 3.2: Driver reaction latency.

3.5.2 Imperfect Estimation

Human visual estimation is neither perfect nor completely random; it is distance-

dependent and temporally correlated. To capture this, we integrate Weber’s Law with an

Ornstein-Uhlenbeck (OU) mean-reverting process [37].

The perceived gap gp(t) is modeled as the actual delayed gap distorted by an error

term E(t)

gp(t) = g(t− treac) · (1 + k · E(t)) (3.6)

where k is the Weber Fraction (sensitivity coefficient, typically ≈ 0.1), and the normal-

ized error state E(t) is modeled as a discrete-time stochastic process to capture the time-

correlated nature of human perception errors. Its evolution is governed by the following

first-order autoregressive structure

E(t) = α · E(t−∆t) +
√
1− α2 · η, η ∼ N (0, 1) (3.7)

where η is a Gaussian white noise term representing the stochastic disturbance in per-

ception at each time step. The coefficient α = exp(−∆t/τpers) functions as the correla-

20



doi:10.6342/NTU202600337

tion factor derived from the relaxation time of an Ornstein-Uhlenbeck process. The term
√
1− α2 is a scaling factor specifically derived to ensure the process remains stationary

with unit variance. This ensures that the perception error maintains a consistent statistical

magnitude rather than decaying or diverging over time.

The persistence time τpers, which dictates the duration of a specific perceptual bias,

is implemented as a dynamic parameter to model the attention shift phenomenon observed

in empirical driving behavior:

• Opening Up (∆v ≤ 0): When the gap widens or remains stable, the parameter

is maintained at the default baseline of 10.0 seconds. This setting represents a

nominal cognitive state where perceptual errors tend to persist for longer durations,

reflecting the decreased attentional demand on the driver.

• Closing In (∆v > 0): During the phase where the follower approaches the leader,

the persistence time τpers reduces from the baseline to 8.0 seconds. This shorter

relaxation period simulates the heightened alertness of the driver, necessitatingmore

frequent error correction as the perceived risk of collision rises.

3.5.3 Asymmetric Risk Assessment

Unlike machines, human drivers exhibit behavioral hysteresis: they are significantly

more conservative when approaching a vehicle than when falling behind. The HCCFM

quantifies this psychological safety buffer through a safety penalty function Ψ.

The decision-making logic does not use the raw perceived gap gp. Instead, it cal-

culates an effective gap geff (t), which represents the “mental space” the driver feels is

available
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geff (t) = max{0, gp(t)−Ψ(vego,∆v)} (3.8)

The safety penalty Ψ is formulated to quantify the risk-averse behavior of human

drivers, composed of a static buffer and a dynamic kinematic term

Ψ = vf · treac · Cstatic︸ ︷︷ ︸
Base Penalty

+ |∆v| · treac · Cdynamic︸ ︷︷ ︸
Dynamic Penalty

(3.9)

The base penalty is primarily designed to capture the conservative mindset of the

driver during steady-state cruising. By scaling with the current velocity vf , it represents

a baseline safety margin that drivers maintain to account for inherent uncertainties and to

achieve a smooth velocity profile. This term ensures that even in the absence of signif-

icant relative speed changes, the system encourages a proactive deceleration that avoids

aggressive maneuvers and promotes string stability.

Conversely, the dynamic penalty serves as a reactive mechanism that dominates dur-

ing transient periods of intense acceleration or braking. Since this term is proportional to

the absolute velocity difference |∆v|, its influence remains negligible when the vehicle is

cruising at a stable speed relative to the leading vehicle. However, during sudden braking

events or rapid closing-in scenarios, the weight of the dynamic penalty escalates rapidly.

This shifting dominance allows the model to transition from a “velocity smoothing” mode

during stable flow to a “collision avoidance”mode during high-riskmaneuvers, effectively

capturing the non-linear sensitivity of human drivers to rapid kinematic changes.

Moreover, the coefficientCdynamic is intentionally designed as an asymmetric param-

eter to capture the behavioral discrepancy between deceleration and acceleration. Empir-
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ical observations suggest that human drivers exhibit a heightened sensitivity to potential

collisions, leading to urgent braking, while they tend to be more sluggish or hesitant when

regaining speed. To mathematically represent this phenomenon, we define Cdynamic as

follow

Cdynamic =


Cdecel ≈ 1.5 if ∆v > 0 (Closing In)

Cacc ≈ 0.5 if ∆v ≤ 0 (Opening Up)

(3.10)

By setting Cdecel > Cacc—a relationship further validated through the calibration

against empirical data in Section 4.2.1—the safety penalty becomes more sensitive dur-

ing closing-in scenarios, effectively simulating the tendency of the driver to prioritize

safety through immediate and firm braking. Conversely, a lowerCacc reflects the observed

“slow-to-start” behavior, where the urgency to reduce the safety gap is significantly lower

than the urgency to maintain it during braking phases. This asymmetric formulation is

crucial for accurately replicating the evolution of traffic shockwaves. As established in

the theory of traffic hysteresis [38, 39], the slow recovery of following vehicles relative

to their braking response is a primary mechanism driving the persistence and upstream

propagation of congestion.

3.5.4 Final Action Determination

Finally, the HCCFM integrates these factors back into the Krauss safety logic. The

safe speed vsafe is computed by substituting the physical gap g(t) in Eq. 3.2 (Section 3.4)

with the psychological effective gap geff (t − treac), and utilizing the delayed leader ve-

locity
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vHCCFM
safe (t) = V (t− treac) +

geff (t− treac)− V (t− treac)τ
v(t−treac)+V (t−treac)

2b
+ τ

(3.11)

Thismodified vsafe is then used to determine the final actuation command, effectively

embedding human cognitive constraints into the vehicle’s control loop..

3.6 Speed Advisory System (SAS) Design

Building upon the identified limitations of human cognition in Section 3.5, the SAS

is designed as a “Human-in-the-Loop” cooperative controller. Unlike fully autonomous

systems that replace the driver, SAS augments human capabilities by converting the driv-

ing task from a high-latency, error-prone process into a low-latency, often-deterministic

execution task.

3.6.1 Digital State Acquisition and Latency Mitigation

While human drivers rely on delayed visual estimation with a typical physiological

reaction time treac ≈ 1.0 second, the SAS acquires kinematic data directly via V2X com-

munication. Let Sleader(t) = [xl(t), vl(t), al(t)]
T be the ground truth state of the leading

vehicle. The input state available to the SAS controller is

SSAS(t) = Sleader(t− tcomm) (3.12)

where tcomm represents the network transmission latency. In 5G-V2X environments,

tcomm is typically less than 50ms [35]. It is important to note that while tcomm is sig-

nificantly smaller than tHDV
reac , the SAS does not entirely eliminate the driver’s physical
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reaction time. Instead, it effectively removes the sensing and perception delay—the

time a driver spends estimating the leader’s speed and distance visually.

By providing proactive advisories based on this near-real-time state awareness, the

SAS allows the driver to begin the physical execution of a maneuver much earlier than if

they were relying solely on visual cues. Consequently, the total response time of a CHV

is significantly lower than that of an HDV, though it remains constrained by the human’s

residual movement reaction latency.

3.6.2 Cognitive LoadReduction: FromChoiceReactionTime to Sim-

ple Reaction Time

The core theoretical contribution of the SAS is the reduction of the effective reaction

time. According to Hick’s Law [33], unassisted driving is a Choice Reaction Time (CRT)

task, where the driver must interpret ambiguous cues and select from multiple possible

responses. To quantify this cognitive load, the reaction time (treac) is modeled logarith-

mically as a function of the number of available choices (n)

treac = a+ b · log2(n+ 1) (3.13)

where a represents the simple reaction time processing a known stimulus, and b is a coef-

ficient related to cognitive processing speed.

Consider a typical high-stress braking scenario where the brake lights on the leading

vehicle suddenly turned on. The human driver must instantaneously evaluate the situation

and choose from at least four potential actions (n = 4)
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1. Mild Braking: Adjust speed slightly to maintain gap.

2. Emergency Braking: Decelerate maximally to avoid collision.

3. Lane Change: Swerve to an adjacent lane to bypass the obstacle.

4. No Action: Decide that the braking is irrelevant and remain unaffected.

Substituting n = 4 into Eq. 3.13, the driver incurs a significant penalty due to the

selection process (treac ∝ log2(5)).

In contrast, the SAS simplifies this process by converting the task into a Simple Reac-

tion Time (SRT) paradigm. By presenting a single, calculated directive, e.g., “Accelerate

5 km/h”, the system eliminates ambiguity, effectively reducing the choices to a single

option (n = 1). The theoretical reaction time thus converges towards the minimum

tSAS
reac ∝ log2(1 + 1) = 1 (3.14)

Compared to the HDV scenario (log2 5 ≈ 2.32), the SAS theoretically reduces the

cognitive processing component by more than half. While the theoretical calculation

might suggest an even faster response, to account for residual physical movement de-

lays such as foot movement, and to maintain a safety margin, we conservatively configure

the effective reaction time parameter for SAS-equipped vehicles at 0.8 seconds in our

simulation (tSAS
reac = 0.8s), compared to the human baseline of 1.0 – 1.2 seconds.

