請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/101474完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳信樹 | zh_TW |
| dc.contributor.advisor | Hsin-Shu Chen | en |
| dc.contributor.author | 姜智元 | zh_TW |
| dc.contributor.author | Chih-Yuan Chiang | en |
| dc.date.accessioned | 2026-02-03T16:33:57Z | - |
| dc.date.available | 2026-02-04 | - |
| dc.date.copyright | 2026-02-03 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2025-12-17 | - |
| dc.identifier.citation | [1] K. Adu-Manu, N. Adam, C. Tapparello, H. Ayatollahi, and W. Heinzelman, "Energy-harvesting wireless sensor networks (EH-WSNs): A review," ACM Transactions on Sensor Networks, vol. 14, pp. 1-50, 04/27 2018, doi: 10.1145/3183338.
[2] C. L. Kuo, S. C. Lin, and W. J. Wu, "Fabrication and performance evaluation of a metal-based bimorph piezoelectric MEMS generator for vibration energy harvesting," Smart Materials and Structures, Article vol. 25, no. 10, 2016, Art no. 105016, doi: 10.1088/0964-1726/25/10/105016. [3] G. K. Ottman, H. F. Hofmann, A. C. Bhatt, and G. A. Lesieutre, "Adaptive piezoelectric energy harvesting circuit for wireless remote power supply," IEEE Transactions on Power Electronics, vol. 17, no. 5, pp. 669-676, 2002, doi: 10.1109/TPEL.2002.802194. [4] D. Guyomar, A. Badel, E. Lefeuvre, and C. Richard, "Toward energy harvesting using active materials and conversion improvement by nonlinear processing," IEEE Trans Ultrason Ferroelectr Freq Control, vol. 52, no. 4, pp. 584-95, Apr 2005, doi: 10.1109/tuffc.2005.1428041. [5] Y. K. Ramadass and A. P. Chandrakasan, "An Efficient Piezoelectric Energy Harvesting Interface Circuit Using a Bias-Flip Rectifier and Shared Inductor," IEEE Journal of Solid-State Circuits, vol. 45, no. 1, pp. 189-204, 2010, doi: 10.1109/jssc.2009.2034442. [6] D. A. Sanchez, J. Leicht, E. Jodka, E. Fazel, and Y. Manoli, "21.2 A 4µW-to-1mW parallel-SSHI rectifier for piezoelectric energy harvesting of periodic and shock excitations with inductor sharing, cold start-up and up to 681% power extraction improvement," presented at the 2016 IEEE International Solid-State Circuits Conference (ISSCC), 2016. [7] E. Lefeuvre, A. Badel, C. Richard, and D. Guyomar, "Piezoelectric Energy Harvesting Device Optimization by Synchronous Electric Charge Extraction," Journal of Intelligent Material Systems and Structures, vol. 16, no. 10, pp. 865-876, 2005, doi: 10.1177/1045389x05056859. [8] T. Hehn et al., "A Fully Autonomous Integrated Interface Circuit for Piezoelectric Harvesters," IEEE Journal of Solid-State Circuits, vol. 47, no. 9, pp. 2185-2198, 2012, doi: 10.1109/jssc.2012.2200530. [9] J. Tichý et al., "Principles of piezoelectricity," in Fundamentals of Piezoelectric Sensorics: Mechanical, Dielectric, and Thermodynamical Properties of Piezoelectric Materials, 2010, pp. 1-14. [10] S.