請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/101457完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 吳健銘 | zh_TW |
| dc.contributor.advisor | Chien-Ming Wu | en |
| dc.contributor.author | 陳逸昌 | zh_TW |
| dc.contributor.author | Yi-Chang Chen | en |
| dc.date.accessioned | 2026-02-03T16:26:02Z | - |
| dc.date.available | 2026-02-04 | - |
| dc.date.copyright | 2026-02-03 | - |
| dc.date.issued | 2026 | - |
| dc.date.submitted | 2026-01-23 | - |
| dc.identifier.citation | Agrawal, S., Barrington, L., Bromberg, C., Burge, J., Gazen, C., & Hickey, J. (2019). Machine Learning for Precipitation Nowcasting from Radar Images. In.
Andrews, D. G. (1987). The influence of atmospheric waves on the general circulation of the middle atmosphere. Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences, 323(1575), 693-705. https://doi.org/10.1098/rsta.1987.0115 Arakawa, A. (2004). The Cumulus Parameterization Problem: Past, Present, and Future. Journal of Climate, 17(13), 2493-2525. https://doi.org/10.1175/1520-0442(2004)017<2493:Ratcpp>2.0.Co;2 Arakawa, A., & Schubert, W. H. (1974). Interaction of a Cumulus Cloud Ensemble with the Large-Scale Environment, Part I. In Journal of the Atmospheric Sciences (Vol. 31, pp. 674-701). Baldwin, M. P., Ayarzagüena, B., Birner, T., Butchart, N., Butler, A. H., Charlton‐Perez, A. J., Domeisen, D. I. V., Garfinkel, C. I., Garny, H., Gerber, E. P., Hegglin, M. I., Langematz, U., & Pedatella, N. M. (2021). Sudden Stratospheric Warmings. Reviews of Geophysics, 59(1). https://doi.org/10.1029/2020rg000708 Baldwin, M. P., Stephenson, D. B., Thompson, D. W., Dunkerton, T. J., Charlton, A. J., & O'Neill, A. (2003). Stratospheric memory and skill of extended-range weather forecasts. Science, 301(5633), 636-640. Beucler, T., Pritchard, M., Rasp, S., Ott, J., Baldi, P., & Gentine, P. (2021). Enforcing Analytic Constraints in Neural Networks Emulating Physical Systems. Physical Review Letters, 126(9), 098302. https://doi.org/10.1103/PhysRevLett.126.098302 Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., & Tian, Q. (2023). Accurate medium-range global weather forecasting with 3D neural networks. Nature, 619(7970), 533-538. https://doi.org/10.1038/s41586-023-06185-3 Böing, S. J. (2016). An object-based model for convective cold pool dynamics. In Mathematics of Climate and Weather Forecasting (Vol. 2, pp. 43-60). Brüning, S., Niebler, S., & Tost, H. (2024). Artificial intelligence (AI)-derived 3D cloud tomography from geostationary 2D satellite data. Atmos. Meas. Tech., 17(3), 961-978. https://doi.org/10.5194/amt-17-961-2024 Charlton, A. J., & Polvani, L. M. (2007). A New Look at Stratospheric Sudden Warmings. Part I: Climatology and Modeling Benchmarks. Journal of Climate, 20(3), 449-469. https://doi.org/10.1175/jcli3996.1 Chattopadhyay, A., Hassanzadeh, P., & Pasha, S. (2020). Predicting clustered weather patterns: A test case for applications of convolutional neural networks to spatio-temporal climate data. In Scientific Reports 2020 10:1 (Vol. 10, pp. 1-13): Nature Publishing Group. Chen, P.-Y., & Wu, C.-M. (2025). Identifying Cold Pool Scales over Complex Topography Using TaiwanVVM Simulations. Journal of the Meteorological Society of Japan. Ser. II. https://doi.org/10.2151/jmsj.2025-023 Chen, Y.-C., Liang, Y.-C., Wu, C.-M., Huang, J.-D., Lee, S. H., Wang, Y., & Zeng, Y.