3.6.3 Precision-Enabled Stability and Error Elimination

The SAS addresses the instability caused by human perception errors while maintain-

ing a conservative safety profile. The optimization is achieved through two mechanisms:
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• Elimination of Perception Error (k = 0): In the SAS-equipped vehicle, the head-

way gap is measured via precision sensors such as ToF sensors rather than being

visually estimated by the driver. Consequently, the Weber fraction k is set to zero,

effectively eliminating the stochastic error term E(t). The perception-level gap

available to the system is updated as

gSAS
p (t) = g(t− tcomm) (3.15)

where tcomm is the negligible network latency. However, it is important to empha-

size that the driver’s actual control response is still subject to the residual move-

ment reaction latency τm. This means that while the information used for decision-

making is error-free and near-real-time, the physical execution is based on this state

but occurs after the movement delay.

By removing the distance-dependent estimation errors associated with human vi-

sion, the SAS eliminates the “phantom” oscillations typically amplified by percep-

tual uncertainty. The resulting control command is derived from precise kinematic

data, allowing the CHV to stabilize the traffic string even while operating within

the constraints of human physical response limits.

• Retention of Asymmetric Safety Logic and Environmental Immunity: To en-

sure high safety standards and passenger comfort during manual takeover, the SAS

retains the asymmetric risk coefficients of the human baseline (Cdecel = 1.5, Cacc =

0.5). Unlike the standard Krauss model, which may assume ideal braking condi-

tions, the SAS deliberately preserves the conservative 1.5 multiplier for deceler-

ation gap calculation. This ensures that safety margins remain robust rather than
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reducing to the theoretical minimum.

Crucially, the reliance on V2X data grants the system a high degree of immunity

to environmental uncertainties. While human drivers often increase their safety

margins inconsistently or exhibit erratic behavior under varying visibility or com-

plex downstream conditions, the SAS provides stable and deterministic guidance

regardless of these external factors. Although the system remains conservative in

its risk-taking, the reduced total latency (treac = 0.8 seconds) and minimized head-

way (τ = 0.8 seconds) allow it to achieve significantly higher road capacity than

HDVs. This demonstrates that the efficiency gains stem from informational de-

terminism and processing speed rather than aggressive driving maneuvers.

3.6.4 Fail-Safe State Machine and Handover Protocol

To ensure robustness against communication instability such as packet losses, the

SAS incorporates a three-state fail-safe logic. The systemmonitors the “data age”, denoted

as ∆tage = tcurrent − tlast_pkt, of the V2X signal to determine the operational mode:

1. Active State (∆tage ≤ Tcoast): The system operates normally using fresh V2X data.

2. Coasting State (Tcoast < ∆tage ≤ Ttimeout): If packet loss is intermittent, the

system bridges the information gap by predicting the state of the leader using a

Constant-Velocity model.

3. Handover State (∆tage > Ttimeout): If the blackout duration exceeds the critical

threshold (set to 1.5 s), the system deems the estimation unreliable and executes

an immediate handover to the driver. To prevent hazardous oscillatory control, this
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transition is irreversible: the driver permanently disengages the SAS for the remain-

der of the session.

Compounded Latency and Physiological Realism A critical design consideration is

that a human driver cannot instantly assume control with perfect situational awareness

immediately after a system dropout. To capture this vulnerability, we model the transition

process using a compounded latency mechanism. This metric represents the realistic

total time delay before effective human braking occurs, calculated as the sum of the system

timeout threshold and the inherent reaction time of the driver:

Ttotal_delay = Ttimeout + tHDV
reac = 1.5s+ 1.0s = 2.5s (3.16)

This 2.5-second handover sequence unfolds in three distinct phases, integrating the

system logic with the cognitive recovery of the driver:

1. Phase 1: System Holding (0s → 1.5s): Corresponds to the coasting state. Upon

packet loss, the system attempts to bridge the gap using the constant velocity esti-

mator. During this 1.5-second interval, the human driver remains passive, relying

on the system to handle the control logic.

2. Phase 2: Cognitive Processing & Penalty (1.5s → 2.5s): At time t = 1.5 s,

the system declares a failure and issues a take-over request. Crucially, the control

logic enforces a re-acquisition penalty: the reaction time of the driver resets to the

human baseline (tHDV
reac ≈ 1.0 s), and the input state reverts to visual perception. This

interval simulates the time required for the driver to visually re-acquire the traffic

context and physically move the foot to the brake pedal.
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3. Phase 3: Action Execution (t > 2.5s): The driver successfully regains control. At

this timestamp, 2.5 seconds post-disconnection, the manual takeover is complete;

the SAS is deactivated, and the vehicle effectively reverts to the HDV operational

state.
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Chapter 4

Implementation

This chapter details the experimental implementation framework used to validate the

proposed system. We first introduce the simulation environment architecture based on

SUMO and TraCI. Subsequently, we describe the rigorous calibration process of the HC-

CFM using an empirical dataset to ensure behavioral realism. Finally, we define the spe-

cific experimental scenarios—includingmicroscopic pulse tests, macroscopic bottlenecks,

and network reliability tests—designed to comprehensively evaluate the performance of

the system.

4.1 Simulation Environment

An overview of the system architecture is illustrated in Figure 4.1. The SUMO sim-

ulator is controlled through the Traffic Control Interface (TraCI) to set vehicle variables

during the simulation using Python scripts.

The system architecture follows a closed-loop control strategy where the vehicle

states are retrieved, processed by the proposed driver model, and updated in real-time.

31



doi:10.6342/NTU202600337

Figure 4.1: Traffic Manager Control Logic using Python.

The simulation step length is configured to a high-resolution setting of 0.1 seconds. Con-

sequently, it is important to note that the vehicle data retrieved via TraCI at the current

step t corresponds to the simulation state at (t − 0.1) second, the immediate preceding

step. This discrete time-stepping mechanism ensures causal consistency, where the con-

trol logic computes the actuation for the current step based on the observed state from the

previous step.

4.2 Vehicle Model Implementation and Calibration

This section details the implementation of the Human-Driven Vehicle (HDV) and the

SAS-equipped vehicle models. To ensure the simulation reflects realistic traffic dynam-

ics, we conducted a rigorous two-phase calibration process: a microscopic calibration to

replicate individual car-following behaviors, and a macroscopic calibration to reproduce

aggregate flow characteristics and capacity drops in bottleneck scenarios.

4.2.1 Calibration Methodology

The calibration process aims to determine the parameter set that maximizes the fi-

delity of the HCCFM, ensuring the model faithfully reproduces real-world driving behav-

iors. To capture both realistic human driving dynamics and local traffic characteristics, we

conducted a rigorous two-phase calibration process utilizing distinct datasets for differ-

ent scales. Phase 1 focuses on microscopic behavioral realism using the NGSIM US-101
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dataset, while Phase 2 targets macroscopic capacity constraints using local data fromTai-

wan’s National Freeway No. 5.

Rationale for Hybrid Dataset Selection

To overcome data availability limitations while ensuring both behavioral fidelity

and local relevance, this hybrid calibration strategy was adopted. The NGSIM US-101

dataset [40]was selected formicroscopic calibration due to its provision of high-resolution

vehicle trajectories (x, y, v, a), which are absent in the aggregated macroscopic metrics

provided by Taiwan’s Traffic DetectionControl System (TDCS). Complementarily, macro-

scopic parameters were calibrated using local data from Taiwan’s National Freeway No.

5 [41] to accurately capture specific environmental constraints and reproduce the realistic

capacity drop observed in the tunnel environment.

Phase 1: Microscopic Calibration

To capture the nuances of human driving, we utilized real-world trajectory data from

theNGSIMUS-101 dataset [40]. The calibration focused on determining the three novel

conservative coefficients in Eqs. 3.9 and 3.10—Cstatic, Cdecel, and Cacc—under the as-

sumption that the average human driver possesses a reaction time (treac) and minimum

time headway (τ ) of approximately 1.0 second. The process was divided into two stages:

1. Stage 1: Static Coefficient (Cstatic): Weextracted “steady-state” consecutive leader-

follower trajectory pairs where the relative velocity was near zero (∆v ≈ 0). In

these stable conditions, the dynamic penalty terms vanish, allowing us to isolate

and calibrate the baseline risk perception (Cstatic) to match the observed following
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distances.

2. Stage 2: Dynamic Coefficients (Cdecel, Cacc): Using volatile “stop-and-go” traffic

data, we calibrated the dynamic responses to relative speed:

• Cdecel, which governs the safetymargin during deceleration as defined in Eq. 3.10,

was tuned during “closing-in” phases (∆v > 0) to capture the heightened

caution and braking magnitude when approaching a slower leader, yielding a

converged value of approximately 1.5.

