Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 重點科技研究學院
  3. 元件材料與異質整合學位學程
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/101527
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor李峻霣zh_TW
dc.contributor.advisorJiun-Yun Lien
dc.contributor.author黃鈺瑄zh_TW
dc.contributor.authorYu-Hsuan Huangen
dc.date.accessioned2026-02-11T16:05:31Z-
dc.date.available2026-02-12-
dc.date.copyright2026-02-11-
dc.date.issued2026-
dc.date.submitted2026-01-27-
dc.identifier.citation[1] R. P. Feynman, “Simulating physics with computers,” International Journal of Theoretical Physics, vol. 21, no. 6–7, pp. 467–488, Jun. 1982.
[2] J. Preskill, “Quantum computing 40 years later,” arXiv:2106.10522, 2023.
[3] A. Montanaro, “Quantum algorithms: An overview,” NPJ Quantum Information, vol. 2, p. 15023, 2016.
[4] M. A. Nielsen and I. L. Chuang, “Quantum Computation and Quantum Information,” 10th ed. Cambridge, UK: Cambridge University Press, 2010.
[5] E. Chae, J. Choi, and J. Kim, “An elementary review on basic principles and developments of qubits for quantum computing,” Nano Convergence, vol. 11, 2024.
[6] S. K. Sood and Pooja, “Quantum computing review: A decade of research,” IEEE Transactions on Engineering Management, vol. 71, pp. 6662–6676, 2024.
[7] A. Einstein, B. Podolsky, and N. Rosen, “Can quantum-mechanical description of physical reality be considered complete?,” Physical Review, vol. 47, no. 10, pp. 777–780, 1935.
[8] F. Jazaeri, A. Beckers, A. Tajalli, and J.-M. Sallese, “A review on quantum computing: Qubits, cryogenic electronics and cryogenic MOSFET physics,” arXiv:1908.02656, 2019.
[9] X. Qiang et al., “Large-scale silicon quantum photonics implementing arbitrary two-qubit processing,” Nature Photonics, vol. 12, no. 9, pp. 534–539, 2018.
[10] G. Popkin, “Quest for qubits,” Science, vol. 354, pp. 1090–1093, 2016.
[11] N. P. de Leon et al., “Materials challenges and opportunities for quantum computing hardware,” Science, vol. 372, 2021.
[12] Y. J. Wu, “四族異質結構中的量子傳輸特性,” Ph.D. dissertation, National Taiwan University, Taipei, Taiwan, 2024
[13] F. Arute et al., “Quantum supremacy using a programmable superconducting processor,” Nature, vol. 574, pp. 505–510, 2019.
[14] X. Xue et al., “CMOS-based cryogenic control of silicon quantum circuits,” Nature, vol. 593, no. 7858, pp. 205–210, 2021.
[15] F. Sebastiano et al., “Cryo-CMOS Interfaces for Large-Scale Quantum Computers,” 2020 IEEE International Electron Devices Meeting (IEDM), San Francisco, CA, USA, pp. 25.2.1–25.2.4, 2020.
[16] H. Oka, “Cryo-CMOS device technology for quantum computers,” JSAP Review, vol. 2022, 2022.
[17] E. Charbon et al., “Cryo-CMOS for quantum computing,” 2016 IEEE International Electron Devices Meeting (IEDM), San Francisco, CA, USA, pp. 13.5.1–13.5.4, 2016.
[18] S. R. Ekanayake, T. Lehmann, A. S. Dzurak, R. G. Clark, and A. Brawley, “Characterization of SOS-CMOS FETs at low temperatures for the design of integrated circuits for quantum bit control and readout,” IEEE Transactions on Electron Devices, vol. 57, no. 2, pp. 539–547, Feb. 2010.
[19] J. M. Hornibrook et al., “Cryogenic control architecture for large-scale quantum computing,” Physical Review Applied, vol. 3, no. 2, 2015.
[20] B. Patra et al., “Cryo-CMOS circuits and systems for quantum computing applications,” IEEE Journal of Solid-State Circuits, vol. 53, no. 1, pp. 309–321, Jan. 2018.
[21] F. H. Gaensslen, V. L. Rideout, E. J. Walker, and J. J. Walker, “Very small MOSFET’s for low-temperature operation,” IEEE Transactions on Electron Devices, vol. 24, no. 3, pp. 218–229, Mar. 1977.
[22] M. Aoki, S. Hanamura, T. Masuhara, and K. Yano, “Performance and hot-carrier effects of small CRYO-CMOS devices,” IEEE Transactions on Electron Devices, vol. 34, no. 1, pp. 8–18, Jan. 1987.