-J. (2024). Exploiting a variational auto-encoder to represent the evolution of sudden stratospheric warmings. Environmental Research: Climate, 3(2). https://doi.org/10.1088/2752-5295/ad3a0d Chen, Y. C., & Wu, C. M. (2025). Capturing Subgrid Cold Pool Dynamics With U‐Net: Insights From Large‐Eddy Simulation for Storm‐Resolving Modeling. Atmospheric Science Letters, 26(7). https://doi.org/10.1002/asl.1309 Chen, Y. C., Wu, C. M., & Chen, W. T. (2023). A deep learning framework for analyzing cloud characteristics of aggregated convection using cloud‐resolving model simulations. Atmospheric Science Letters. https://doi.org/10.1002/asl.1150 Davis, N., Richter, J., Glanville, A., Edwards, J., & LaJoie, E. (2022). Limited surface impacts of the January 2021 sudden stratospheric warming. Nature communications, 13(1), 1136. Domeisen, D. I., Butler, A. H., Charlton‐Perez, A. J., Ayarzagüena, B., Baldwin, M. P., Dunn‐Sigouin, E., Furtado, J. C., Garfinkel, C. I., Hitchcock, P., & Karpechko, A. Y. (2020). The role of the stratosphere in subseasonal to seasonal prediction: 2. Predictability arising from stratosphere‐troposphere coupling. Journal of Geophysical Research: Atmospheres, 125(2), e2019JD030923. Eyring, V., Bony, S., Meehl, G. A., Senior, C. A., Stevens, B., Stouffer, R. J., & Taylor, K. E. (2016). Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization. Geoscientific Model Development, 9(5), 1937-1958. Feng, Z., Hagos, S., Rowe, A. K., Burleyson, C. D., Martini, M. N., & De Szoeke, S. P. (2015). Mechanisms of convective cloud organization by cold pools over tropical warm ocean during the AMIE/DYNAMO field campaign. In Journal of Advances in Modeling Earth Systems (Vol. 7, pp. 357-381): Blackwell Publishing Ltd. Gelaro, R., McCarty, W., Suárez, M. J., Todling, R., Molod, A., Takacs, L., Randles, C. A., Darmenov, A., Bosilovich, M. G., & Reichle, R. (2017). The modern-era retrospective analysis for research and applications, version 2 (MERRA-2). Journal of Climate, 30(14), 5419-5454. Gentine, P., Pritchard, M., Rasp, S., Reinaudi, G., & Yacalis, G. (2018). Could Machine Learning Break the Convection Parameterization Deadlock? In Geophysical Research Letters (Vol. 45, pp. 5742-5751): Blackwell Publishing Ltd. Gettelman, A., Mills, M., Kinnison, D., Garcia, R., Smith, A., Marsh, D., Tilmes, S., Vitt, F., Bardeen, C., & McInerny, J. (2019). The whole atmosphere community climate model version 6 (WACCM6). Journal of Geophysical Research: Atmospheres, 124(23), 12380-12403. Haarsma, R. J., Roberts, M. J., Vidale, P. L., Senior, C. A., Bellucci, A., Bao, Q., Chang, P., Corti, S., Fučkar, N. S., & Guemas, V. (2016). High resolution model intercomparison project (HighResMIP v1. 0) for CMIP6. Geoscientific Model Development, 9(11), 4185-4208. Haerter, J. O. (2019). Convective Self-Aggregation As a Cold Pool-Driven Critical Phenomenon. In Geophysical Research Letters (Vol. 46, pp. 4017-4028). Haerter, J. O., Böing, S. J., Henneberg, O., & Nissen, S. B. (2019). Circling in on Convective Organization. Geophysical Research Letters, 46(12), 7024-7034. https://doi.org/10.1029/2019gl082092 Ham, Y.-G., Kim, J.-H., Min, S.