• Cacc, the acceleration sensitivity coefficient introduced in Eq. 3.10, was tuned

during “opening-up” phases (∆v ≤ 0) to reflect the characteristic lag or hesi-

tation in acceleration when the leader pulls away, resulting in a coefficient of

0.5.

Phase 2: Macroscopic Calibration

To ensure the virtual bottleneck scenario (defined in Section 4.3) accurately reflects

real-world traffic breakdown, we performed a macroscopic calibration using empirical

data from the National Freeway No. 5 in Taiwan.

We analyzed data from the Traffic Detection Control System (TDCS) [41], specif-

ically comparing the maximum throughput of an open road section (Gantry 05F0055N)

against a tunnel bottleneck section (Gantry 05F0287N) during peak hours. The empiri-

cal data revealed a physical capacity drop of approximately 12.6% within the tunnel

environment.

To accurately reflect this phenomenon, a reverse-calibration processwas applied to

the behavioral parameters of the simulation. The HDV settings within the bottleneck zone
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were iteratively adjusted, specifically by increasing the reaction time treac to 1.2 seconds

and the deceleration coefficient Cdecel to 1.8. These specific values were established pre-

cisely because they yield a simulated capacity reduction that converges with the empirical

12.6% degradation, thereby ensuring the numerical fidelity of the bottleneck model.

4.2.2 Parameter Configuration

Based on the calibration methodology described above, the final parameter config-

urations for both HDV and SAS vehicles were established. To accurately model varying

traffic environments, these configurations are categorized into “open road” and “bottle-

neck” modes. The latter specifically corresponds to the high-stress conditions within the

virtual bottleneck scenario detailed in Section 4.3.2, ensuring the model reflects the capac-

ity degradation observed in empirical tunnel data. Table 4.1 summarizes the calibrated val-

ues used throughout the experiments. These parameters are not merely numerical inputs

but represent specific behavioral characteristics of human drivers and the SAS controller

under varying traffic conditions. The following insights highlight the rationale behind

these configurations and their implications for traffic stability:

• Bottleneck-Induced Stress (HDV):Within the bottleneck zone, the HDV parame-

ters are calibrated to represent a high-stress state. The increased reaction time of 1.2

seconds and the heightened deceleration coefficient of 1.8 model the cognitive load

and excessive caution that typically lead to capacity drops in confined environments

such as tunnels.

• Standard SAS Optimization (Open Road): In standard open-road conditions, the

SAS prioritizes maximum efficiency. It operates with a reduced reaction time of
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Table 4.1: Calibrated Model Parameters for HDV and SAS

Parameter Sym. HDV HDV SAS SAS Description
(Open) (Bottle.) (Open) (Bottle.)

Reaction Time treac 1.0 s 1.2 s 0.8 s 1.0 s Delay between Percep-
tion and Action

Min Headway τ 1.0 s 1.2 s 0.8 s 1.0 s Desired minimum time
gap

Weber Fraction k 0.1 0.1 0.0 0.0 Spatial perception error
rate (Noise)

Static Coeff Cstatic 0.5 0.5 0.5 0.5 Baseline safety buffer
Decel Coeff Cdecel 1.5 1.8 1.5 1.5 Risk aversion (Closing

gaps)
Accel Coeff Cacc 0.5 0.75 0.5 0.5 Recovery lag (Opening

gaps)

0.8 seconds and eliminates perception error (k = 0), optimizing traffic flow while

maintaining safe mechanical limits.

• Bottleneck Configuration (SAS-Bottle): Within bottleneck zones, the SAS ex-

clusively adopts a “Ready-to-Handover” profile. Instead of maximizing efficiency

with tight 0.8-second gaps, the system maintains a relaxed headway parameter of

1.0 second throughout the bottleneck segment. This strategic buffer prevents the

formation of extreme gaps that would be physiologically unmanageable for a driver

to inherit, thereby ensuring that the vehicle state remains constantly primed for a

safe manual transition should disengagement occur in these critical zones.

4.2.3 Baseline Models Configuration

To rigorously validate the proposedHCCFM,we employ two distinct baselinemodels

for comparative analysis, representing different levels of behavioral fidelity:

1. StandardKraussModel (Baseline 1): As the default car-followingmodel in SUMO,

Krauss represents the standard “Collision-Free” logic. It assumes imperfect driving
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mainly through a stochastic sigma parameter, lacking temporal error persistence.

2. Extended Intelligent DriverModel (EIDM) (Baseline 2): Representing the state-

of-the-art in modeling smooth, human-like, and jerk-limited driving dynamics. For

a fair comparison, we configured the EIDM with a reaction time of 0.8 seconds and

calibrated the tPersEstimate parameter to match the error persistence observed in

the NGSIM dataset.

4.2.4 Evaluation Metrics

Beyond the scalar Root Mean Square Error (RMSE), we introduce probabilistic met-

rics to evaluate the distributional fidelity of the models:

• Cumulative Distribution Function (CDF) of Error: Used to assess the proportion

of simulation steps where the velocity error falls within specific bounds.

• Kernel Density Estimation (KDE):Used to visualize the probability density func-

tion of errors, allowing us to inspect the bias and kurtosis of the model performance

relative to human trajectories.

4.3 Experimental Scenarios

Two distinct scenarios were designed to evaluate the system from microscopic and

macroscopic perspectives.

4.3.1 Pulse Step Test Scenario

This scenario evaluates the system ability to mitigate shockwave propagation. A

leading vehicle, labelled as “vehicle 0”, is trajectory-controlled to execute a specific per-
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turbation profile, as shown in Figure 4.2, while a platoon of 300 followers reacts to this

disturbance.

Figure 4.2: Leading vehicle speed through out the simulation.

• 0-120s: Constant speed cruising at 30m/s to stabilize the platoon.

• 120-125s: Rapid deceleration at 4m/s2 to 10m/s, simulating a hard braking event

similar to reacting to a cut-in.

• 125s-135s: Holding speed at 10m/s for 10 seconds.

• 135s-145s: Recovery acceleration at 2m/s2 back to 30m/s.

This severe “stop-and-go” event allows for the measurement of shockwave propaga-

tion length, recovery time and string stability.

4.3.2 Virtual Bottleneck Scenario

To measure the maximum road capacity, a virtual bottleneck is implemented to force

a traffic breakdown. Unlike a lane reduction, this method creates a localized zone of re-

duced efficiency. The defined zone represents an area with reduced visibility or geometric
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constraints such as a tunnel or curve. For HDVs, this environmental stress forces an in-

crease in reaction time (treac : 1.0s → 1.2s) and time headway (τ : 1.0s → 1.2s). Further-

more, the conservative coefficients are heightened (Cdecel : 1.5 → 1.8;Cacc : 0.5 → 0.75),

simulating the natural human tendency to drive cautiously and sluggishly in restricted en-

vironments.

In contrast, while the SAS-equipped vehicles are assumed to rely on onboard sensors

such as radar or LiDAR, which are immune to environmental constraints including low

lighting or geometric restrictions, a safety-oriented adjustment is implemented within the

bottleneck zone. To facilitate a safe potential handover to human control, the system

proactively relaxes its aggressive following parameters.

Specifically, both reaction time and headway are adjusted to 1.0 second inside the

zone. While this is less aggressive than the 0.8-second-open-road SAS setting, it avoids

the critical instability that might occur if a human driver were suddenly forced to take over

at an extreme close range. This strategy serves as a ready-to-handover state, balancing

operational efficiency with fail-safe readiness.

To accurately measure the macroscopic road capacity, a standard point-based induc-

tion loop detector—implemented as an E1 detector in SUMO—is installed at the location

x=3510m, immediately downstream of the bottleneck zone (3000m−3500m), as shown in

Figure 4.3. This specific placement is critical for capturing the queue discharge flow—the

maximum stabilized flow rate as vehicles accelerate out of the congested area. The de-

tector is configured to aggregate traffic flow and density data at 60-second intervals. This

temporal resolution is sufficient to construct the Fundamental Diagram while effectively

smoothing out microscopic fluctuations caused by individual vehicle interactions.
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Figure 4.3: Virtual bottleneck set up.

4.3.3 Penetration Rate Sensitivity

In real-world deployment, the transition to fully automated or assisted driving will

be gradual. To evaluate the robustness of the proposed system during this transition, we

conducted a sensitivity analysis regarding the market penetration rate. This analysis in-

vestigates the impact of the system from two distinct perspectives:

1. Macroscopic Capacity: Evaluating how the maximum sustainable flow rate of the

bottleneck improves as the proportion of SAS vehicles increases from 0% to 100%.

2. Microscopic Stability: Evaluating the mitigation of shockwaves propagation dis-

tance and the reduction of congestion time under the pulse step perturbation sce-

nario.

The vehicle stream is modeled as a mixed traffic environment. The penetration rate

(PR) is defined as follow

PR =
NSAS

NHDV +NSAS

× 100% (4.1)

where NHDV denotes the total number of HDVs not equipped with SAS, and NSAS

the total number of SAS-equipped vehicles. Simulations are executed at penetration levels
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(a) Case 1: SAS-SAS
(Active)

(b) Case 2: SAS-HDV
(Fallback)

(c) Case 3: HDV-SAS (d) Case 4: HDV-HDV

Figure 4.4: Interaction scenarios and parameter settings for different lead-following vehi-
cle pairs. The optimized SAS parameter set is activated only in Case 1.

ranging between 0% and 100% with increments of 10%.