[23] L. Petit et al., “Universal quantum logic in hot silicon qubits,” Nature, vol. 580, pp. 355–359, 2020.
[24] C. H. Yang et al., “Operation of a silicon quantum processor unit cell above one kelvin,” Nature, vol. 580, no. 7803, pp. 350–354, 2020.
[25] J. Gong, E. Charbon, F. Sebastiano, and M. Babaie, “A Cryo-CMOS PLL for quantum computing applications,” IEEE Journal of Solid-State Circuits, vol. 58, no. 5, pp. 1362–1375, May 2023.
[26] L. Le Guevel et al., “Low-power transimpedance amplifier for cryogenic integration with quantum devices,” Applied Physics Reviews, vol. 7, no. 4, 2020.
[27] G. Kiene, “Cryogenic mixed-signal readout electronics for quantum computers,” Ph.D. dissertation, Delft University of Technology, Delft, The Netherlands, 2024.
[28] T. Inaba et al., “Determining the low-frequency noise source in cryogenic operation of short-channel bulk MOSFETs,” 2023 IEEE Symposium on VLSI Technology and Circuits, Kyoto, Japan, pp. 1–2, 2023.
[29] H. Oka et al., “Toward long-coherence-time Si spin qubit: The origin of low-frequency noise in cryo-CMOS,” 2020 IEEE Symposium on VLSI Technology, Honolulu, HI, USA, pp. 1–2, 2020.
[30] S. M. Sze and K. K. Ng, “Physics of Semiconductor Devices,” 3rd ed. Hoboken, NJ, USA: John Wiley & Sons, 2006.
[31] A. Beckers, F. Jazaeri, A. Grill, S. Narasimhamoorthy, B. Parvais, and C. Enz, “Physical model of low-temperature to cryogenic threshold voltage in MOSFETs,” IEEE Journal of the Electron Devices Society, vol. 8, pp. 780–788, 2020.
[32] A. Beckers, F. Jazaeri, and C. Enz, “Theoretical limit of low-temperature subthreshold swing in field-effect transistors,” IEEE Electron Device Letters, vol. 41, no. 2, pp. 276–279, Feb. 2020.
[33] H. Oka et al., “Milli-kelvin analysis revealing the role of band-edge states in cryogenic MOSFETs,” 2023 IEEE International Electron Devices Meeting (IEDM), San Francisco, CA, USA, pp. 1–4, 2023.
[34] A. Beckers, F. Jazaeri, and C. Enz, “Cryogenic MOS transistor model,” IEEE Transactions on Electron Devices, vol. 65, no. 9, pp. 3617–3625, Sep. 2018.
[35] A. Beckers, F. Jazaeri, A. Grill, S. Narasimhamoorthy, B. Parvais, and C. Enz, “Physical model of low-temperature to cryogenic threshold voltage in MOSFETs,” IEEE Journal of the Electron Devices Society, vol. 8, pp. 780–788, 2020.
[36] S. Takagi, A. Toriumi, M. Iwase, and H. Tango, “On the universality of inversion layer mobility in Si MOSFET’s: Part I—Effects of substrate impurity concentration,” IEEE Transactions on Electron Devices, vol. 41, no. 12, pp. 2357–2362, Dec. 1994.
[37] H. Oka, T. Inaba, S. Iizuka, H. Asai, K. Kato, and T. Mori, “Effect of conduction band edge states on Coulomb-limiting electron mobility in cryogenic MOSFET operation,” 2022 IEEE Symposium on VLSI Technology and Circuits, Honolulu, HI, USA, pp. 334–335, 2022.
[38] X. Zhang, Z. Wu, J. Bu, B. Li, and Z. Han, “Modeling of the subthreshold swing in cryogenic MOSFET with the combination of Gaussian band tail and Gaussian interface state,” IEEE Transactions on Electron Devices, vol. 71, no. 2, pp. 1173–1178, Feb. 2024.
[39] C.-K. Park, C.-Y. Lee, K. Lee, B.-J. Moon, and M. Shur, “A unified current–voltage model for long-channel nMOSFETs,” IEEE Transactions on Electron Devices, vol. 38, no. 2, pp. 399–406, Feb. 1991.
[40] K. Ismail, M. Arafa, K. L. Saenger, J. O. Chu, and B. S. Meyerson, “Extremely high electron mobility in Si/SiGe modulation-doped heterostructures,” Applied Physics Letters, vol. 66, no. 9, pp. 1077–1079, 1995.