-C. Lin, "High performance piezoelectric MEMS generators based on stainless steel substrate," in Department of Engineering Science and Ocean Engineering, ed: National Taiwan University, 2014. [11] M. T. Corporation, "PPA Piezoelectric Energy Harvesting Products: Datasheet & User Manual," Midé Technology Corporation, Revision No. 003, 2017. [12] S. Javvaji, V. Singhal, V. Menezes, R. Chauhan, and S. Pavan, "Analysis and Design of a Multi-Step Bias-Flip Rectifier for Piezoelectric Energy Harvesting," IEEE Journal of Solid-State Circuits, vol. 54, no. 9, pp. 2590-2600, 2019, doi: 10.1109/jssc.2019.2917158. [13] C. Wang, Y. Feng, and J. Guo, "A Fully Autonomous SSHIC Interface Circuit With Configurable Multi-Step Bias-Flip for Piezoelectric Energy Harvesting," IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 70, no. 3, pp. 894-898, 2023, doi: 10.1109/tcsii.2022.3221480. [14] J. Liang and W.-H. Liao, "Impedance Modeling and Analysis for Piezoelectric Energy Harvesting Systems," IEEE/ASME Transactions on Mechatronics, vol. 17, no. 6, pp. 1145-1157, 2012, doi: 10.1109/tmech.2011.2160275. [15] A. Morel, G. Pillonnet, Y. Wanderoild, and A. Badel, "Dielectric Losses Considerations for Piezoelectric Energy Harvesting," Journal of Low Power Electronics, vol. 14, no. 2, pp. 244-254, 2018, doi: 10.1166/jolpe.2018.1562. [16] B. Liu, W. Chen, J. Wang, and Q. Chen, "A Practical Inductor Loss Testing Scheme and Device With High Frequency Pulsewidth Modulation Excitations," IEEE Transactions on Industrial Electronics, vol. 68, no. 5, pp. 4457-4467, 2021, doi: 10.1109/tie.2020.2984985. [17] B. Çiftci et al., "Low-Cost Fully Autonomous Piezoelectric Energy Harvesting Interface Circuit with up to 6.14x Power Capacity Gain," in 2019 IEEE Custom Integrated Circuits Conference (CICC), 14-17 April 2019 2019, pp. 1-4, doi: 10.1109/CICC.2019.8780232. [18] C.-W. Chen, W. Z. Pranoto, H.-S. Chen, and W.-J. Wu, "A 0.25-μm HV-CMOS Synchronous Inversion and Charge Extraction Interface Circuit With a Single Inductor for Piezoelectric Energy Harvesting," IEEE Transactions on Power Electronics, vol. 38, no. 12, pp. 15707-15718, 2023, doi: 10.1109/tpel.2023.3311453. [19] S. Jiang, X. Yue, Y. Ma, C. Wang, and S. Du, "A Rectifier-Less Piezoelectric Energy-Harvesting Interface with a Sense & Track MPPT Achieving Single-Cycle Convergence and 568% Shock Power Improvement," presented at the 2025 IEEE International Solid-State Circuits Conference (ISSCC), 2025. [20] J. Lee and H.-S. Kim, "A Biased-SECE Interface for Piezoelectric Energy Harvesting with Geometric-Mean-Computational MPPT Achieving 99.9% MPPT Efficiency, $8.75\text{Cycles}/\Delta \mathrm{V}_{\text{OC}}$ Tracking, and 9.3x Energy Extraction," presented at the 2025 IEEE International Solid-State Circuits Conference (ISSCC), 2025. [21] Y.-W. Jeong, S.-J. Lee, and S.-U. Shin, "A Scalable N-Step Equally Split SSHI Rectifier for Piezoelectric Energy Harvesting With Low-Q Inductor," IEEE Journal of Solid-State Circuits, vol. 58, no. 12, pp. 3519-3529, 2023, doi: 10.1109/jssc.2023.3304303. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/101474 | - |
| dc.description.abstract | 隨著物聯網 (IoT) 的迅速發展,為無線設備提供永續電力已成為一項關鍵挑戰,而壓電能量收集技術為此提供了一個極具潛力的解決方案。然而,其效能高度依賴於介面電路的設計。