Interaction Logic and Degradation Mechanism

While the penetration rate defines the overall proportion of equipped vehicles, the ac-

tivation of the advanced control features is governed by a strict pair-wise interaction logic.

Unlike standalone systems, the proposed SAS is designed to optimize flow cooperatively.

Consequently, the SAS operational mode, characterized by a reduced headway and

machine reaction time of 0.8 seconds, is triggered if and only if the following vehicle is

SAS-equipped and the leading vehicle is also SAS-equipped. This dependency ensures

that the tighter following gap is supported by the predictability or communication capa-

bility of the leading vehicle.

In all other scenarios—specifically when an SAS vehicle follows a HDV—the sys-

tem degrades to a conservative mode. In this fallback state, the SAS vehicle adopts the

behavioral parameters of a standard HDV with 1.0 second headway and human reaction

time to maintain safety margins against the stochastic behavior of the unequipped leader.

The specific interaction behaviors for all four possible car-following pairs are pre-

sented in Figure 4.4.

Let Mn be the active controller mode of vehicle n. The control logic is formally
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determined by

Mn =


SAS, if Type(n) = SAS ∧ Type(n− 1) = SAS

HDV, otherwise

(4.2)

where Type(n) denotes the equipment class of the subject vehicle, and Type(n− 1)

denotes that of the leading vehicle.

4.3.4 Network Reliability and Fail-Safe Mechanism

To assess the robustness of the syste against realistic communication failures, aGilbert-

ElliotModel is implemented to simulate 5G packet loss. Unlike simple stochastic models,

this approach captures the “bursty” nature of channel fading, where packet losses tend to

occur in consecutive clusters.

1. Gilbert-Elliot Channel Model

The communication link is modeled as a two-state Markov chain comprising aGood

State (G) and a Bad State (B).

• Good State (G): Packet delivery is successful.

• Bad State (B): Packet is lost.

Let p be the transition probability fromGood to Bad (G → B), and r be the transition

probability from Bad to Good (B → G). These probabilities are derived from two con-

figurable parameters: the packet loss rate (Ploss) and the average burst length (Lburst).
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The probability r is the inverse of the average burst length, representing the likelihood

of recovering from a fade

r =
1

Lburst

(4.3)

The probability p is then determined to satisfy the steady-state packet loss rate Ploss

p =
Ploss · r
1− Ploss

(4.4)

In this study, simulations are conducted under varying Ploss conditions while main-

taining a fixed burst length of 1.5 seconds.

2. State Estimation Strategy

During communication blackouts, the ego vehicle loses access to the real-time kine-

matics of the leader. To bridge these gaps and maintain control continuity, this study

adopts a Constant Velocity (CV) assumption. This strategy begins by calculating the

elapsed time since the last successful V2X transmission

∆t = t− tlast (4.5)

where tlast is the timestamp of the last received packet. To ensure a conservative esti-

mation that prioritizes string stability over aggressive tracking, we assume that the leader

maintains its speed without further acceleration during the blackout period

âlead(t) = 0 (4.6)
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Consequently, the estimated velocity of the leading vehicle (v̂lead) is held constant, set to

the value recorded at the final successful communication event

v̂lead(t) = vlead(tlast) (4.7)

Finally, the estimated gap (ĝ) at the current time t is projected by integrating the relative

velocity difference over the blackout duration ∆t

ĝ(t) = g(tlast) + (vlead(tlast)− vego(t)) ·∆t (4.8)

This approach ensures that the SAS controller operates on deterministic, albeit slightly

outdated, kinematic logic. By assuming constant velocity, the system prevents erratic ma-

neuvers or sudden speed spikes that could be triggered by erroneous or noisy estimation

of the leader’s higher-order dynamics during the period of uncertainty.

3. Fail-Safe Degradation Mechanism

To ensure safety during prolonged disconnects, a strict timeout threshold is enforced.

If the communication blackout persists for more than 1.5 seconds (∆t > 1.5s), the system

deems the estimation unreliable and triggers a fail-safe mode.

In this mode, control authority is reverted to the HDV logic. Specifically, to simulate

the cognitive limits of a human driver suddenly re-engaging with the task, the fallback

inputs are subject to human reaction latency (tHDV
reac ≈ 1.0s).
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Mode(t) =


SAS (Estimated), if ∆t ≤ 1.5s

HDV (Fallback), if ∆t > 1.5s

(4.9)

For the HDV fallback, the effective perception utilizes data from the reaction period.

This implies that when the driver takes control at∆t = 2.5 s, they are reacting to the traffic

state observed 1.0 second prior, which is at t = 1.5 seconds. This results in a compounded

latency effect that ensures a realistic worst-case safety assessment.

4.3.5 Two-Lane Capacity Scenario with Lane Changing Dynamics

The scenarios described previously focused exclusively on longitudinal vehicle dy-

namics within a single-lane environment. However, real-world highway capacity is heav-

ily influenced by lateral interactions, specifically lane-changing maneuvers, which often

serve as significant sources of perturbation. To address this limitation and evaluate the

system applicability in realistic traffic, a two-lane highway scenario is introduced.

In this setup, the simulation environment is expanded to a dual-lane configuration

where vehicles are permitted to execute lane changes. The lateral behavior is governed by

the default lane-changing model in SUMO, which dictates maneuvers based on strategic

routing, cooperative adjustments, and tactical speed gains.

Lane-Changing Incentive: Speed Heterogeneity

To induce realistic overtaking maneuvers and justify the need for lane changing, a

strict homogeneity of vehicle speeds must be broken. If all vehicles travelled at identical

desired speeds, no driver would have the incentive to change lanes for speed gain.
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Therefore, speed heterogeneity is introduced into the traffic stream. Instead of a fixed

velocity, the desired speed of each vehicle is sampled from a normal distribution with a

mean of 30 m/s and a standard deviation of 3 m/s. This variance creates natural speed

differentials between followers and leaders, providing the necessary incentive for faster

vehicles to seek overtaking opportunities. This setup introduces two critical perturbation

sources:

• Overtaking Demand: Faster vehicles aggressively seeking gaps to bypass slower

traffic.

• Cut-in Disturbances: Vehicles entering a lane force followers to adjust their spac-

ing, potentially triggering shockwaves.

Similar to the single-lane benchmark, the primary objective of this scenario is to

determine the maximum achievable capacity of the two-lane cross-section under varying

SAS penetration rate from 0% to 100%. This test investigates whether the longitudinal

stability benefits provided by SAS can effectively translate into capacity gains even in the

presence of lateral disruptions caused by this speed heterogeneity.
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Chapter 5

Evaluation

5.1 Overview

This chapter presents a comprehensive evaluation of the proposed SAS. The primary

objective is to quantify the effectiveness of the system in mitigating traffic shockwaves

and improving overall road capacity within a mixed autonomy environment. To ensure a

rigorous assessment, the evaluation is organized into six logical phases, progressing from

microscopic verification to macroscopic performance and robustness analysis:

1. Model Calibration and Validation (Section 5.2): First, the HCCFM is calibrated

against the NGSIM dataset to establish a realistic behavioral baseline, ensuring that

the simulation accurately reflects human reaction latencies and hesitation.

2. Microscopic String Stability (Section 5.3): We utilize the pulse step stress test

to validate the mechanism of action. This section analyzes how the reduced reac-

tion time actively dampens shockwave propagation and minimizes total delay at the

individual platoon level.
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3. Macroscopic Capacity Analysis (Section 5.4): Building upon microscopic stabil-

ity, the study expands to the virtual bottleneck scenario. We analyze the Fundamen-

tal Diagram to quantify the concrete percentage improvement in capacity achieved

by the SAS.

4. Sensitivity Analysis: Penetration Rate (Section 5.5): To assess feasibility during

the transitional period, this section evaluates performance across varying market

penetration rate. It investigates the critical mass effect required to observe signifi-

cant reductions in traffic delay.

5. Impact of Network Reliability (Section 5.6): Recognizing the reality of commu-

nication instability, we evaluate the robustness of the system using a Gilbert-Elliot

packet loss model. This section verifies the effectiveness of the proposed fail-safe

mechanism in preventing collisions during data blackouts.

6. Two-Lane Capacity Analysis (Section 5.7): Finally, the evaluation extends to a

realistic multi-lane highway environment with frequent lane-changing maneuvers.

This section tests whether the longitudinal stability benefits of SAS can effectively

translate into capacity gains in the presence of lateral disturbances.