[41] M. L. Lee, E. A. Fitzgerald, M. T. Bulsara, M. T. Currie, and A. Lochtefeld, “Strained Si, SiGe, and Ge channels for high-mobility metal-oxide-semiconductor field-effect transistors,” Journal of Applied Physics, vol. 97, no. 1, 2005.
[42] M. Enciso Aguilar et al., "Strained Si HFETs for microwave applications: state-of-the-art and further approaches," Solid-State Electronics, vol. 48, no. 8, pp. 1443–1452, 2004.
[43] U. König, M. Glück, and G. Höck, "Si/SiGe field-effect transistors," Journal of Vacuum Science & Technology B, vol. 16, no. 5, pp. 2609–2614, Sep. 1998.
[44] S. P. Harvey, “Quantum dots/spin qubits,” Oxford Research Encyclopedia of Physics, 2022.
[45] W.-C. Hou, N.-W. Hsu, T.-M. Wang, C.-Y. Liu, H.-S. Kao, M.-J. Chen, and J.-Y. Li, “Cryogenic Si/SiGe heterostructure flash memory devices,” ACS Applied Electronic Materials, vol. 4, no. 6, pp. 2879–2884, 2022.
[46] R. People, “Physics and applications of GexSi1-x/Si strained-layer heterostructures,” IEEE Journal of Quantum Electronics, vol. 22, no. 9, pp. 1696–1710, Sep. 1986.
[47] K.-Y. Chou, N.-W. Hsu, Y.-H. Su, C.-T. Chou, P.-Y. Chiu, Y. Chuang, and J.-Y. Li, “Temperature dependence of DC transport characteristics for a two-dimensional electron gas in an undoped Si/SiGe heterostructure,” Applied Physics Letters, vol. 112, no. 8, Feb. 2018.
[48] D. Schroder, “Semiconductor Material and Device Characterization,” 3rd ed. Hoboken, NJ, USA: Wiley, 2006.
[49] V. Misra and M. C. Öztürk, “Field effect transistors,” The Electrical Engineering Handbook, W.-K. Chen, Ed. Amsterdam, The Netherlands: Academic Press, pp. 109–126, 2005.
[50] S. Kim, S. H. Lee, I. H. Jo, and others, “Influence of growth temperature on dielectric strength of Al2O3 thin films prepared via atomic layer deposition at low temperature,” Scientific Reports, vol. 12, 2022.
[51] G. D. Wilk, R. M. Wallace, and J. M. Anthony, “High-κ gate dielectrics: Current status and materials properties considerations,” Journal of Applied Physics, vol. 89, no. 10, pp. 5243–5275, May 2001.
[52] K. J. Yang and C. Hu, “MOS capacitance measurements for high-leakage thin dielectrics,” IEEE Transactions on Electron Devices, vol. 46, no. 7, pp. 1500–1501, Jul. 1999.
[53] M.-S. Liang, J. Y. Choi, P.-K. Ko, and C. Hu, “Inversion-layer capacitance and mobility of very thin gate-oxide MOSFET’s,” IEEE Transactions on Electron Devices, vol. 33, no. 3, pp. 409–413, Mar. 1986.
[54] 汪子茗, “無摻雜矽/矽鍺異質接面之二維電子氣之材料與電性分析,” 碩士論文, 國立臺灣大學, 台北, 台灣, 2022.
[55] M. E. Levinshtein, S. L. Rumyantsev, and M. S. Shur, “Properties of advanced semiconductor materials: GaN, AlN, InN, BN, SiC, SiGe,” New York, NY, USA: Wiley-Interscience, 2001.
[56] J. Yoneda et al., “A quantum-dot spin qubit with coherence limited by charge noise and fidelity higher than 99.9%,” Nature Nanotechnology, vol. 13, no. 2, pp. 102–106, 2018.
[57] A. V. Kuhlmann et al., “Charge noise and spin noise in a semiconductor quantum device,” Nature Physics, vol. 9, no. 9, pp. 570–575, 2013.
[58] M. von Haartman and M. Östling, "Low-Frequency Noise in Advanced MOS Devices," Springer, 2007.
[59] H. D. Xiong, “Low frequency noise and charge trapping in MOSFETs,” Ph.D. dissertation, Vanderbilt University, 2004.
[60] W. B. Davenport and W. L. Root, "Random Variables and Probability Distributions," "An Introduction to the Theory of Random Signals and Noise," IEEE, pp. 19–44, 1987.