-K., Kim, D., Li, T., Timmermann, A., & Stuecker, M. F. (2019). Deep learning for multi-year ENSO forecasts. Nature, 573(7775), 568-572. https://doi.org/10.1038/s41586-019-1559-7 Hamada, A., Murayama, Y., & Takayabu, Y. N. (2014). Regional Characteristics of Extreme Rainfall Extracted from TRMM PR Measurements. Journal of Climate, 27(21), 8151-8169. https://doi.org/10.1175/jcli-d-14-00107.1 Higa, M., Tanahara, S., Adachi, Y., Ishiki, N., Nakama, S., Yamada, H., Ito, K., Kitamoto, A., & Miyata, R. (2021). Domain knowledge integration into deep learning for typhoon intensity classification. In Scientific Reports (Vol. 11, pp. 1-10): Nature Publishing Group UK. Hoeller, J., Fiévet, R., & Haerter, J. O. (2022). U-Net Segmentation for the Detection of Convective Cold Pools From Cloud and Rainfall Fields. https://doi.org/10.1002/essoar.10512898.1 Hohenegger, C., & Schlemmer, L. (2014). The Formation of Wider and Deeper Clouds as a Result of Cold-Pool Dynamics. Journal of the Atmospheric Sciences, 71(8), 2842-2858. https://doi.org/10.1175/jas-d-13-0170.1 Iacono, M. J., Delamere, J. S., Mlawer, E. J., Shephard, M. W., Clough, S. A., & Collins, W. D. (2008). Radiative forcing by long‐lived greenhouse gases: Calculations with the AER radiative transfer models. Journal of Geophysical Research: Atmospheres, 113(D13). https://doi.org/10.1029/2008jd009944 Jung, J. H., & Arakawa, A. (2008). A three-dimensional anelastic model based on the vorticity equation. In Monthly weather review (Vol. 136, pp. 276-294). Kao, F. S., Kuo, Y. H., & Wu, C. M. (2025). Diagnosing Nonlocal Vertical Acceleration in Moist Convection Using a Large‐Eddy Simulation. Journal of Advances in Modeling Earth Systems, 17(3). https://doi.org/10.1029/2024ms004636 Khairoutdinov, M., & Randall, D. (2006). High-resolution simulation of shallow-to-deep convection transition over land. In Journal of the Atmospheric Sciences (Vol. 63, pp. 3421-3436). Kidston, J., Scaife, A. A., Hardiman, S. C., Mitchell, D. M., Butchart, N., Baldwin, M. P., & Gray, L. J. (2015). Stratospheric influence on tropospheric jet streams, storm tracks and surface weather. Nature Geoscience, 8(6), 433-440. Kim, K.-H., Shim, P.-S., & Shin, S. (2019). An Alternative Bilinear Interpolation Method Between Spherical Grids. Atmosphere, 10(3). https://doi.org/10.3390/atmos10030123 Kingma, D. P., & Welling, M. (2013). Auto-Encoding Variational Bayes. arXiv:1312.6114. Retrieved December 01, 2013, from https://ui.adsabs.harvard.edu/abs/2013arXiv1312.6114K Lam, R., Sanchez-Gonzalez, A., Willson, M., Wirnsberger, P., Fortunato, M., Alet, F., Ravuri, S., Ewalds, T., Eaton-Rosen, Z., Hu, W., Merose, A., Hoyer, S., Holland, G., Vinyals, O., Stott, J., Pritzel, A., Mohamed, S., & Battaglia, P. (2023). Learning skillful medium-range global weather forecasting. Science, 382(6677), 1416-1421. https://doi.org/doi:10.1126/science.adi2336 Lehtonen, I., & Karpechko, A. Y. (2016). Observed and modeled tropospheric cold anomalies associated with sudden stratospheric warmings. Journal of Geophysical Research: Atmospheres, 121(4), 1591-1610. https://doi.org/https://doi.org/10.1002/2015JD023860 Liang, Y.-C., Kwon, Y.-O., Frankignoul, C., Danabasoglu, G., Yeager, S., Cherchi, A., Gao, Y., Gastineau, G., Ghosh, R., Matei, D., Mecking, J. V., Peano, D., Suo, L., & Tian, T. (2020). Quantification of the Arctic Sea Ice-Driven Atmospheric Circulation Variability in Coordinated Large Ensemble Simulations. Geophysical Research Letters, 47(1), e2019GL085397. https://doi.org/https://doi.org/10.1029/2019GL085397 Liang, Z., Rao, J., Guo, D., & Lu, Q. (2022). Simulation and projection of the sudden stratospheric warming events in different scenarios by CESM2-WACCM. Climate Dynamics, 59(11-12), 