本論文提出一種新穎的自供電同步反轉與多次電荷提取 (SIMCE) 介面電路,此電路結合了電感同步切換獵能 (SSHI) 架構的高功率增益以及同步電荷提取 (SECE) 架構的負載獨立特性。採用TSMC 0.18 μm HV-CMOS 製程實現,利用 12V 元件克服了標準 CMOS 製程低崩潰電壓所造成的功率增益限制。 本研究的核心之一,是深入分析了真實壓電元件的非理想性,這些損耗在高壓操作下會變得顯著,導致模擬與實測結果的巨大差異。為此,本論文建立了一個新的分析框架,引入「有效開路電壓」V_(OC,eff) 與「電路效能指標」(FoM_ckt),藉此精確地將「介面電路的效能」與「壓電元件的內在損耗」進行解耦。 在使用Howland 電流源模擬壓電慣用模型,當開路電壓 (V_OC ) 為 2 V 時,SIMCE 電路可達到 88.91 µW 的輸出功率及相較於標準全橋整流器16.81倍的功率增益 (FoM),而使用微機電壓電獵能器 (MEMS PEH) 進行量測時,儘管元件的非理想性使系統功率增益下降,但本研究所提出的「電路效能指標」(FoM_ckt) 仍高達 11.76,證明了 SIMCE 電路本身具備高轉換效率。本論文所提出的電路架構與分析框架,為未來高效能壓電獵能系統的設計與評估提供了關鍵基礎。 | zh_TW |
| dc.description.abstract | Amidst the rapid growth of the Internet of Things (IoT), sustainably powering wireless devices has become a critical challenge, for which piezoelectric energy harvesting emerges as a promising solution. However, its effectiveness is critically dependent on the interface circuit's design.
This thesis proposes a novel self-powered Synchronous Inversion and Multi-shot Charge Extraction (SIMCE) interface circuit that combines the high-power gain of Synchronized Switch Harvesting on Inductor (SSHI) topologies with the load independence of Synchronous Electric Charge Extraction (SECE) architectures. The proposed SIMCE circuit is implemented in a TSMC 0.18 µm HV-CMOS process, utilizing 12V high-voltage devices to overcome the power gain limitations of standard CMOS. A core contribution of this work is the in-depth analysis of non-idealities in real-world Piezoelectric Energy Harvester (PEH) devices, such as dielectric loss, which become dominant at high operating voltages and cause significant discrepancies between simulation and measurement. To address this, this thesis establishes a new analytical framework that introduces an "effective open-circuit voltage" (V_(OC,eff)) and a "circuit Figure of Merit" (FoM_ckt) to accurately decouple the interface circuit's performance from the harvester's intrinsic losses. Measurement results from the fabricated chip validate this framework. When tested with a conventional PEH model (Howland current source), the SIMCE circuit achieves 88.91 μW of output power and a system power gain (FoM) of 16.81 at V_OC=2V. Crucially, when connected to a MEMS PEH, the proposed circuit Figure of Merit (FoM_ckt) remained high at 11.76, even as the overall system FoM was reduced by harvester non-idealities. This demonstrates the high intrinsic efficiency of the SIMCE circuit. The proposed architecture and analysis framework provide a critical foundation for the design and evaluation of future high-performance PEH systems. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2026-02-03T16:33:57Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2026-02-03T16:33:57Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 口試委員會審定書 ii
致謝 iv 摘要 v Abstract vi Contents viii List of Figures xi List of Tables xv Chapter 1 : Introduction 1 1.1 Motivation 4 1.2 Thesis Outline 6 Chapter 2 : Piezoelectric Energy Harvesting System and Interface Circuits 8 2.1 Piezoelectric Energy Harvester Modeling 9 2.2 FBR: Full Bridge Rectifier 18 2.2.1 Circuit Architecture and Operation 18 2.2.2 Analysis of FBR Harvested Power 20 2.3 SSHI: Synchronized Switch Harvesting on Inductor 21 2.3.1 Circuit Architecture and Operation 21 2.3.2 Analysis of SSHI Harvested Power 23 2.4 SECE: Synchronous Electric