[61] A. Papoulis and S. U. Pillai, "Probability, Random Variables, and Stochastic Processes," 4th ed., McGraw-Hill, 2002.
[62] A. Leon-Garcia, "Probability, Statistics, and Random Processes for Electrical Engineering," 3rd ed., Pearson, 2008.
[63] J. T. Hodges, "Low-frequency noise characterisation and modelling of metal-oxide-semiconductor field-effect transistors," master thesis, Macquarie University, 2019.
[64] W. Schottky, "Über spontane Stromschwankungen in verschiedenen Elektrizitätsleitern," Annalen der Physik, vol. 362, pp. 541–567, 1918.
[65] J. B. Johnson, "Thermal agitation of electricity in conductors," Physical Review, vol. 32, no. 1, pp. 97–109, Jul. 1928.
[66] H. Nyquist, "Thermal agitation of electric charge in conductors," Physical Review, vol. 32, no. 1, pp. 110–113, Jul. 1928.
[67] T. Lakoba, "Black-body radiation and Planck’s formula," lecture notes, University of Vermont, 2013.
[68] P. R. LeClair, "Nyquist theorem and thermal noise power," lecture notes, Department of Physics and Astronomy, University of Alabama, n.d.
[69] D. M. Pozar, "Microwave Engineering," 4th ed., John Wiley & Sons, 2012.
[70] W. Schottky, "On spontaneous current fluctuations in various electrical conductors," Journal of Micro/Nanolithography, MEMS, and MOEMS, vol. 17, no. 4, p. 041001, 2018.
[71] Ya. M. Blanter and M. Büttiker, "Shot noise in mesoscopic conductors," Physics Reports, vol. 336, nos. 1–2, pp. 1–166, 2000.
[72] UCD Physics, "Shot noise," lecture notes, University of California, n.d.
[73] A. van der Ziel and E. R. Chenette, "Noise in solid state devices," Advances in Electronics and Electron Physics, vol. 46, pp. 313–383, 1978.
[74] S. Mohammadi, D. Pavlidis, and B. Bayraktaroglu, "Relation between low-frequency noise and long-term reliability of single AlGaAs/GaAs power HBTs," IEEE Transactions on Electron Devices, vol. 47, no. 4, pp. 677–686, Apr. 2000.
[75] J. Pavelka, J. Sikula, M. Tacano, and M. Toita, "Activation energy of RTS noise," Radioengineering, vol. 20, Apr. 2011.
[76] C. G. Theodorou and G. Ghibaudo, "Noise and fluctuations in fully depleted silicon-on-insulator MOSFETs," Noise in Nanoscale Semiconductor Devices, pp. 33–85, 2020.
[77] K. S. Ralls, W. J. Skocpol, L. D. Jackel, R. E. Howard, L. A. Fetter, R. W. Epworth, and D. M. Tennant, "Discrete resistance switching in submicrometer silicon inversion layers: Individual interface traps and low-frequency (1/f) noise," Physical Review Letters, vol. 52, no. 3, pp. 228–231, Jan. 1984.
[78] M. J. Uren, D. J. Day, and M. J. Kirton, "1/f and random telegraph noise in silicon metal-oxide-semiconductor field-effect transistors," Applied Physics Letters, vol. 47, no. 11, pp. 1195–1197, Dec. 1985.
[79] J. Jomaah, F. Balestra, and G. Ghibaudo, "Low frequency noise in advanced Si bulk and SOI MOSFETs," Journal of Telecommunications and Information Technology, vol. 19, no. 1, pp. 24–33, Mar. 2005.
[80] S. Machlup, "Noise in semiconductors: Spectrum of a two-parameter random signal," Journal of Applied Physics, vol. 25, no. 3, pp. 341–343, Mar. 1954.
[81] M. J. Kirton and M. J. Uren, "Noise in solid-state microstructures: A new perspective on individual defects, interface states and low-frequency (1/f) noise," Advances in Physics, vol. 38, no. 4, pp. 367–468, 1989.
[82] National Institute of Informatics, "First quantum: quantum information science for students, chapter 9 – noise," lecture notes, n.d.
[83] E. Milotti, "1/f noise: a pedagogical review," arXiv preprint, 2002.
[84] J. B. Johnson, "The Schottky effect in low frequency circuits," Physical Review, vol. 26, no. 1, pp. 71–85, Jul. 1925.