3741-3761. Limpasuvan, V., Thompson, D. W., & Hartmann, D. L. (2004). The life cycle of the Northern Hemisphere sudden stratospheric warmings. Journal of Climate, 17(13), 2584-2596. Matthewman, N. J., Esler, J. G., Charlton-Perez, A. J., & Polvani, L. M. (2009). A new look at stratospheric sudden warmings. Part III: Polar vortex evolution and vertical structure. Journal of Climate, 22(6), 1566-1585. Mitchell, D. M., Charlton-Perez, A. J., & Gray, L. J. (2011). Characterizing the variability and extremes of the stratospheric polar vortices using 2D moment analysis. Journal of the Atmospheric Sciences, 68(6), 1194-1213. Morrison, H., & Milbrandt, J. A. (2015). Parameterization of Cloud Microphysics Based on the Prediction of Bulk Ice Particle Properties. Part I: Scheme Description and Idealized Tests. Journal of the Atmospheric Sciences, 72(1), 287-311. https://doi.org/10.1175/jas-d-14-0065.1 Moseley, C., Hohenegger, C., Berg, P., & Haerter, J. O. (2016). Intensification of convective extremes driven by cloud–cloud interaction. Nature Geoscience, 9(10), 748-752. https://doi.org/10.1038/ngeo2789 North, G. R., Bell, T. L., Cahalan, R. F., & Moeng, F. J. (1982). Sampling errors in the estimation of empirical orthogonal functions. Monthly weather review, 110(7), 699-706. Rasp, S., Pritchard, M. S., & Gentine, P. (2018). Deep learning to represent subgrid processes in climate models. Proceedings of the National Academy of Sciences, 115(39), 9684-9689. https://doi.org/doi:10.1073/pnas.1810286115 Ribeiro, M. T., Singh, S., & Guestrin, C. (2016). "Why Should I Trust You?" Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Ronneberger, O., Fischer, P., & Brox, T. (2015). U-Net: Convolutional Networks for Biomedical Image Segmentation. ArXiv, abs/1505.04597. Roscher, R., Bohn, B., Duarte, M. F., & Garcke, J. (2020). Explainable Machine Learning for Scientific Insights and Discoveries. IEEE Access, 8, 42200-42216. https://doi.org/10.1109/access.2020.2976199 Rotunno, R., Klemp, J. B., & Weisman, M. L. (1988). A Theory for Strong, Long-Lived Squall Lines. Journal of the Atmospheric Sciences, 45(3), 463-485. https://doi.org/10.1175/1520-0469(1988)045<0463:Atfsll>2.0.Co;2 Samek, W., Wiegand, T., & Müller, K.-R. (2017). Explainable Artificial Intelligence: Understanding, Visualizing and Interpreting Deep Learning Models. In. Seviour, W. J. M., Mitchell, D. M., & Gray, L. J. (2013). A practical method to identify displaced and split stratospheric polar vortex events. Geophysical Research Letters, 40(19), 5268-5273. https://doi.org/10.1002/grl.50927 Shutts, G. J., & Gray, M. E. B. (2006). A numerical modelling study of the geostrophic adjustment process following deep convection. Quarterly Journal of the Royal Meteorological Society, 120(519), 1145-1178. https://doi.org/10.1002/qj.49712051903 Sigmond, M., Scinocca, J., Kharin, V., & Shepherd, T. (2013). Enhanced seasonal forecast skill following stratospheric sudden warmings. Nature Geoscience, 6(2), 98-102. Simonyan, K., & Zisserman, A. (2015). Very deep convolutional networks for large-scale image recognition. In 3rd International Conference on Learning Representations, ICLR 2015 - Conference Track Proceedings (pp. 1-14). Stevens, B., Satoh, M., Auger, L., Biercamp, J., Bretherton, C. S., Chen, X., Düben, P., Judt, F., Khairoutdinov, M., Klocke, D., Kodama, C., Kornblueh, L., Lin, S.