Charge Extraction 24 2.4.1 Circuit Architecture and Operation 24 2.4.2 Analysis of SECE Harvested Power 26 2.5 SICE: Synchronous Inversion and Charge Extraction 26 2.5.1 Circuit Architecture and Operation 27 2.5.2 Analysis of SICE Harvested Power 28 2.6 Comparison of Interface Circuits 30 Chapter 3 : Proposed Synchronous Inversion and Multi-shot Charge Extraction (SIMCE) Interface Circuit 33 3.1 Interface Design Overview 34 3.2 Operating Principle and Power Estimation 36 3.3 Circuit Architecture 41 3.4 Operating States 44 3.4.1 First stage: startup 44 3.4.2 Second stage: charge accumulation 45 3.4.3 Third stage: full function 47 3.5 Power Switches and Drivers 48 3.5.1 Power Switches 48 3.5.2 Gate Driver 49 3.5.3 Ground Switches 51 3.6 Control Circuit Design 53 3.6.1 Digital Controller 53 3.6.2 Passive Startup Path 58 3.6.3 Bias Generator 59 3.6.4 Passive Source-Follower Regulator 60 3.6.5 Peak Detector 63 3.6.6 Zero Crossing Detector 65 3.6.7 Harvesting Detector 67 3.7 Simulation results 69 3.7.1 Full Chip Simulation 69 3.7.2 Summary Table 74 Chapter 4 : Piezoelectric Energy Harvester (PEH) non-idealities 76 4.1 Mechanical Loss 77 4.2 Dielectric Loss 82 4.3 PEH non-idealities and proposed SIMCE 90 Chapter 5 : Measurement Results 94 5.1 Chip Micrograph 94 5.2 Experimental Setup 97 5.3 Experimental Results 99 5.3.1 Idealized PEH Testing 100 5.3.2 Custom MEMS PEH measurement 106 5.4 Performance Summary 112 Chapter 6 : Conclusion and Future Work 116 6.1 Conclusion 116 6.2 Future Work 118 References 121 | - |
| dc.language.iso | en | - |
| dc.subject | 壓電能量擷取 | - |
| dc.subject | AC-DC整流器 | - |
| dc.subject | 同步反相和多次電荷提取 | - |
| dc.subject | 製程限制 | - |
| dc.subject | 高輸入電壓 | - |
| dc.subject | 自供電 | - |
| dc.subject | 負載隔離性 | - |
| dc.subject | Piezoelectric Energy Harvesting | - |
| dc.subject | AC-DC Rectifier | - |
| dc.subject | SIMCE | - |
| dc.subject | Process Limitations | - |
| dc.subject | High Input Voltage | - |
| dc.subject | Self-powered | - |
| dc.subject | Load Independence | - |
| dc.title | 自供電壓電獵能介面電路:透過同步反轉與多次電荷提取達成最大化功率增益及負載獨立性 | zh_TW |
| dc.title | A Self-Powered Piezoelectric Energy Harvesting Interface for Maximizing Power Gain and Ensuring Load Independence via Synchronous Inversion and Multi-shot Charge Extraction | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 114-1 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 吳文中;李坤彥 | zh_TW |
| dc.contributor.oralexamcommittee | Wen-Chung Wu;Kung-Yen Lee | en |
| dc.subject.keyword | 壓電能量擷取,AC-DC整流器同步反相和多次電荷提取製程限制高輸入電壓自供電負載隔離性 | zh_TW |
| dc.subject.keyword | Piezoelectric Energy Harvesting,AC-DC RectifierSIMCEProcess LimitationsHigh Input VoltageSelf-poweredLoad Independence | en |
| dc.relation.page | 123 | - |
| dc.identifier.doi | 10.6342/NTU202504803 | - |
| dc.rights.note | 同意授權(全球公開) | - |
| dc.date.accepted | 2025-12-18 | - |
| dc.contributor.author-college | 電機資訊學院 | - |
| dc.contributor.author-dept | 電子工程學研究所 | - |
| dc.date.embargo-lift | 2026-02-04 | - |
| 顯示於系所單位: | 電子工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-114-1.pdf | 7.63 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