[85] W. Schottky, "Small-shot effect and flicker effect," Physical Review, vol. 28, no. 1, pp. 74–103, Jul. 1926.
[86] P. Dutta and P. M. Horn, "Low-frequency fluctuations in solids: 1/f noise," Reviews of Modern Physics, vol. 53, no. 3, pp. 497–516, Jul. 1981.
[87] F. N. Hooge, T. G. M. Kleinpenning, and L. K. J. Vandamme, "Experimental studies on 1/f noise," Reports on Progress in Physics, vol. 44, no. 5, pp. 479–532, May 1981.
[88] A. L. McWhorter, "1/f noise and related surface effects in germanium," technical report, MIT Lincoln Laboratory, Lexington, MA, 1955.
[89] M. B. Weissman, "1/f noise and other slow, nonexponential kinetics in condensed matter," Reviews of Modern Physics, vol. 60, no. 2, pp. 537–571, Apr. 1988.
[90] A. van der Ziel, "On the noise spectra of semi-conductor noise and of flicker effect," Physica, vol. 16, pp. 359–372, 1950.
[91] A. van der Ziel, "Flicker noise in electronic devices," Advances in Electronics and Electron Physics, vol. 49, pp. 225–297, 1979.
[92] C. Wei, "Characterization and investigation of low-frequency noise in emerging CMOS," Ph.D. dissertation, 2011.
[93] F. N. Hooge, "1/f noise is no surface effect," Physics Letters A, vol. 29, no. 3, pp. 139–140, 1969.
[94] L. Ren and M. R. Leys, "1/f noise at room temperature in n-type GaAs grown by molecular beam epitaxy," Physica B: Condensed Matter, vol. 172, no. 3, pp. 319–323, 1991.
[95] F. N. Hooge, "1/f noise sources," IEEE Transactions on Electron Devices, vol. 41, no. 11, pp. 1926–1935, Nov. 1994.
[96] F. N. Hooge and L. K. J. Vandamme, "Lattice scattering causes 1/f noise," Physics Letters A, vol. 66, pp. 315–316, 1978.
[97] A. L. McWhorter, "1/f noise and germanium surface properties," "Semiconductor Surface Physics," pp. 207–228, 1957.
[98] G. Ghibaudo, O. Roux, C. Nguyen-Duc, F. Balestra, and J. Brini, "Improved analysis of low frequency noise in field-effect MOS transistors," Physica Status Solidi A, vol. 124, pp. 571–581, 1991.
[99] P. Lim, "Low frequency noise as a characterization and reliability tool for the evaluation of advanced MOSFETs," Ph.D. dissertation, Department of Scientific Computing and Computational Mathematics, Stanford University, 2009.
[100] K. K. Hung, P. K. Ko, C. Hu, and Y. C. Cheng, "A unified model for the flicker noise in metal-oxide-semiconductor field-effect transistors," IEEE Transactions on Electron Devices, vol. 37, no. 3, pp. 654–665, Mar. 1990.
[101] F. Sischka and C. Morton, "Proposed system solution for 1/f noise parameter extraction," technical report, Agilent Technologies, n.d.
[102] Y.-T. Chen, "LF & RTS noise measurement," training material, Taiwan Semiconductor Research Institute, Hsinchu, Taiwan, Jul. 2025.
[103] W. Jin, P. C. H. Chan, S. K. H. Fung, and P. K. Ko, "Shot-noise-induced excess low-frequency noise in floating-body partially depleted SOI MOSFETs," IEEE Transactions on Electron Devices, vol. 46, no. 6, pp. 1180–1185, Jun. 1999.
[104] H. D. Xiong, D. M. Fleetwood, B. K. Choi, and A. L. Sternberg, "Temperature dependence and irradiation response of 1/f-noise in MOSFETs," IEEE Transactions on Nuclear Science, vol. 49, no. 6, pp. 2718–2723, Dec. 2002.
[105] Y.-C. Yoon, H.-C. Lee, I.-M. Kang, and H.-C. Shin, "Low frequency noise characteristics of the 180 nm MOSFETs," Proceedings of the IEEK Conference, pp. 861–864, Nov. 2005.
[106] A. Blaum, O. Pilloud, G. Scalea, J. Victory, and F. Sischka, "A new robust on-wafer 1/f noise measurement and characterization system," Proceedings of the 2001 International Conference on Microelectronic Test Structures, pp. 125–130, 2001.
[107] T. N. T. Do, M. Hörberg, S. Lai, and D. Kuylenstierna, "Low frequency noise measurements – A technology benchmark with target on oscillator applications," Proceedings of the 44th European Microwave Conference, pp. 1412–1415, Oct. 2014.