-J., Neumann, P., Putman, W. M., Röber, N., Shibuya, R., Vanniere, B., Vidale, P. L.,…Zhou, L. (2019). DYAMOND: the DYnamics of the Atmospheric general circulation Modeled On Non-hydrostatic Domains. Progress in Earth and Planetary Science, 6(1), 61. https://doi.org/10.1186/s40645-019-0304-z Tompkins, A. M. (2001). Organization of Tropical Convection in Low Vertical Wind Shears: The Role of Cold Pools. Journal of the Atmospheric Sciences, 58(13), 1650-1672. https://doi.org/10.1175/1520-0469(2001)058<1650:Ootcil>2.0.Co;2 Torri, G., & Kuang, Z. (2019). On Cold Pool Collisions in Tropical Boundary Layers. Geophysical Research Letters, 46(1), 399-407. https://doi.org/10.1029/2018gl080501 Tripathi, O. P., Baldwin, M., Charlton‐Perez, A., Charron, M., Eckermann, S. D., Gerber, E., Harrison, R. G., Jackson, D. R., Kim, B. M., & Kuroda, Y. (2015). The predictability of the extratropical stratosphere on monthly time‐scales and its impact on the skill of tropospheric forecasts. Quarterly Journal of the Royal Meteorological Society, 141(689), 987-1003. Tripathi, O. P., Charlton-Perez, A., Sigmond, M., & Vitart, F. (2015). Enhanced long-range forecast skill in boreal winter following stratospheric strong vortex conditions. Environmental Research Letters, 10(10), 104007. Tsai, J.-Y., & Wu, C.-M. (2016). Critical transitions of stratocumulus dynamical systems due to perturbation in free-atmosphere moisture. Dynamics of Atmospheres and Oceans, 76, 1-13. https://doi.org/https://doi.org/10.1016/j.dynatmoce.2016.08.002 Tsai, W. M., & Wu, C. M. (2017). The environment of aggregated deep convection. In Journal of Advances in Modeling Earth Systems (Vol. 9, pp. 2061-2078). Tsou, S.-W., Su, C.-Y., & Wu, C.-M. (2019). Learning the Representations of Moist Convection with Convolutional Neural Networks. In (pp. 1-5). Wang, Y.-H., Chen, W.-T., & Wu, C.-M. (2024). Novel perspectives on multiple-peak diurnal convection over a tropical mountainous island from idealized large-eddy simulations. npj Climate and Atmospheric Science, 7(1). https://doi.org/10.1038/s41612-024-00884-y Weyn, J. A., Durran, D. R., & Caruana, R. (2020). Improving Data‐Driven Global Weather Prediction Using Deep Convolutional Neural Networks on a Cubed Sphere. Journal of Advances in Modeling Earth Systems, 12(9). https://doi.org/10.1029/2020ms002109 Wu, C.-M., & Arakawa, A. (2011). Inclusion of Surface Topography into the Vector Vorticity Equation Model (VVM). Journal of Advances in Modeling Earth Systems, 3(2), n/a-n/a. https://doi.org/10.1029/2011ms000061 Wu, C. M., Lin, H. C., Cheng, F. Y., & Chien, M. H. (2019). Implementation of the Land Surface Processes into a Vector Vorticity Equation Model (VVM) to Study its Impact on Afternoon Thunderstorms over Complex Topography in Taiwan. In Asia-Pacific Journal of Atmospheric Sciences (Vol. 55, pp. 701-717): Korean Meteorological Society. Xu, K. M., Hu, Y., & Wong, T. (2019). Convective Aggregation and Indices Examined from CERES Cloud Object Data. In Journal of Geophysical Research: Atmospheres (Vol. 124, pp. 13604-13624). Yuval, J., & O'Gorman, P. A. (2020). Stable machine-learning parameterization of subgrid processes for climate modeling at a range of resolutions. Nat Commun, 11(1), 3295. https://doi.org/10.1038/s41467-020-17142-3 | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/101457 | - |
| dc.description.abstract | 近年來,深度學習技術在大氣科學領域研究中的應用迅速增長,然而,這些模型往往被視為缺乏物理透明度的「黑盒子」,限制了其在科學推論上的可靠性。本論文旨在建立一個可解釋的深度學習框架,提出以「形態學(Morphology)」作為連結數據驅動預測與大氣物理過程的關鍵指標。透過捕捉物理變數在空間上的非線性形態特徵,我們得以在不同尺度下揭示大氣動力過程的演變機制。
本研究針對三個不同的大氣尺度,分別採用了三種深度學習架構來驗證此框架的可行性。首先,在大尺度方面,針對突發性平流層增溫(SSW)現象,我們利用「卷積變分自動編碼器(Convolutional Variational Autoencoder)」構建了平流層極地渦旋的潛在變數空間相位圖。結果顯示,VAE 能有效捕捉渦旋從位移型到分裂型的非線性連續演變路徑,其表現優於傳統的線性主成分分析(PCA),為極地渦旋的形態演變研究,以及未來的預測研究提供了新的視角。 其次,在中尺度方面,針對熱帶對流聚合現象,我們開發了一套迭代式特徵移除的卷積神經網路(CNN)框架。透過反覆訓練與遮蔽輸入資料中的顯著特徵(如平均雲水含量),我們嘗試找出隱藏在神經網路決策背後的關鍵形態因子。研究發現,除了雲覆蓋率外,雲的邊緣複雜度(碎形維度)是模型辨識對流是否集結的一個重要的非線性特徵。 最後,在小尺度方面,針對深對流中的冷池(Cold Pool)動力過程,我們應用U-Net模型,嘗試解決全球風暴解析模式(GSRMs)中對於冷池的解析度不足的問題。本研究利用高解析度大渦模擬(LES)資料,成功從低解析度的環境場中重建出高解析度的冷池形態與強度分佈。同時,敏感度分析進一步顯示近地面的動力場對於冷池邊界的重建有一定的重要性,其影響力在此尺度下的冷池結構重建上大於熱力變數。 綜合以上,本論文展示了深度學習模型在經過適當設計後,不僅能作為預測工具,更能成為探索大氣非線性形態特徵的分析工具。此框架透過捕捉大尺度物理場演變過程、擷取中尺度對流特徵、到嘗試重建次網格細節,期望能為提升數值模式的參數化的未來發展與深度學習可解釋性提供貢獻。 | zh_TW |
| dc.description.abstract | The application of deep learning in atmospheric sciences has expanded rapidly in recent years. However, these models are often treated as "black boxes" lacking physical transparency, which limits their reliability for scientific inference. This dissertation aims to establish an explainable deep learning framework by proposing "morphology" as a key physical indicator to bridge the gap between data-driven predictions and atmospheric physical processes.
This research validates the proposed framework through three distinct atmospheric scales using appropriate deep learning architectures. First, at the large scale, focusing on Sudden Stratospheric Warmings (SSWs), we use a Convolutional Variational Autoencoder (VAE) to construct a latent space phase diagram of the stratospheric polar vortex. The results demonstrate that the VAE effectively captures the nonlinear continuous evolution of the vortex—transitioning between displacement and splitting events—outperforming Principal Component Analysis (PCA) and providing a novel perspective on vortex dynamics. Second, at the mesoscale, investigating tropical convective aggregation, we develop an iterative feature-removal framework using Convolutional Neural Networks (CNNs). By iteratively training the model and masking dominant features (such as average cloud water path) from the input data, we aim to identify and extract the hidden morphological factors driving the network's decisions. This study reveals that, beyond cloud coverage, the complexity of cloud edges (fractal dimension) serves as an important nonlinear feature for identifying the occurrence of the convective aggregation. Finally, at the small scale, addressing cold pool dynamics within deep convection, we apply a U-Net model to deal with the resolution gap in Global Storm-Resolving Models (GSRMs). Using high-resolution Large-Eddy Simulation (LES) data, we successfully reconstruct high-resolution cold pool morphology and intensity distributions from coarse-grained environmental fields. Sensitivity analysis further reveals that the near-surface dynamic field (wind divergence signals) is important for reconstructing cold pool boundaries, playing a more critical role than thermodynamic variables alone. In conclusion, this dissertation demonstrates that when properly designed, deep learning models can serve not only as prediction tools but also as powerful physical analysis instruments for exploring nonlinear atmospheric morphology. By representing large-scale evolution, extracting mesoscale features, and reconstructing subgrid details, this framework is expected to provide a foundation for improving parameterization schemes and enhancing physical interpretability of deep learning research in atmospheric sciences in the future. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2026-02-03T16:26:02Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2026-02-03T16:26:02Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 致謝 i
摘要 iii Abstract v Contents vii List of Figures ix List of Tables xiv 1 Introduction 1 1.1 The Rise of Deep Learning in Atmospheric Sciences 1 1.2 The Problem of Black Box: The Need for Interpretability and Explainability 2 1.3 Morphology as a Physical Indicator: Linking Visual Features to Domain Knowledge 2 1.4 Thesis Objectives and Framework 3 2 Representing the Morphological Evolution of Large-Scale Circulation using Variational Autoencoder 8 2.1 Introduction 8 2.2 Data and Methods 9 2.3 Results: The Morphological Phase Diagram 15 2.4 Discussion 23 2.5 Summary and Conclusion 25 3 Extracting Nonlinear Morphological Features of Mesoscale Convection via an Iterative Deep Learning Framework 27 3.1 Introduction 27 3.2 Methodology 28 3.3 Iterative Extraction of Morphological Features 32 3.4 Discussion: Decoding the Hidden Layer 35 3.5 Summary 37 4 Capturing Subgrid-Scale Cold Pool Morphology: A U-Net Based Morphological Reconstruction 38 4.1 Introduction 38 4.2 Methodology 39 4.3 Results: Reconstructing Sub-grid Morphology 44 4.4 Explainability: Identifying Key Morphological Features 47 4.5 Summary and Discussion 49 5 General Discussion 52 5.1 Linking multi-scale phenomena through morphology 52 5.2 The Role of Neural Network Architectures in Morphological Analysis 52 5.3 The Choice of Loss Functions 56 5.4 Morphology in Time 57 5.5 From Black Box to Glass Box: Bridging Data and Physics 58 6 Conclusion and Future Perspectives 61 6.1 Summary of Major Findings 61 6.2 Contributions 62 6.3 Future Perspectives 62 References 65 | - |
| dc.language.iso | en | - |
| dc.subject | 可解釋深度學習 | - |
| dc.subject | 大氣形態特徵 | - |
| dc.subject | 卷積神經網路 | - |
| dc.subject | 變分自動編碼器 | - |
| dc.subject | 冷池 | - |
| dc.subject | 突發性平流層增溫 | - |
| dc.subject | Explainable Deep Learning | - |
| dc.subject | Atmospheric Morphology | - |
| dc.subject | Convolutional Neural Network | - |
| dc.subject | Variational Autoencoder | - |
| dc.subject | Cold Pool | - |
| dc.subject | Sudden Stratospheric Warming | - |
| dc.title | 應用可解釋深度學習識別大氣過程中的非線性形態特徵 | zh_TW |
| dc.title | Explainable Deep Learning for Identifying Nonlinear Morphological Features of Atmospheric Processes | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 114-1 | - |
| dc.description.degree | 博士 | - |
| dc.contributor.oralexamcommittee | 陳維婷;郭鴻基;蘇世顥;梁禹喬;蘇俊彥 | zh_TW |
| dc.contributor.oralexamcommittee | Wei-Ting Chen;Hung-Chi Kuo;Shih-Hao Su;Yu-Chiao Liang;Chun-Yian Su | en |
| dc.subject.keyword | 可解釋深度學習,大氣形態特徵卷積神經網路變分自動編碼器冷池突發性平流層增溫 | zh_TW |
| dc.subject.keyword | Explainable Deep Learning,Atmospheric MorphologyConvolutional Neural NetworkVariational AutoencoderCold PoolSudden Stratospheric Warming | en |
| dc.relation.page | 71 | - |
| dc.identifier.doi | 10.6342/NTU202600119 | - |
| dc.rights.note | 同意授權(全球公開) | - |
| dc.date.accepted | 2026-01-23 | - |
| dc.contributor.author-college | 理學院 | - |
| dc.contributor.author-dept | 大氣科學系 | - |
| dc.date.embargo-lift | 2026-02-04 | - |
| 顯示於系所單位: | 大氣科學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-114-1.pdf | 4.85 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