5.2 Model Calibration and Validation

Before evaluating the macroscopic road capacity, it is essential to verify the funda-

mental mechanism of the proposed system. This section presents the validation of the

HCCFM against the NGSIM dataset, benchmarking it against both baselines, the standard

Krauss model and the EIDM, respectively.
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(a) Comparison with Standard Krauss Model (b) Comparison with EIDM Baseline

Figure 5.1: Velocity profile comparison for NGSIM Pair 707-704. (a) The Krauss model
(Green) exhibits excessive high-frequency jitter. (b) The EIDM (Cyan) is overly smooth
and robotic. The HCCFM (Orange) best captures the human-like drift and correction
cycles.

5.2.1 Trajectory Reproduction Capability

We first analyze the velocity profiles for the highly dynamic NGSIM consecutive

vehicle pair 707-704 to evaluate how well each model replicates human fluctuations.

• Krauss (Figure 5.1a): Unrealistic tight coupling. The standard Krauss model ex-

hibits “super-human” responsiveness due to its reaction time being coupled with the

simulation step set to 0.1 seconds. This near-perfect reaction capability causes the

vehicle to track the velocity of the leader profile too closely, resulting in a trajectory

that “sticks” to the leader and deviates significantly from the lagged, looser follow-

ing behavior observed in real human driving, leading to the highest RMSE of 0.88

m/s.

• EIDM (Figure 5.1b): Overly smooth profile. In contrast, the EIDM generates a

trajectory that is mathematically ideal but excessively smooth. While it mitigates the

tracking error, its jerk-minimizing logic results in a robotic profile that fails to cap-

ture the stochastic “drift and correction”micro-behaviors inherent in human driving,

making it distinguishable from the ground truth data. However, incorporating the

49



doi:10.6342/NTU202600337

reaction time concept successfully leads to a lower RMSE of 0.57 m/s.

• HCCFM Performance: The HCCFM achieves the best alignment with the ground

truth. Its superior performance stems from explicitly modeling physiological reac-

tion latency and asymmetric risk perception. These mechanisms allow the model

to accurately replicate the natural delays and “firm braking, gradual recovery” dy-

namics of human drivers, resulting in the lowest RMSE of 0.47 m/s.

To ensure robustness, we evaluated the models across 23 distinct trajectory pairs.

The results showed that the HCCFM consistently outperforms both baselines, achieveing

a lower mean RMSE of 1.10 m/s compared to Krauss and EIDM, which are 1.18 m/s and

1.48 m/s respectively, indicating that the proposed model adapts better to the noisy reality

of the NGSIM dataset.

5.2.2 Probabilistic Error Analysis (KDE & CDF)

Beyond scalar metrics like RMSE, we analyze the distributional characteristics of

velocity errors to assess the behavioral fidelity of the model. Figure 5.2 and Figure 5.3

present theKernel Density Estimation (KDE) andCumulativeDistribution Function (CDF)

of the error, respectively.

The KDE analysis, as shown in Figure 5.2, reveals that the HCCFM exhibits a highly

leptokurtic error distribution compared to the flatter, wider distributions of both theKrauss

and EIDM baselines. The probability density peaks sharply around zero, indicating that

for the vast majority of simulation steps, the HCCFMmaintains a high degree of precision

with minimal deviation from the ground truth.

This observation is quantitatively corroborated by the CDF analysis as shown in Fig-
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(a) KDE: HCCFM vs Krauss (b) KDE: HCCFM vs EIDM

Figure 5.2: Kernel Density Estimation (KDE) of velocity errors. The HCCFM (Orange)
exhibits a higher peak density around zero (leptokurtic distribution) compared to both
baselines, indicating higher precision and stability.

(a) CDF: HCCFM vs Krauss (b) CDF: HCCFM vs EIDM

Figure 5.3: Cumulative Distribution Function (CDF) comparison. The HCCFM curve
(Orange) rises slightly steeper than both baselines, indicating a higher probability of main-
taining low error margins.
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ure 5.3. The HCCFM curve rises slightly steeper than the baselines, demonstrating supe-

rior error containment. Specifically, the probability of the absolute error remaining below

1.0 m/s is consistently higher for our proposed model. This confirms that by integrat-

ing the distance-dependent Weber-Wiener process and the reaction time mechanism, the

HCCFM effectively mitigates the large, stochastic deviations often observed in standard

models, resulting in a more reliable and human-like behavioral prediction.

5.3 Microscopic String Stability of SAS

To rigorously evaluate the stabilizing effect of the SAS, we conducted the pulse step

stress test. In this scenario, the leading vehicle executes a sharp deceleration from 30m/s

to 10 m/s followed by an acceleration, creating a severe perturbation. The stability per-

formance is analyzed from three complementary perspectives:

1. Qualitative Visual Analysis: Using Space-time heatmaps to visualize shockwave

dissipation.

2. Quantitative Impact: Measuring shockwave propagation distance and total delay

time.

3. Mechanism Verification: Analyzing the amplification ratio to prove the physical

attenuation of the disturbance energy.

5.3.1 Qualitative Analysis: Space-Time Heatmaps

To intuitively visualize the propagation of the traffic shockwave, we employed space-

time heatmaps, where the color intensity represents the local speed of vehicles. Figure 5.4
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(a) HDV Baseline (b) SAS Integrated

Figure 5.4: Space-time heatmaps comparing shockwave propagation. (a) HDV Baseline:
The dark red band (indicating low speed 15m/s) propagates to the end of the car flow. (b)
SAS Integrated: The shockwave is visibly truncated. The red congestion wave transitions
to lighter colors (yellow/white) instantaneously, indicating a quick recovery to free-flow
speed.

contrasts the traffic flow evolution between the HDV baseline and the SAS-integrated

platoon. The detailed observation of the two figures are furthered discussed as follow:

• HDV Baseline (Figure 5.4a): Unbounded propagation. In the pure HDV sce-

nario, the shockwave exhibits a clear amplification characteristic. The deep red

band indicating severe congestion with speed< 15m/s does not dissipate; instead,

it propagates continuously upstream from the leader to the very tail of the platoon.

This indicates that the disturbance is preserved and even intensified as it travels,

forcing every subsequent driver to go through a stop-and-go scenario.

• SAS Integrated (Figure 5.4b): Rapid convergence. In strong contrast, the SAS

scenario demonstrates an over-damped characteristic. The shockwave is visibly

truncated. The deep red congestion zone is confined to only the first few vehicles

and vanishes rapidly within a short spatial range. The wave fails to propagate down-

stream, transitioning quickly into lighter yellow and white colors, which signifies a

quick recovery to free-flow speed.
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(a) Propagation distance difference. (b) Total delay time difference.

Figure 5.5: Quantitative stability metrics. (a) The shockwave propagation distance drops
significantly with SAS adoption. (b) Total delay time exhibits a dramatic decrease.

This visual comparison confirms that the SAS acts as a low-pass filter for traffic

disturbances, effectively filtering out high-frequency stop-and-go oscillations before they

can propagate through the platoon.

5.3.2 Quantitative Impact: Propagation Distance and Delay

We further quantified the effectiveness of the system using two key metrics: prop-

agation distance and total delay time. It is important to note that the results presented

in this section are derived from a single representative simulation instance of the pulse

step scenario, rather than a statistical average. This specific selection allows for a clear

isolation of the kinematic evolution of the shockwave under a deterministic perturbation.

1. Propagation Distance: As shown in Figure 5.5a, the shockwave in the pure HDV

environment propagated approximately 728.6 meters upstream. With the introduction of

SAS, this distance decreases significantly, limiting to only 86.4 meters, representing a

reduction of 88%. This confirms that SAS vehicles act as effective “wave breakers,”

spatially confining the congestion.
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2. Total Delay Time: Figure 5.5b illustrates the total time loss incurred by the pla-

toon, defined as the cumulative difference between the actual travel times and the theoreti-

cal free-flow baseline. The delay drops from 3580 seconds (HDV) to 356 seconds (100%

SAS), representing a massive 90% improvement.

5.3.3 Mechanism Verification: Perturbation Amplification Ratio

While the previous metrics demonstrate that the system works, this section analyzes

how it works by examining the perturbation amplification ratio. This metric is defined

as the ratio of the maximum velocity drop of the n-th vehicle (∆vn) to that of the leader

(∆vleader)

Ration =
vfree_flow − vmin,n

∆vleader
(5.1)

A ratio > 1.0 indicates instability and shockwave amplification, while a ratio < 1.0

indicates stability and damping effect.

Figure 5.6 reveals the fundamental difference in control physics between human

drivers and the SAS:

• HDV Baseline (Green Line): The human driver platoon exhibitsmarginal stabil-

ity. The ratio fluctuates between 0.6 and 1.0 but fails to decay significantly even af-

ter 100 vehicles. This “stagnant convergence” explains the persistence of phantom

traffic jams on real highways; while the disturbance remains bounded, it exhibits

negligible attenuation, resulting in sustained downstream oscillations.

• SAS (Orange Line): The proposed system demonstrates strong damping. The
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Figure 5.6: String stability analysis via perturbation amplification ratio. The green line
(HDV) shows marginal stability with slow convergence, while the orange line (SAS)
demonstrates rapid damping.

amplification ratio drops linearly and rapidly, reaching near-zero values by the 60th

vehicle. This proves that the SAS actively absorbs the kinetic energy of the distur-

bance, ensuring that the brakingmaneuver of the n-th vehicle is always significantly

milder than its predecessor.

5.4 Macroscopic Capacity Analysis

This section presents the results of the virtual bottleneck experiment, quantifying the

maximum sustainable road capacity under saturated conditions. Based on the parameter

modifications defined in Chapter 4, we evaluate three distinct scenarios:

1. HDV Baseline (Green Line): Represents current reality. Drivers in the bottleneck

zone exhibit increased reaction times (treac = 1.2 seconds) and asymmetric risk

perception (Cdecel = 1.8, Cacc = 0.75).
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2. SAS Takeover-Ready (Blue Line): The proposed “safety-first” implementation.

While the system utilizes the ideal configuration (treac = 0.8 seconds, τ = 0.8

seconds) in open road sections to maximize efficiency, it explicitly adopts a con-

servative setting (treac = 1.0 second, τ = 1.0 second) within the bottleneck zone to

facilitate potential human takeover.

3. SAS Robust (Orange Dashed Line): The “ideal” implementation. It assumes full

machine reliance without handover concerns, maintaining aggressive parameters

(treac = 0.8 seconds, τ = 0.8 seconds).

5.4.1 Fundamental Diagram Analysis

Figure 5.7 illustrates the flow-density relationship as traffic demand increases from

1600 veh/h to 2600 veh/h.

• HDV Saturation (Green): The baseline scenario saturates prematurely. The max-

imum capacity peaks at approximately 1638 veh/h at a low input demand. Be-

yond this point, the flow becomes unstable and degrades to a discharge rate of

≈ 1488 − 1560 veh/h. This confirms that human hesitation in confined environ-

ments is the primary bottleneck.

• SAS Take-over Ready (Blue): The proposed system demonstrates a clear capac-

ity extension. The flow increases linearly with demand, reaching a peak of 1998

veh/h at an input of 2100 veh/h. However, beyond this critical density, the flow

breaks down and converges towards the HDV baseline (≈ 1494 veh/h), indicating

the physical limit of the 1.0 second headway policy.

• SAS Robust (Orange): With aggressive parameters, the system delays the break-
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Figure 5.7: Capacity Comparison: HDV (Green), SAS Takeover-Ready (Blue), and SAS
Robust (Orange). The Blue line represents the realistic capacity gain under takeover-ready
safety constraints.

Table 5.1: Comparison of Macroscopic Road Capacity and Improvement Rates

Scenario Configuration (Zone) Peak Capacity Improvement vs. HDV

HDV (Baseline) RT = 1.2s, τ = 1.2s 1638 veh/h -
SAS Takeover-Ready RT = 1.0s, τ = 1.0s 1998 veh/h +21.98%
SAS Robust RT = 0.8s, τ = 0.8s 2400 veh/h +46.52%

down significantly, achieving a theoretical maximum of 2400 veh/h. This repre-

sents the upper bound of infrastructure efficiency if handover safety margins were

not a constraint.

5.4.2 Capacity Improvement Quantification

Table 5.1 summarizes the peak capacities and the percentage improvements relative

to the HDV baseline.

The results highlight a crucial trade-off: adopting the safety-aware takeover-ready

strategy secures a substantial 22% capacity gain, whereas pushing for the theoretical limit
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could yield 46.5%. The 22% gain is achieved purely by normalizing the driving behavior,

even without aggressive gap reductions.

5.4.3 Mechanism of Improvement and Breakdown

The phenomenon observed in Figure 5.7 can be explained by two key mechanisms:

1. Normalization of Risk Perception

The primary reason the SAS takeover-ready outperforms the HDV—despite using

similar temporal parameters (1.0 second vs 1.2 seconds)—is the elimination of asymmet-

ric behavioral hysteresis. HDV drivers brake hard (Cdecel = 1.8) but accelerate slowly

(Cacc = 0.75), causing gaps to widen unnecessarily. The SAS maintains consistent logic

(C = 1.5/0.5), ensuring that gaps created by departing vehicles are filled promptly, thus

sustaining higher flow.

2. The Breakdown Threshold

The sharp drop in the Blue line after 2100 veh/h input illustrates the density limit.

With a time headway of τ = 1.0 second, the minimum safe distance is larger than that

of τ = 0.8 seconds. When the input flow exceeds the physical space allowed by a 1.0-

second gap, the system is forced to decelerate to maintain safety, triggering a breakdown

that cascades back to HDV levels. This confirms that while SAS optimizes flow stability,

the absolute capacity is mathematically bounded by the chosen safety headway (τ ).

5.4.4 Sensitivity Analysis: Impact of Reaction Time on Capacity

The previous section demonstrated the capacity improvements using specific reaction

time configurations with 0.8 seconds for aggressive system and 1.0 second for takeover-
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Figure 5.8: Sensitivity analysis of bottleneck capacity under varying SAS reaction times
(0.6s− 1.0s). The black dashed line represents the baseline HDV capacity (1632 veh/h).
Even at a human-equivalent reaction time of 1.0s (purple line), the SAS achieves a peak
capacity of 2002 veh/h, confirming that the elimination of perception error contributes
significantly to flow efficiency.

ready situation. To generalize these findings and rule out the concern that the benefits are

solely derived from aggressive parameter tuning, we conducted a sensitivity analysis on

the SAS reaction time (tSAS
reac ).

Figure 5.8 illustrates the variation in bottleneck capacity as the reaction time degrades

from the ideal 0.6 seconds to the human-level 1.0 second. Note that in this experiment, the

time headway τ is coupled with reaction time (τ = tSAS
reac ) to strictly satisfy string stability

conditions.

The results, as shown in Figure 5.8, reveal a decisive advantage of the proposed

system architecture:

• Efficiency atHuman-Level Latency: The purple line represents the scenariowhere

the SAS operates with a reaction time of 1.0 second, identical to the human baseline.
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Despite this conservative latency, the system achieves a peak capacity of 2002 veh/

h, representing a 22.7% improvement over the HDV baseline (1632 veh/h). This

empirical evidence confirms that the capacity gain is not merely a product of faster

reaction times but is fundamentally driven by the precision of the control logic—

specifically, the elimination of stochastic perception errors (k = 0) and asymmetric

hysteresis.

• Latency-Dependent BreakdownThreshold: The analysis also identifies the phys-

ical limits of the system. While the 0.6-second configuration sustains stability up to

an input flow of 3000 veh/h, the 1-second configuration breaks down earlier at 2100

veh/h. This indicates that while “slow but precise” control is sufficient to improve

capacity, “fast and precise” control is required to maximize the critical density and

delay the onset of congestion under extreme demand.

This sensitivity analysis reinforces the validity of the capacity gains presented in

Section 5.4.2, proving that the SAS remains a superior solution to human driving even

under conservative operational constraints.

5.5 Sensitivity Analysis: Penetration Rate

To assess the feasibility of the SAS in a transitional mixed-autonomy environment,

we evaluated the performance of the system across varying market penetration rate. To

ensure statistical robustness and account for the stochastic nature of traffic generation and

driver behavior, all results presented in this section are the average of 10 simulation runs.

This rigorous testing reveals the performance stability of the system while eliminating
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(a) Capacity Improvement (b) Shockwave Propagation Distance

(c) Total Delay Reduction (d) Total Fuel Consumption

Figure 5.9: Macroscopic performance metrics under varying SAS penetration rates (0%-
100%). The “Critical Mass” phenomenon is consistently observed between 50% and 80%
across all efficiency metrics.

outliers. The analysis focuses on four key dimensions: macroscopic capacity, microscopic

stability, total delay time and fuel consumption.

5.5.1 Quantitative Improvements

Figure 5.9 illustrates the trends for bottleneck capacity, shockwave propagation dis-

tance, total delay time, and fuel consumption based on the 10-seed average data. The

improvements exhibit distinct, non-linear behaviors depending on the adoption phase:

• Bottleneck Capacity (Figure 5.9a): Threshold-based growth. The capacity im-

provement demonstrates a clear non-linear growth pattern. In the low-penetration

range from 0% to 30%, the capacity remains relatively stagnant. A significant

upward trend emerges only after exceeding the 30-40% threshold. As penetra-
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tion reaches 50% and above, the capacity grows quadratically, reaching a peak of

2009 veh/h at 100% penetration, representing a total improvement of approximately

21.2% over the baseline.

• Shockwave Propagation Distance (Figure 5.9b): Early stability benefit. In

strong contrast to capacity, the stability benefit appears immediately upon deploy-

ment. With just 20% SAS penetration, the propagation distance drops significantly

to 1274 meters with a reduction of 24.9%. The decline continues steadily, drop-

ping to 86 meters at 100% penetration. This confirms that even a small proportion

of SAS vehicles can act as effective “wave breakers”, dampening oscillations well

before macroscopic capacity benefits are fully realized.