[108] A. Roshan-Zamir and S. J. Ashtiani, "A new method for measurement of low-frequency noise of MOSFET," IEEE Transactions on Instrumentation and Measurement, vol. 62, no. 11, pp. 2993–2997, Nov. 2013.
[109] M. Jankovec, F. Smole, and M. Topič, "Low-frequency noise measurement of optoelectronic devices," Proceedings of the 12th IEEE Mediterranean Electrotechnical Conference, pp. 11–14, 2004.
[110] M. Kayyalha and Y. P. Chen, "Observation of reduced 1/f noise in graphene field-effect transistors on boron nitride substrates," Applied Physics Letters, vol. 107, no. 11, Sep. 2015.
[111] National Instruments, “Understanding FFTs and windowing,” Accessed: Oct. 30, 2025. [Online]. Available: https://www.ni.com/zh-tw/shop/data-acquisition/measurement-fundamentals/analog-fundamentals/understanding-ffts-and-windowing.html
[112] F. L. Walls, D. B. Percival, and W. R. Irelan, "Biases and variances of several FFT spectral estimators as a function of noise type and number of samples," Proceedings of the 43rd Annual Symposium on Frequency Control, pp. 336–341, 1989.
[113] C. G. Theodorou, G. Ghibaudo, E. Simoen, and C. Claeys, "Low-frequency noise behavior of n-channel UTBB FD-SOI MOSFETs," Proceedings of the 22nd International Conference on Noise and Fluctuations, pp. 1–4, 2013.
[114] B. K. Jones, "Low-frequency noise spectroscopy," IEEE Transactions on Electron Devices, vol. 41, no. 11, pp. 2188–2197, Nov. 1994.
[115] S. Matsumoto et al., "1/f-noise characteristics in 100 nm-MOSFETs and its modeling for circuit simulation," IEICE Transactions on Electronics, vol. E88-C, no. 2, pp. 247–254, Feb. 2005.
[116] E. Simoen and C. Claeys, "On the flicker noise in submicron silicon MOSFETs," Solid-State Electronics, vol. 43, no. 5, pp. 865–882, 1999.
[117] R. Asanovski et al., "Understanding the excess 1/f noise in MOSFETs at cryogenic temperatures," IEEE Transactions on Electron Devices, vol. 70, no. 4, pp. 2135–2141, Apr. 2023.
[118] B. Cardoso Paz et al., "Performance and low-frequency noise of 22-nm FDSOI down to 4.2 K for cryogenic applications," IEEE Transactions on Electron Devices, vol. 67, no. 11, pp. 4563–4567, Nov. 2020.
[119] H. Oka et al., "Origin of low-frequency noise in Si n-MOSFET at cryogenic temperatures: The effect of interface quality," IEEE Access, vol. 11, pp. 121567–121573, 2023.
[120] Y. Ma, J. Bi, H. Wang, L. Fan, B. Zhao, L. Shen, and M. Liu, "Mechanism of Random Telegraph Noise in 22-nm FDSOI-Based MOSFET at Cryogenic Temperatures," Nanomaterials, vol. 12, no. 23, p. 4344, Dec. 2022.
[121] G. Ghibaudo and T. Boutchacha, "Electrical noise and RTS fluctuations in advanced CMOS devices," Microelectronics Reliability, vol. 42, nos. 4–5, pp. 573–582, 2002.
[122] Y. Liu et al., "Scaling down effect on low frequency noise in polycrystalline silicon thin-film transistors," IEEE Journal of the Electron Devices Society, vol. 7, pp. 203–209, 2019.
[123] T. V. Perevalov et al., "Electronic structure of α-Al₂O₃: Ab initio simulations and comparison with experiment," JETP Letters, vol. 85, pp. 165–168, 2007.
[124] J. Robertson and R. M. Wallace, "High-k materials and metal gates for CMOS applications," Materials Science and Engineering R: Reports, vol. 88, pp. 1–41, 2015.
[125] P. Dutta, P. Dimon, and P. M. Horn, "Energy scales for noise processes in metals," Physical Review Letters, vol. 43, no. 9, pp. 646–649, Aug. 1979.
[126] E. J. Connors, J. J. Nelson, H. Qiao, L. F. Edge, and J. M. Nichol, "Low-frequency charge noise in Si/SiGe quantum dots," Physical Review B, vol. 100, no. 16, Oct. 2019.