• Total Delay Time (Figure 5.9c): The efficiency gap and critical mass. The delay

analysis reveals a “deployment valley” in the early stages from 0-30%, where total

delay exhibits negligible improvement. A decisive tipping point occurs between

40% and 60% penetration. The most dramatic reduction occurs at 70%, eventually

reaching a minimum of 357 seconds at full adoption, confirming that a critical mass

of approximately 50% is required to unlock significant travel time savings.

• Fuel Consumption (Figure 5.9d): Sustainability and damping. Finally, the

fuel consumption analysis introduces the dimension of sustainability. The system

achieves a remarkable 41.9% reduction in total fuel consumption at full adoption ,

dropping from 143.32 kg to 94.31 kg. The trend closely mirrors the delay reduction

curve, with the most precipitous drop occurring between 50% and 80% penetration.

This correlation confirms that the SAS improves efficiency fundamentally by sup-

pressing traffic oscillations , thereby converting the kinetic energy usually lost in

frequent braking maneuvers into sustained forward momentum.
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Table 5.2: Key Performance Metrics across Representative Penetration Rates (0-100%)

MPR Bottleneck Capacity Propagation Dist. Total Delay Fuel Consumption
(veh/h) Imp.(%) (m) Imp.(%) (s) Imp.(%) (kg) Imp.(%)

0% (HDV) 1658 - 1696 - 3733 - 143.32 -

30% 1693 +2.1% 1024 -39.6% 3708 -0.7% 143.11 -0.2%

50% 1769 +6.7% 750 -55.8% 3216 -13.9% 137.42 -2.5%

80% 1892 +14.1% 210 -87.6% 785 -79.0% 102.20 -34.7%

100% (SAS) 2009 +21.2% 86 -94.9% 357 -90.4% 94.31 -41.9%

Note: The system performance evolves through three distinct phases:

– 30% (Stability Phase): Offers significant safety gains (shockwave damping) despite marginal
efficiency improvements.

– 50% (Critical Mass): Represents the tipping point where delay and fuel consumption begin to
drop sharply.

– 80% (High Efficiency): System dominance is achieved, and stop-and-go oscillations are fully
suppressed.

5.5.2 Interpretative Summary: The Phases of Deployment

Based on the quantitative milestones identified in Table 5.2, the deployment of SAS

can be characterized by four distinct operational regimes defined by the breakpoints at

30%, 50%, and 80%:

1. Phase 1: Stability Precedes Efficiency

In the early adoption phase from 0% to 30%, the system functions primarily as

a safety mechanism. While macroscopic efficiency metrics remain stagnant, the

shockwave propagation distance is already reduced by nearly 40% at the 30%mark.

This indicates that sparse SAS vehicles act as local “dampers,” absorbing high-

frequency oscillations to prevent rear-end collision risks, even if they are insufficient

to accelerate the overall traffic stream.

2. Phase 2: The Efficiency Gap

This phase ranging from 30% to 50% represents a “deployment valley.” Despite
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improved stability, the total delay and fuel consumption exhibit a lag, improving

only marginally until the 50% threshold is crossed. This suggests that below 50%

penetration, the heterogeneity of the traffic stream prevents the formation of con-

tinuous, long-range platoons. The SAS vehicles are often trapped between HDVs,

limiting their ability to regulate the aggregate flow speed.

3. Phase 3: Critical Mass and Rapid Gain

The interval between 50% and 80% is the decisive “High-gain regime.” Once the

majority of vehicles are equipped, the probability of V2X coupling dominates. We

observe the steepest descent in both total delay, dropping from 3216 seconds to 785

seconds, and fuel xonsumption. This confirms that 50% penetration is the critical

tipping point required to unlock thermodynamic efficiency and time savings.

4. Phase 4: System Dominance

Beyond 80%, the system enters a saturation phase where it dictates the flow dynam-

ics completely. The “stop-and-go” waves are virtually eliminated with less than 210

meters left. While further gains are achieved up to 100%, the transition from 80%

to 100% represents the final optimization rather than a structural change in traffic

behavior.

5.5.3 Damping Effect Analysis

To understand the mechanism behind these improvements, we analyzed the perturba-

tion amplification ratio for different penetration rates. Figure 5.10 illustrates the evolution

of the amplification ratio as the shockwave propagates through the platoon.

As shown in Figure 5.10, the 0% red line and 25% orange line scenarios exhibit weak

stability, with ratios remaining high (> 0.6) even at the tail of the platoon. However, as
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Figure 5.10: Damping Effect across Penetration Rates. The y-axis represents the ampli-
fication ratio (∆vi/∆vleader). A steeper downward slope indicates stronger shockwave
absorption.

penetration increases to 100%, indicated by blue line, the curve drops sharply, confirming

that a higher density of SAS vehicles creates a stronger “damping network” that rapidly

absorbs kinetic energy.

5.5.4 Visual Verification: Shockwave Propagation

Finally, the mitigation of the shockwave is visualized using space-time diagrams in

Figure 5.11. The red dashed line marks the Shockwave Front, representing the upstream

limit of the congestion.

• 0%Penetration (Figure 5.11a): The shockwave propagates deeply upstream, pen-

etrating through more than half of the platoon. As the wavefront traverses the series

of green HDV trajectories, it exhibits minor stochastic oscillations induced by per-

ception noise yet shows no significant attenuation or damping effect. The distur-
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(a) 0% Penetration (b) 25% Penetration

(c) 50% Penetration (d) 100% Penetration

Figure 5.11: Space-Time Diagrams illustrating shockwave propagation at varying pene-
tration rates. Green lines represent HDVs, while Orange lines represent SAS vehicles.
The Red Dashed Line highlights the shockwave front. The shockwave front starts at the
position of 3684m.
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bance persists until reaching the position of 2556 meter, resulting in a total upstream

propagation distance of 1128 meters.

• 25% Penetration (Figure 5.11b): The introduction of SAS vehicles, indicated by

orange trajectories, initiates the mitigation of the disturbance. A notable observa-

tion occurs when the shockwave encounters consecutive SAS vehicles, where the

red dashed line depicting the shockwave front is deflected towards the upper right.

This trajectory shift indicates that the oscillation energy is partially absorbed by the

optimized damping of the SAS. Consequently, the upstream propagation is curtailed

earlier than in the baseline scenario, with the shockwave terminating at the position

of 3183 meter.

• 50% Penetration (Figure 5.11c): The presence of SAS vehicles begins to break

the continuous braking chain. The shockwave front becomes fragmented, and the

propagation distance is noticeably reduced when coming across consecutive SAS

vehicles, decreasing to only 295 meters, which shortens the distance by 73.8%.

• 100%Penetration (Figure 5.11d): The shockwave is immediately absorbed by the

SAS vehicles following the initial deceleration of the leader, stopping at the position

of 3539 meter, and propagating only a length of 145 meters.

5.6 Impact of Network Reliability

Reliable V2V communication is critical for the safety of cooperative systems. This

section evaluates the robustness of the SAS under realistic, unstable network conditions

using theGilbert-ElliotModel. To simulate a challenging environment, the average burst
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length is fixed at 15.0 (Lburst = 15), representing scenarios where packet losses occur in

long, consecutive clusters. The packet loss rate is incrementally increased from 0.0 to 1.0.

5.6.1 The Peril of Blind Estimation

First, we examine the system performance relying solely on the “constant velocity”

state estimation without any timeout mechanism. As shown in Figure 5.12 (a), while

the estimator is overly optimistic and maintains artificially high capacity (≈ 2000 veh/

h), it leads to a catastrophic rise in collision counts peaking at 21 collisions, indicating a

“phantom robustness.”

5.6.2 Robustness via Fail-Safe Mechanism

To mitigate the collision risks observed above, the fail-safe mechanism defined in

Section 3.6.4 is activated. As modeled, this introduces a realistic compound latency of

2.5 seconds before human intervention becomes effective. Figure 5.12 (b) demonstrates

the impact of introducing the fail-safe mechanism. The most critical improvement is

safety—collision count is reduced to zero across the entire spectrum. The capacity curve

exhibits a “graceful degradation” characteristic, gradually converging towards the HDV

baseline as the network deteriorates.

5.7 Two-Lane Capacity with Lane Changing Analysis

This section analyzes the system performance in the realistic two-lane highway sce-

nario defined in Chapter 4. Unlike the single-lane tests, this environment introduces speed

geterogeneity to induce frequent lane-changing maneuvers. These maneuvers typically

act as capacity-reducing disturbances, as human drivers often over-brake when cut off.

69



doi:10.6342/NTU202600337

(a) No Fail-Safe (Zero-Accel Belief) (b) With Fail-Safe Mechanism

Figure 5.12: Impact of network instability (Lburst = 15) on capacity and safety. (a)
Without fail-safe, collisions skyrocket. (b) With fail-safe, collisions are eliminated, and
capacity degrades gracefully. The black dashed line represents the baseline capacity (1632
veh/h) when the traffic consists entirely of Human-Driven Vehicles (HDVs).

Performance under Increasing Demand

Figure 5.13 (a) illustrates the detected flow rate against increasing input demand

across different penetration rates.

• HDV Baseline (0%, Blue Line): The capacity saturates early at 2254 veh/hr. The

curve flattens quickly, indicating that human drivers struggle to maintain flow effi-

ciency amidst the frequent cut-in disturbances caused by lane changers.

• SAS Improvement: As the SAS penetration increases, the saturation point is con-

sistently pushed higher. At 100% penetration, the system supports a massive flow

of 4697 veh/hr, effectively doubling (+108%) the capacity compared to the base-

line.

Correlation between Penetration and Capacity

Figure 5.13 (b) extracts the maximum capacity peak for each penetration level. The

results reveal a strong linear positive correlation. Unlike the bottleneck scenario where

benefits might plateau, the two-lane scenario shows continuous gains (2254 → 2863 →
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3514 → 4166 → 4697). This suggests that SAS does not just reduce headway; it funda-

mentally stabilizes lateral interactions. Under SAS guidance, vehicles can execute and

accommodate lane changes more decisively and tightly. The reduced reaction time al-

lows followers to accept cut-ins without triggering the severe “stop-and-go” shockwaves

that typically cripple HDV traffic.

5.8 Discussion

The experimental results presented in this chapter demonstrate the multi-faceted ben-

efits of the SAS. Beyond the raw performance metrics, this section synthesizes the find-

ings to discuss the underlying mechanisms, the inherent trade-offs between safety and

efficiency, and the broader implications for mixed autonomy deployment.

5.8.1 Linking Microscopic Stability to Macroscopic Capacity

Akey contribution of this study is the empirical verification of the link between string

stability and road capacity. The pulse step tests (Section 5.3) revealed that the SAS acts as

a low-pass filter, attenuating high-frequency braking oscillations. Macroscopically, this

damping effect prevents the formation of “phantom jams” at bottlenecks. As observed

in the fundamental diagram (Section 5.4), the capacity drop in HDV traffic is triggered

by the amplification of minor speed variances. By suppressing these variances at the

individual vehicle level, the SAS effectively postpones the flow breakdown, allowing the

bottleneck to operate at a higher density state, with the increase from 1632 to 1998 veh/h,

before saturation occurs. This confirms that homogenizing flow dynamics is as critical

as reducing time headways for capacity enhancement.
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(a) Detected Flow vs. Input Demand across Penetration Rates.

(b) Maximum Capacity vs. SAS Penetration Rate.

Figure 5.13: Two-Lane Scenario Results. (a) The system maintains flow stability at much
higher densities than HDVs. (b) Capacity improves linearly, demonstrating that SAS ef-
fectively mitigates the capacity loss usually caused by lane-changing disturbances.
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5.8.2 The Trade-off between Handover Safety and Maximum Effi-

ciency

The comparison between the “SAS take-over ready” and “SAS Robust” scenarios

highlights a fundamental design trade-off. While the theoretical limit of the system promises

a massive 46% capacity gain, the practical necessity of maintaining a takeover-ready

buffer constrains the realizable gain to approx. 22%. This safety insurance is unavoidable

in Level 2/3 systems where the human driver remains the ultimate fallback. However, our

results suggest that even with this constraint, the system provides substantial value. The

elimination of human reaction latency and asymmetry (Cdecel vs Cacc) alone contributes

significantly to flow smoothing, proving that behavioral regularization yields benefits

independent of aggressive gap reduction.

5.8.3 Phased Evolution of System Benefits

The sensitivity analysis indicates that the operational benefits of the SAS evolve

through three distinct phenomenological phases rather than scaling linearly. During the

initial stage of 0% to 30% penetration, the system exhibits a decoupled improvement pro-

file where shockwave damping improves significantly while traffic efficiency remains

stagnant. The intermediate interval between 30% and 50% functions as a transitional tip-

ping point, where the increasing density of consecutive SAS vehicles begins to convert

stability gains into measurable reductions in travel delay. Finally, as penetration exceeds

50%, the traffic flow enters a state of operational dominance, characterized by the effec-

tive eradication of stop-and-go waves and a non-linear surge in total roadway capacity. In

summary, the deployment strategy must be adaptive: prioritizing safety messaging in the

short term, aggressive incentives in the medium term to reach critical mass, and efficiency
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maximization in the long term.
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Chapter 6

Conclusion

6.1 Summary of Work

This thesis addressed the critical challenge of traffic congestion caused by stop-and-

go shockwaves in a mixed autonomy environment. Recognizing that human reaction la-

tency and perception errors—governed by Hick’s Law and Weber’s Law—are the pri-

mary causes of string instability, we proposed SAS.

The SAS is not merely a driver assistance tool but a mechanism designed to trans-

form the driving task from a high-latency Choice Reaction Time (CRT) paradigm

to a low-latency Simple Reaction Time (SRT) paradigm. By leveraging V2X commu-

nication to provide preemptive, numeric advisories, the system effectively bypasses the

complex cognitive processing stages of human drivers.

To ensure a realistic evaluation, we developed HCCFMwithin the SUMO simulation

environment. By incorporating Weber’s Law for perception error, the model successfully

replicated the instability characteristics of real-world traffic, serving as a rigorous baseline

for testing the proposed system.
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6.2 Key Findings

The comprehensive evaluation yielded several significant findings regarding the ef-

fectiveness and characteristics of the SAS:

1. Microscopic Damping Effect: The system reduced the shockwave propagation

distance by 94.9%, confirming that the SAS converts the traffic stream from a

marginally stable state to a strictly stable state, effectively acting as a low-pass

filter for disturbances.

2. Macroscopic Capacity Enhancement: The SAS demonstrated a significant in-

crease in road capacity, representing a 22.4% improvement while maintaining a

conservative “takeover-ready” state. This demonstrates that substantial efficiency

gains are achievable purely by normalizing driving behavior and eliminating human

asymmetry, even when the system is constrained to human-like safety margins to

ensure seamless manual handover.

3. Phased Benefit Realization — Non-linear Scalability and Critical Mass: The

sensitivity analysis reveals that the benefits of the syste do not scale linearly with

market penetration. While initial deployment up to 30% MPR primarily enhances

string stability and safety by dampening shockwaves, significant improvements in

traffic efficiency—such as reduced delays and increased bottleneck capacity—only

materialize after crossing a critical mass threshold of approximately 50%. This find-

ing indicates that while immediate safety benefits can be realized with low adoption,

achieving the full potential of flow harmonization requires policy interventions to

push adoption rates beyond this tipping point.
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4. Robustness and Fail-Safe: The system demonstrated robustness against network

instability. The proposed fail-safe mechanism, which reverts to a conservative hu-

man driving mode during communication blackouts, ensured zero collisions even

under high packet loss rates, achieving a graceful degradation of performance.

6.3 Limitations

While the results are promising, several limitations of this study must be acknowl-

edged:

1. Driver Compliance Assumption: The current simulation assumes that drivers

comply 100% with the system advisories. In reality, driver trust, distraction, or

resistance could lead to partial compliance, potentially reducing system effective-

ness.

2. Passenger Comfort (Jerk): The study focused primarily on flow stability and

safety. The rapid acceleration adjustments required to dampen shockwaves might

result in high jerk values, which could negatively affect passenger comfort.

3. Simplified Lateral Interactions: Although a two-lane scenario was tested, the

interaction between mandatory lane changes such as on-ramps and the longitudinal

advisory logic requires further investigation.

4. Sensor Noise and Latency in SAS: This study assumes that the SAS-equipped

vehicles possess near-perfect information accuracy (ϵ ≈ 0) via V2V/Sensors. In

physical deployment, ToF sensors have their own noise profiles and processing de-

lays, which were simplified in this simulation.
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5. Vehicle Heterogeneity: The current simulation models a homogeneous fleet of

passenger cars. The impact of heavy vehicles such as trucks and buses with different

dynamic capabilities on the advisory logic remains to be explored.

6.4 Future Work

Future research directions to extend this work include:

1. Incorporating aComplianceModel: Introducing a stochastic compliance factor to

model the probability of a driver ignoring or delaying the execution of an advisory,

allowing for more realistic performance bounds.

2. Comfort-Aware Control: Optimizing the control algorithm to include a cost func-

tion for jerk, balancing the trade-off between shockwave suppression and ride com-

fort.

3. Robustness against Sensor Uncertainty: Extending the control algorithm to in-

clude Kalman Filtering or other state-estimation techniques to handle realistic sen-

sor noise in the SAS input data.

4. Heterogeneous Traffic Integration: Adapting the advisory logic to account for

diverse vehicle classes, potentially dynamically adjusting the safety headways based

on the specific braking capabilities of the following vehicle.

5. FieldOperational Tests: validating the proposed concepts using driving simulators

or small-scale field tests with connected vehicles to assess real-human interaction

with the advisory interface.
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In conclusion, this thesis demonstrates that the SAS is a viable and high-impact so-

lution for the transitional period of mixed autonomy. By augmenting human capabilities

rather than replacing them, SAS offers a practical path to alleviating highway congestion

before the full advent of autonomous driving.
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