[127] S. L. Rumyantsev, K. Fobelets, T. Hackbarth, and M. S. Shur, "Low frequency noise in insulated-gate strained-Si n-channel modulation doped field-effect transistors," Japanese Journal of Applied Physics, vol. 46, no. 7R, 2007.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/101527-
dc.description.abstract隨著量子計算的快速發展,若僅依賴傳統在室溫操作的控制電路,量子位元與控制電路之間所需的傳輸線數量將大幅增加,使大規模量子系統難以實現,因此,能在低溫下運作的Cryo-CMOS已成為量子位元控制與讀出電路的重要候選技術。然而,電晶體在低溫下的電性與室溫顯著不同,現有模型無法準確預測其行為。此外,低頻雜訊會直接影響Cryo-CMOS電路的穩定性與量子位元的相干時間,因此深入研究低溫下電晶體的電性與雜訊特性對量子系統的可靠運作十分重要。
本論文以矽與矽/矽鍺異質結構電晶體為主要研究對象,分析其300 K至4 K溫度範圍內之電性與雜訊特性。透過量測電流與電容對電壓的關係,萃取臨界電壓、次臨界擺幅、載子遷移率等重要參數,並比較元件在不同溫度下的電性變化。實驗結果顯示,矽電晶體的臨界電壓皆隨溫度降低而上升,而次臨界擺幅則因低溫下能帶尾態的參與,使其在溫度下降至約50 K以下時趨於飽和。另一方面,自行製作的矽電晶體之導通電流與載子遷移率未如預期隨溫度降低而提升,顯示低溫下散射機制由聲子散射轉為庫倫與表面粗糙度散射主導。至於矽/矽鍺異質結構電晶體,因量子井的形成,在低溫下展現四階段傳輸機制,並在臨界電壓與次臨界擺幅有明顯的降低。
在低頻雜訊的部分,本論文量測並分析不同溫度與偏壓條件下的1/f雜訊行為。在矽電晶體中,中低電流區域主要由載子數量變動機制主導,在較高電流區域則轉為載子遷移率變動機制與源/汲極電阻雜訊共同主導。此外,低溫下的雜訊幅度高於室溫,推測為低溫下能帶尾態的參與導致陷阱密度增加。而矽/矽鍺異質結構電晶體在4 K 下的雜訊特性則清楚呈現載子於量子井與表面通道之間的轉換,且載子從量子井穿隧至表面並形成第二條傳輸通道的時候出現雜訊上升的現象。
zh_TW
dc.description.abstractWith the rapid development of quantum computing, the number of interconnecting wires using conventional room-temperature electronics will increase significantly, making large-scale quantum systems difficult to realize. Therefore, Cryo-CMOS circuits has become a promising technology for qubit control and readout. However, the electrical properties of transistors differ significantly between cryogenic temperatures and room temperature, and existing models fail to accurately predict their characteristics at cryogenic temperatures. In addition, low-frequency noise can directly impact the stability of Cryo-CMOS circuits and the coherence time of qubits. Thus, it is essential to investigate the electrical and noise characteristics of cryo-CMOS devices for reliable qubit operations.
This work investigates the electrical and noise characteristics of silicon and Si/SiGe heterostructure MOS field-effect transistors (FETs) at temperatures from 300 K to 4 K. Current-voltage and capacitance-voltage characteristics are studied to extract threshold voltages, subthreshold swing, and carrier mobility. The experimental results show that, for silicon MOSFETs, the threshold voltage increases as the temperature decreases, while the subthreshold swing saturates below approximately 50 K due to the influence of band-tail states. On the other hand, the on-current and carrier mobility of the fabricated devices at lab do not increase as expected with a decreasing temperature, indicating that Coulomb scattering and surface-roughness scattering dominate since phonon scattering is suppressed at cryogenic temperatures. For the Si/SiGe heterostructure devices, the presence of a quantum well leads to a four-regime conduction behavior at low temperatures, along with a clear reduction in threshold voltage and subthreshold swing.
For low-frequency noise analysis, this work measures and evaluates 1/f noise under different temperatures and bias conditions. In silicon MOSFETs, carrier number fluctuation is the primary noise mechanism in the low-current regime, while carrier mobility fluctuation and source/drain resistance noise become dominant for higher current. Furthermore, the noise magnitude increases at cryogenic temperatures, which is attributed to an increase in effective trap density associated with band tail states. In Si/SiGe heterostructure MOSFETs, the noise characteristics at 4 K clearly reflects the transition of carriers between the quantum well and surface channel, with a sharp increase in noise amplitude when carriers in the quantum well tunnel to the surface and form a second conduction path, where the poor oxide interface enhances noise significantly.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2026-02-11T16:05:31Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2026-02-11T16:05:31Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents口試委員會審定書 i
誌謝 ii
摘要 iii
Abstract iv
目次 vi
圖次 ix
表次 xx
第 1 章 引言 1
1.1 量子計算 1
1.2 Cryo-CMOS 4
1.3 雜訊 5
1.4 論文架構 6
第 2 章 矽金氧半和矽/矽鍺異質結構場效電晶體的低溫特性 8
2.1 文獻回顧 8
2.2 矽金氧半場效電晶體的特性 15
2.2.1 室溫特性 16
2.2.2 低溫特性 22
2.3 矽/矽鍺異質結構場效電晶體的特性 28
2.3.1 室溫特性 29
2.3.2 低溫特性 30
2.4 結論 32
第 3 章 電晶體雜訊的基礎理論與量測系統架設 33
3.1 雜訊的基本原理 33
3.1.1 數學背景 33
3.1.2 雜訊類型及理論 35
3.1.3 金氧半場效電晶體的雜訊來源 43
3.2 金氧半場效電晶體的1/f雜訊 44
3.2.1 載子數量變動模型(Carrier Number Fluctuation) 44
3.2.2 載子遷移率變動模型(Mobility Fluctuation) 47
3.2.3 載子數量變動與相關遷移率變動模型(Carrier Number Fluctuation with Correlated Mobility Fluctuation) 49
3.2.4 輸入端等效電壓雜訊(Input Referred Voltage Noise) 51
3.3 低頻雜訊量測系統 51
3.3.1 低頻雜訊量測系統之架構 51
3.3.2 量測系統之建立與優化 53
3.4 結論 58
第 4 章 矽和矽/矽鍺異質結構場效電晶體的1/f雜訊 59
4.1 矽金氧半場效電晶體之1/f雜訊特性 59
4.1.1 文獻回顧 59
4.1.2 矽金氧半場效電晶體之室溫1/f雜訊特性 64
4.1.3 矽金氧半場效電晶體之低溫1/f雜訊特性 70
4.2 矽/矽鍺異質結構場效電晶體之1/f雜訊特性 76
4.2.1 文獻回顧 76
4.2.2 矽/矽鍺異質結構場效電晶體之室溫1/f雜訊特性 78
4.2.3 矽/矽鍺異質結構場效電晶體之低溫1/f雜訊特性 80
4.3 結論 83
第 5 章 結論與未來工作 85
5.1 結論 85
5.2 未來工作 86
參考文獻 88
附錄 98
-
dc.language.isozh_TW-
dc.subject量子計算-
dc.subjectCryo-CMOS-
dc.subject矽/矽鍺異質結構電晶體-
dc.subject能帶尾態-
dc.subject低頻1/f雜訊-
dc.subjectQuantum computing-
dc.subjectCryo-CMOS-
dc.subjectSi/SiGe heterostructure MOSFETs-
dc.subjectBand tail states-
dc.subjectLow-frequency 1/f noise-
dc.title矽金氧半和矽/矽鍺異質結構場效電晶體之低溫特性與1/f雜訊分析zh_TW
dc.titleCryogenic Characteristics and 1/f Noise Analysis of Si and Si/SiGe Heterostructure Metal-Oxide-Semiconductor Field-Effect Transistorsen
dc.typeThesis-
dc.date.schoolyear114-1-
dc.description.degree碩士-
dc.contributor.oralexamcommittee李敏鴻;黃國威zh_TW
dc.contributor.oralexamcommitteeMin-Hung Lee;Guo-Wei Huangen
dc.subject.keyword量子計算,Cryo-CMOS矽/矽鍺異質結構電晶體能帶尾態低頻1/f雜訊zh_TW
dc.subject.keywordQuantum computing,Cryo-CMOSSi/SiGe heterostructure MOSFETsBand tail statesLow-frequency 1/f noiseen
dc.relation.page101-
dc.identifier.doi10.6342/NTU202600321-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2026-01-28-
dc.contributor.author-college重點科技研究學院-
dc.contributor.author-dept元件材料與異質整合學位學程-
dc.date.embargo-lift2026-02-12-
顯示於系所單位:元件材料與異質整合學位學程

文件中的檔案:
檔案 大小格式 
ntu-114-1.pdf10.91 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved