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摘要 

近年來，深度學習技術在大氣科學領域研究中的應用迅速增長，然而，這些模型往

往被視為缺乏物理透明度的「黑盒子」，限制了其在科學推論上的可靠性。本論文

旨在建立一個可解釋的深度學習框架，提出以「形態學（Morphology）」作為連結

數據驅動預測與大氣物理過程的關鍵指標。透過捕捉物理變數在空間上的非線性

形態特徵，我們得以在不同尺度下揭示大氣動力過程的演變機制。 

 

本研究針對三個不同的大氣尺度，分別採用了三種深度學習架構來驗證此框架的

可行性。首先，在大尺度方面，針對突發性平流層增溫（SSW）現象，我們利用 「卷

積變分自動編碼器（Convolutional Variational Autoencoder）」構建了平流層極地渦

旋的潛在變數空間相位圖。結果顯示，VAE 能有效捕捉渦旋從位移型到分裂型的

非線性連續演變路徑，其表現優於傳統的線性主成分分析（PCA），為極地渦旋的

形態演變研究，以及未來的預測研究提供了新的視角。 

 

其次，在中尺度方面，針對熱帶對流聚合現象，我們開發了一套迭代式特徵移除的

卷積神經網路（CNN）框架。透過反覆訓練與遮蔽輸入資料中的顯著特徵（如平均

雲水含量），我們嘗試找出隱藏在神經網路決策背後的關鍵形態因子。研究發現，

除了雲覆蓋率外，雲的邊緣複雜度（碎形維度）是模型辨識對流是否集結的一個重

要的非線性特徵。 

 

最後，在小尺度方面，針對深對流中的冷池（Cold Pool）動力過程，我們應用 U-

Net 模型，嘗試解決全球風暴解析模式（GSRMs）中對於冷池的解析度不足的問題。

本研究利用高解析度大渦模擬（LES）資料，成功從低解析度的環境場中重建出高

解析度的冷池形態與強度分佈。同時，敏感度分析進一步顯示近地面的動力場對於
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冷池邊界的重建有一定的重要性，其影響力在此尺度下的冷池結構重建上大於熱

力變數。 

 

綜合以上 ，本論文展示了深度學習模型在經過適當設計後，不僅能作為預測工具，

更能成為探索大氣非線性形態特徵的分析工具。此框架透過捕捉大尺度物理場演

變過程 、擷取中尺度對流特徵 、到嘗試重建次網格細節，期望能為提升數值模式的

參數化的未來發展與深度學習可解釋性提供貢獻。 

 

關鍵詞：可解釋深度學習、大氣形態特徵、卷積神經網路 、變分自動編碼器 、冷池 、

突發性平流層增溫 
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Abstract 

The application of deep learning in atmospheric sciences has expanded rapidly in recent 

years. However, these models are often treated as "black boxes" lacking physical 

transparency, which limits their reliability for scientific inference. This dissertation aims 

to establish an explainable deep learning framework by proposing "morphology" as a key 

physical indicator to bridge the gap between data-driven predictions and atmospheric 

physical processes. 

 

This research validates the proposed framework through three distinct atmospheric scales 

using appropriate deep learning architectures. First, at the large scale, focusing on Sudden 

Stratospheric Warmings (SSWs), we use a Convolutional Variational Autoencoder (VAE) 

to construct a latent space phase diagram of the stratospheric polar vortex. The results 

demonstrate that the VAE effectively captures the nonlinear continuous evolution of the 

vortex—transitioning between displacement and splitting events—outperforming 

Principal Component Analysis (PCA) and providing a novel perspective on vortex 

dynamics. 

 

Second, at the mesoscale, investigating tropical convective aggregation, we develop an 

iterative feature-removal framework using Convolutional Neural Networks (CNNs). By 

iteratively training the model and masking dominant features (such as average cloud 

water path) from the input data, we aim to identify and extract the hidden morphological 

factors driving the network's decisions. This study reveals that, beyond cloud coverage, 

the complexity of cloud edges (fractal dimension) serves as an important nonlinear feature 

for identifying the occurrence of the convective aggregation. 
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Finally, at the small scale, addressing cold pool dynamics within deep convection, we 

apply a U-Net model to deal with the resolution gap in Global Storm-Resolving Models 

(GSRMs). Using high-resolution Large-Eddy Simulation (LES) data, we successfully 

reconstruct high-resolution cold pool morphology and intensity distributions from coarse-

grained environmental fields. Sensitivity analysis further reveals that the near-surface 

dynamic field (wind divergence signals) is important for reconstructing cold pool 

boundaries, playing a more critical role than thermodynamic variables alone. 

 

In conclusion, this dissertation demonstrates that when properly designed, deep learning 

models can serve not only as prediction tools but also as powerful physical analysis 

instruments for exploring nonlinear atmospheric morphology. By representing large-scale 

evolution, extracting mesoscale features, and reconstructing subgrid details, this 

framework is expected to provide a foundation for improving parameterization schemes 

and enhancing physical interpretability of deep learning research in atmospheric sciences 

in the future. 

 

Keywords: Explainable Deep Learning, Atmospheric Morphology, Convolutional Neural 

Network, Variational Autoencoder, Cold Pool, Sudden Stratospheric Warming 

  



doi:10.6342/NTU202600119

 

vii 

 

Contents 

致謝 i 

  

摘要 iii 

  

Abstract v 

  

Contents vii 

  

List of Figures ix 

  

List of Tables xiv 

  

1 Introduction 1 

 1.1 The Rise of Deep Learning in Atmospheric Sciences 1 

 1.2 The Problem of Black Box: The Need for Interpretability and 

Explainability 2 

 1.3 Morphology as a Physical Indicator: Linking Visual Features to 

Domain Knowledge 2 

 1.4 Thesis Objectives and Framework 3 

    

2 Representing the Morphological Evolution of Large-Scale Circulation 

using Variational Autoencoder 8 

 2.1 Introduction 8 

 2.2 Data and Methods 9 

 2.3 Results: The Morphological Phase Diagram 15 

 2.4 Discussion 23 

 2.5 Summary and Conclusion 25 

    

3 Extracting Nonlinear Morphological Features of Mesoscale 

Convection via an Iterative Deep Learning Framework 27 

 3.1 Introduction 27 

 3.2 Methodology 28 

 3.3 Iterative Extraction of Morphological Features 32 

 3.4 Discussion: Decoding the Hidden Layer 35 



doi:10.6342/NTU202600119

 

viii 

 

 3.5 Summary 37 

    

4 Capturing Subgrid-Scale Cold Pool Morphology: A U-Net Based 

Morphological Reconstruction 38 

 4.1 Introduction 38 

 4.2 Methodology 39 

 4.3 Results: Reconstructing Sub-grid Morphology 44 

 4.4 Explainability: Identifying Key Morphological Features 47 

 4.5 Summary and Discussion 49 

    

5 General Discussion 52 

 5.1 Linking multi-scale phenomena through morphology 52 

 5.2 The Role of Neural Network Architectures in Morphological 

Analysis 52 

 5.3 The Choice of Loss Functions 56 

 5.4 Morphology in Time 57 

 5.5 From Black Box to Glass Box: Bridging Data and Physics 58 

    

6 Conclusion and Future Perspectives 61 

 6.1 Summary of Major Findings 61 

 6.2 Contributions 62 

 6.3 Future Perspectives 62 

    

References 65 

    

 

  



doi:10.6342/NTU202600119

 

ix 

 

List of Figures 

2-1 Illustration of the bilinear interpolation method applied to a Z10 field of a 

split-type SSW event from WACCM6 simulations. (a) The longitude–

latitude map of the Northern Hemisphere in an orthographic projection 

with 90◦ N at the center, with the region of color shadings indicating the 

domain to be interpolated. (b) The resultant 36 × 36 squared grid after using 

the bilinear interpolation method. The parallels on are respectively at 80, 

60, and 40 degrees from the innermost to the outermost. 11 

   

2-2 A schematic of the VAE structure used in this study. The top row represents 

the combination of a decoder and an encoder, which form the VAE model. 

The middle row illustrates the details of the encoder, while the bottom row 

those of the decoder. The vertical solid line after each layer denotes the 

max-pooling/upsampling layers, which reduce or increase the dimension 

of pixeled images, whereas the cubes represent the convolutional layers 

with varying numbers of channels. The encoder reads in a 36 × 36 Z10 

input image, compresses its information through the convolutional layers, 

and outputs two means (µ0, µ1) and two variances (v0, v1) that form the 

latent space. The decoder utilizes these sampled results based on Gaussian 

distribution and generates a 36 × 36 Z10 output through multiple 

convolutional layers. The mean squared error (MSE) between the original 

and generated images and the Kullback–Leibler divergence between the 

latent space and the Gaussian distribution are computed. These errors are 

backpropagated to train the encoder and decoder. The light blue color 

shading highlights the two means of the latent space, which is used to 

produce the phase diagram in this study. 13 

   

2-3 This figure illustrates the corresponding Z10 field generated by the VAE 

decoder when given the varying values of z0 and z1 in the latent space. 

The green circle in each panel represents the circle of 60◦ N. 15 

   

2-4 (a) The evolution track of a displacement-type SSW event from WACCM6 
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during days [−10, 10]. (e) As in (d), but for PCA reconstructed Z10 fields. 

The values in the subtitle parenthesis in (c) are the aspect ratio (r) and 

central latitude (ϕ_o) of this SSW event, whereas those in (c) and (d) denote 
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2-6 (a) The occurrence probability of the Z10 fields associated with all 
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3-2 (Non agg-1) to (non agg-4) shows the examples of the nonaggregated case, 
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(km) domain. The solid red lines represent the area that may be difficult to 

classify visually. Those areas can be the clouds before elimination in the 

nonaggregation cases, and the clouds are not at the core of the convection 

in the aggregation cases. 

   

3-3 The model predicted probabilities of the aggregation (y-axis in each 

subgraph) from the CNN model in the different iterations and the potential 

property derived from the CWP values (x-axis in each subgraph). Blue 

points in each subgraph stand for the actual label of the training data are 

nonaggregation cases, and the orange points stand for the aggregation 

cases. (a) The 128 × 128 km^2 domain averaged CWP (kg·m^−2), (b) the 

maximum of the CWP (kg·m^−2) in the 128 × 128 km^2 crops. (c) The 

cloudy area covers 128 × 128 km2 crops after being masked by the value 

of 2 kg·m−2. 33 

   

3-4 (a) and (b) show the example of the comparison between nonaggregation 

and aggregation labeled data in the training dataset. The cropped cloud 

water path field on a 128 × 128 km2 is masked by a 2 kg·m−2 threshold. 

The green grid will be regarded as one, while dark blue grids will be 
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of the CNN model. The graph in (c) shows the referenced cloud water 
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focus on the relative strengths and the spatial distributions. The channel 

order may vary due to the randomness of the training process; however, the 
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4-1 Cold pool and convection characteristics from Large-Eddy simulations. 

Snapshots from high-resolution Large-Eddy Simulation (LES) illustrating 

two convective cases, case 1 from (A) to (C), and case 2 from (D) to (F). 

Outgoing Longwave Radiation (OLR, as shown in A and D) indicates 

cloud-top temperatures and convective activity with the domain-averaged 

value on the bottom right. Cold pool intensity (as shown in B and E) 

computed by vertically integrating negative buoyancy over the boundary 40 
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layer, and red contours denote precipitation rates exceeding 1 mm h−1. 

Vertical cross-sections (as shown in C and F) show the vertical structures 

of cloud water, ice, and rainwater within the boxed regions in (A) (B) and 

(D) (E). The top row from (A) to (C) represents shallow convection with 

limited OLR depression and small cold pools, while the bottom row from 

(D) to (F) shows deep convection with extensive anvil clouds and deep 

vertical development. 

   

4-2 U-Net framework for cold pool intensity prediction. This figure presents 

the data processing pipeline and U-Net architecture used to predict high-

resolution cold pool intensity from coarse-resolution atmospheric fields. 

(A) Subsampled Input: Low-resolution input fields (wind, relative 

humidity, potential temperature) at 0.8, 1.6, 3.2, 6.4 km resolution; we take 

3.2 km resolution as an example in this figure. (B) U-Net structure: The 

deep learning network structures used in this study, which predict high-

resolution cold pool intensity from low-resolution physics fields. (C) Cold 

pool intensity binary masks: The model outputs five binary masks 

corresponding to cold pool intensity thresholds from 1 to 5 m/s. These are 
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training. (D) Synthesized cold pool intensity and LES ground truth: The 

binary masks are combined to reconstruct the predicted cold pool field 

(left), which can be compared visually against the LES ground truth (right). 
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4-3 Comparison of cold pool predictions using U-Net and linear regression 

models. (A) High-resolution cold pool intensity from LES (100 m 

resolution). (B) Cold pool boundaries (marked as “Edge” in B and with 

orange boundary areas in C to J) based on 10-min propagation. (C to F) U-

Net predictions at input resolutions of 0.8, 1.6, 3.2, and 6.4 km, and (G) to 

(J) Linear regression model predictions at the same resolutions. The value 

D on each subgraph's title represents Dice coefficients, which quantify the 

prediction accuracy. 45 

   

4-4 Evaluation of U-Net cold pool predictions at 3.2 km resolution. This figure 

provides a detailed comparison between the cold pool intensity from LES 

and the U-Net predictions. Figure (A) represents the example of cold pool 

intensity from LES at 100 m resolution, and (B) the corresponding 

synthesized U-Net prediction. The corresponding input low resolution 46 
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physics fields are shown from (C) to (F), we take 3.2 km resolution input 

fields in this example. From (G) to (K) compare the ground truth cold pool 

intensity masks (gray regions) with U-Net predicted intensity masks (blue 

regions) at different intensity thresholds (1.0, 2.0, 3.0, 4.0, and 5.0 m/s). 

(L) presents a schematic of the intensity mask ranges predicted by LES and 

U-Net. 

   

4-5 Performance comparison of U-Net and linear regression in predicting cold 

pools. Boxplots show Dice coefficients for U-Net (green) and linear 

regression (blue) at four resolutions (R_08: 0.8, R_16: 1.6, R_32: 3.2, 

R_64: 6.4 km) using subsampled input. At each resolution, the Dice 

coefficients are computed based on comparisons over 720 test samples. (A) 

represents the cold pool intensity prediction, while (B) covers the cold pool 

intensity and boundary prediction. The result shows that U-Net model 

outperforms linear regression model across all resolutions. 47 

   

4-6 Sensitivity analysis of cold pool prediction using different input fields. 

Each row shows U-Net input maps (U, V, RH, θ) on 3.2 km resolution (A–

D, F–I, and K–N), with the corresponding cold pool intensity from U-Net 

prediction (E, J, and O) and LES (P). Group 1 from (A) to (E) includes all 

variables included, group 2 from (F) to (J) masked the dynamic variables 

(the wind components), and group 3 from (K) to (O) mask the 

thermodynamic variables (the RH and θ). The ground truth of cold pool 

intensity from LES is shown in (P). Results show that wind information 

may be more critical for U-Net cold pool prediction. 47 

   

4-7 Impact of input variables on cold pool prediction performance. Boxplots 

show correlation coefficients between predicted and ground-truth cold 

pool fields for four resolutions (R_08 to R_64). Colors represent the 

combination of input fields: Thermal fields only (pink), dynamic fields 

only (green), and all variables (blue). The group with the wind fields 

appears to improve the predictions, especially at finer resolutions. For each 

resolution and each input group, the correlation coefficients are computed 

based on 720 test samples. 48 
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Chapter 1 

Introduction 

1.1 The Rise of Deep Learning in Atmospheric Sciences 

Adapting deep learning techniques to atmospheric science research has become a 

prominent field in recent years. The use of neural network statistical methods has been 

widely applied to climatology, meteorology, atmospheric chemistry, and other 

atmospheric sciences fields (Gentine et al., 2018; Rasp et al., 2018; Yuval & O'Gorman, 

2020). By building various neural network frameworks and using both existing 

observational and simulated data, data-driven prediction model construction can be 

achieved automatically. 

 

As neural network architectures become increasingly complex, deep learning, which 

involves increasing the number of parameters or deep architectural depth in neural 

networks, has been introduced to atmospheric sciences research. In the past few years, 

with the development of artificial intelligence receiving significant attention and 

resources in the data science field, the application of deep learning techniques—

especially the generative model—in atmospheric forecasting has increased. These 

applications range from down-scaling and probabilistic forecasting to satellite image 

recognition (Agrawal et al., 2019; Brüning et al., 2024; Higa et al., 2021; Hoeller et al., 

2022). 
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1.2 The Problem of Black Box: The Need for Interpretability 

and Explainability 

With high-quality datasets, these deep learning models often achieve acceptable results 

in prediction tasks. However, their output relies on computations among numerous 

parameters, making it difficult for researchers to understand why specific results are 

produced. This deep learning model operates like a "black box," which may lack 

transparency, interpretability, and explainability (Samek et al., 2017). 

 

These black box models often cannot explain the causal relationships between predictions 

and the physics variables. The increasing number of high-accuracy black box models 

raises significant challenges for scientific discussions, and there are many doubts about 

the robustness and generalizability of these models (Beucler et al., 2021). Without a clear 

understanding of the underlying reasoning, applying these models to study complex 

atmospheric dynamics remains risky and scientifically insufficient. 

1.3 Morphology as a Physical Indicator: Linking Visual 

Features to Domain Knowledge 

To address this lack of underlying reasoning, we propose a framework focused on specific 

physical attributes. In this research, we tried to construct the linkage between the 

morphology of atmospheric physics variables and the deep learning model predictions. 

We chose morphology as an important indicator because it not only integrates the 

outcomes of nonlinear physical processes, but also provides interpretable visual cues. 

Human visual perception plays an important role in judging the reasonableness of natural 
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variables, including their correlations and causal inferences. 

 

When interpreting deep learning models, we can apply our domain-knowledge of 

atmospheric physical variables to effectively assess the validity of the outputs and 

reasoning processes of the deep learning models. Using the morphology of physics 

variables to assess the reasonableness of deep learning model construction can be applied 

to various scales of atmospheric science problems. 

 

In this research, we hypothesize that by extracting nonlinear morphological features, we 

can bridge the gap between data-driven predictions and physical consistency. This 

approach is tested across three distinct scales of atmospheric processes: 

1. Large-scale: The changes in the morphology of pressure fields during sudden 

stratospheric warming (SSW) phenomena. 

2. Mesoscale: The relationship between aggregated convection development 

characteristics and cloud water distribution morphology. 

3. Small-scale: The relationship between the cold pool in the subgrid-scale of Global 

Storm Resolving Model (GSRM) and the environmental variables morphology. 

 

1.4 Thesis Objectives and Framework 

Convolutional neural networks (CNNs) and their variants are frequently used to capture 

the morphology of physical variables and construct predictive models (Chattopadhyay et 

al., 2020; Ham et al., 2019; Weyn et al., 2020). By using CNNs, we can allow the model 

to automatically determine and extract key features such as edges, areas, positions, 

maxima, and minima, and even complex nonlinear structures from the input data. 
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To demonstrate the robustness and generalizability of this deep learning framework, we 

adopted a cross-scale approach for case selection. We identified three distinct 

phenomena—Sudden Stratospheric Warmings (Planetary scale), Convective Aggregation 

(Mesoscale), and Cold Pools (Sub-grid scale). These cases were selected not only to 

represent a hierarchy of atmospheric scales but also because they share a common 

scientific challenge: their physical states and evolutions are governed by nonlinear spatial 

structures (or morphological features) that are difficult to quantify using traditional scalar 

statistics. By applying our framework across these diverse scales, we aim to validate that 

morphology can serve as a universal physical indicator connecting data patterns to 

dynamic mechanisms. 

 

However, the specific morphological tasks differ across these scales, ranging from global 

evolution representation to local feature extraction and subgrid reconstruction. Therefore, 

various CNN-based network architectures must be adapted. Our research used three 

different CNN-based deep learning networks to build the framework linking physical 

variables' morphology in atmospheric science problems of various scales. This 

dissertation contains the following three parts: 

 

1. Representing Large-Scale Evolution (Chapter 2): 

In the first part of this study, we conducted a morphological analysis of sudden 

stratospheric warming (SSW) phenomena. Traditional classification methods (e.g., linear 

PCA) may not be suitable to categorize all events fully due to the complex spatial 

deformation of the polar vortex. Therefore, we demonstrated the use of a combination 

of Variational Autoencoder (VAE) and CNN to capture the large-scale atmospheric 

physics variables and compress the morphology into scatter plots. This visualization 
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effectively captures the temporal and spatial changes of the 10 hPa geopotential height, 

providing a continuous phase diagram to study the spatial-temporal characteristics of 

SSWs. 

 

2. Extracting Mesoscale Nonlinear Features (Chapter 3): 

In the second part, we investigate the relationship between cloud water distribution 

patterns and the development of aggregated convection. We constructed a framework that 

uses CNN models and gradually reduces the key physics features of the input dataset. By 

repeatedly removing characteristics we believed were important (such as cloud water path 

magnitude) and retraining the model, we discovered the nonlinear relationships between 

edge complexity and the area of cloud water patterns. This "iterative feature removal" 

strategy allows us to identify the important morphological features that distinguish 

convective aggregation. 

 

3. Reconstructing Subgrid-Scale Dynamics (Chapter 4): 

In the third part, we explore the potential of deep learning as a subgrid parameterization 

tool. We use a CNN-based U-Net deep learning model to predict high-resolution cold 

pool patterns from low-resolution physics fields—mimicking the resolution gap in Global 

Storm-Resolving Models (GSRMs). By designing the U-Net output as binary masks of 

cold pool intensity, we can focus on the overall range and intensity distribution pattern. 

Analyzing the key morphology concluded by U-Net enables us to understand the 

important physics variables (specifically dynamic fields vs. thermodynamic fields) 

required for parameterizing high-resolution cold pools. 

 

These chapters are derived from three scientific papers conducted during the doctoral 
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program, each corresponding to a specific peer-reviewed publication: 

Chapter 2 is adapted from the work published in Chen et al. (2024), "Exploiting a 

variational auto-encoder to represent the evolution of sudden stratospheric warmings." 

Environmental Research: Climate 3(2), https://doi.org/10.1088/2752-5295/ad3a0d, 

which investigates the morphological evolution of Sudden Stratospheric Warmings using 

a variational autoencoder framework.  

 

Chapter 3 corresponds to the study presented in Chen et al. (2023), A deep learning 

framework for analyzing cloud characteristics of aggregated convection using cloud-

resolving model simulations. Atmospheric Science Letters, 24(5), e1150. 

https://doi.org/10.1002/asl.1150, focusing on extracting nonlinear features of mesoscale 

convective aggregation via an iterative deep learning approach. 

 

Chapter 4 is based on Y. C. Chen and C. M. Wu (2025). “Capturing Subgrid Cold Pool 

Dynamics With U-Net: Insights From Large-Eddy Simulation for Storm-Resolving 

Modeling.” Atmospheric Science Letters 26, no. 7: e1309. 

https://doi.org/10.1002/asl.1309, demonstrating the reconstruction of subgrid-scale cold 

pool morphology from coarse-grained environmental fields. 

 

Following these case studies, Chapter 5 synthesizes the findings across these three distinct 

scales, providing a general discussion on the role of different neural network architectures 

and the interpretability of morphology as a physical indicator. Finally, Chapter 6 

summarizes the major scientific contributions of this dissertation and outlines potential 

directions for future research. 
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Through these parts of studies, this dissertation aims to establish an explainable deep 

learning framework that not only achieves acceptable prediction accuracy but also reveals 

the underlying nonlinear morphological features of atmospheric processes.  
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Chapter 2 

Representing the Morphological Evolution of 

Large-Scale Circulation using Variational 

Autoencoder 

2.1 Introduction 

Sudden stratospheric warmings (SSWs) are the most dramatic events in the wintertime 

stratosphere, characterized by substantial disruption to the stratospheric polar vortex 

(Andrews, 1987; Baldwin et al., 2021; Charlton & Polvani, 2007; Limpasuvan et al., 

2004). These extreme events are typically categorized into displacement and splitting 

types depending on the morphology of the vortex (Baldwin et al., 2021; Charlton & 

Polvani, 2007; Lehtonen & Karpechko, 2016; Matthewman et al., 2009; Mitchell et al., 

2011; Seviour et al., 2013). Monitoring the genesis and evolution of these morphological 

changes is important because they are usually followed by anomalous tropospheric 

circulation regimes that are important for subseasonal-to-seasonal prediction(Baldwin et 

al., 2003; Davis et al., 2022; Domeisen et al., 2020; Kidston et al., 2015; Sigmond et al., 

2013; Tripathi, Baldwin, et al., 2015; Tripathi, Charlton-Perez, et al., 2015). 

 

Despite several analysis methods that have been used to study the evolution of SSWs, the 

potential of deep learning methods to capture these complex spatial structures has not yet 

been fully explored. This is mainly due to the relative scarcity of observed events, which 
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creates a small sample size problem for training data-driven models. To overcome this 

limitation, we use data from historical simulations of the Whole Atmosphere Community 

Climate Model version 6 (WACCM6, Gettelman et al. (2019); Liang et al. (2020); Liang 

et al. (2022)) to identify thousands of simulated SSWs. We then use their spatial patterns 

to train a deep learning model. 

 

In this chapter, we use a convolutional neural network (CNN) combined with a variational 

auto-encoder (VAE, Kingma and Welling (2013))—a generative deep learning model—

to construct a phase diagram that characterizes the SSW evolution. This approach aligns 

with our dissertation's goal of extracting nonlinear features: it allows us to create a latent 

space that encapsulates the essential features of the vortex structure during SSWs. By 

projecting the high-dimensional geopotential height fields into a compressed 2D space, 

this visualization effectively concludes the temporal and spatial changes of the polar 

vortex. Unlike linear methods such as Principal Component Analysis (PCA), the VAE 

captures the nonlinear continuous transition of the vortex pattern, providing a new 

perspective for discussing the evolutionary paths of SSWs. 

2.2 Data and Methods 

2.2.1 Data Description and Preprocessing 

We use daily-mean zonal wind and geopotential height fields at 10 hPa (Z10) from the  

National Aeronautics and Space Administration’s Modern-Era Retrospective Analysis for 

Research and Applications, version 2 (MERRA-2, Gelaro et al. (2017)) reanalysis and 

two sets of large-ensemble historical simulations conducted using WACCM6. The 

WACCM6 simulations provide a total of 1539 SSW events, offering a rich dataset to train 
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our deep learning model. 

 

The WACCM6 is a high-top chemistry-climate model with 70 vertical levels extending 

from the surface to 6 × 10ି଺ ℎ𝑃𝑎(~ 140 km), allowing for a robust representation of 

stratospheric dynamics. The simulations have a horizontal resolution of 0.95∘× 1.25∘

in latitude and longitude. The dataset comprises two sets of historical simulations (1979–

2014) forced by observed sea surface temperatures and sea ice concentrations, with each 

set containing 30 ensemble members generated via micro-perturbations to the initial 

atmospheric temperature fields. This large-ensemble approach (totaling 2,160 simulation 

years) is important for overcoming the sampling limitations of observational records 

when studying extreme events like SSWs. 

 

Specifically, the simulations consist of two configurations to account for different forcing 

factors. The first set involves WACCM6 being forced by the daily time-varying global 

sea-surface temperature (SST) and sea-ice concentration (SIC) (Eyring et al., 2016; 

Haarsma et al., 2016). The second set replicates the first but replaces the Northern 

Hemisphere SIC with daily climatological values. This experimental design ensures that 

the atmospheric circulation in the second set remains unaffected by variations in Arctic 

sea ice, allowing us to isolate the stratospheric variability driven by internal atmospheric 

dynamics from that forced by sea-ice anomalies. 

 

As discussed in Chapter 1, appropriate preprocessing must be done according to the data 

characteristics to facilitate the CNN's ability to extract key features. The Z10 field output 

from WACCM6 simulations is originally in a latitude-longitude grid. To maintain the grid 

area size at high latitudes and avoid distortion that might confuse the morphological 
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learning, we employ a bilinear interpolation method (Kim et al., 2019) to project the data 

onto a generic square grid. Figure 2-1 shows an example of the original range of data and 

the interpolated data. 

 
Figure 2-1. Illustration of the bilinear interpolation method applied to a Z10 field of a split-type SSW event 

from WACCM6 simulations. (a) The longitude–latitude map of the Northern Hemisphere in an 

orthographic projection with 90◦ N at the center, with the region of color shadings indicating the domain 

to be interpolated. (b) The resultant 36 × 36 squared grid after using the bilinear interpolation method. 

The parallels on are respectively at 80, 60, and 40 degrees from the innermost to the outermost. 

 

This spatial interpolation allows the VAE model to extract features in a more feasible way 

(i.e., squared images) as the stratospheric polar vortex can be distorted in the longitude–

latitude grid. These squared images of Z10 fields are then standardized to the Z-score to 

accelerate the convergence rate of the neural network. 

2.2.2 Definition and Classification of SSWs 

To identify SSW events, we follow the standard criterion proposed by Charlton and 

Polvani (2007), defined by the reversal of zonal-mean zonal winds at 10 hPa and 60°N 

from westerly to easterly during the boreal extended winter (November to March). The 

onset date (day 0) is defined as the first day of wind reversal. 
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Furthermore, to categorize the morphology of the polar vortex, we adopt the two-

dimensional vortex moment analysis (Seviour et al., 2013). This method calculates two 

key geometric indices based on the geopotential height field: the aspect ratio (r) 

and the centroid latitude (ϕୡ). 

 

Displacement Events: Defined when the vortex centroid is shifted equatorward 

(ϕୡ < 66 °𝑁) for at least 7 days, while the aspect ratio remains low. 

Splitting Events: Defined when the vortex becomes elongated and splits, indicated 

by an aspect ratio (r > 2.4) for at least 7 days. 

 

Using these criteria, we identified 1,177 displacement events and 362 splitting events 

from the WACCM6 simulations. 

2.2.3 Variational Auto-Encoder (VAE) Framework 

To capture the morphology of the polar vortex, we constructed a CNN-based VAE model. 

The VAE consists of two components: an encoder and a decoder. The encoder allows the 

model to automatically determine and extract key spatial structures—such as the vortex 

edge, position, and intensity—and compresses this information into a latent space. The 

decoder then samples from this compacted representation to generate (reconstruct) the 

output data. The structure of CNN-based VAE model used in this study can be found in 

Figure 2-2. 
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Figure 2-2. A schematic of the VAE structure used in this study. The top row represents the combination of 

a decoder and an encoder, which form the VAE model. The middle row illustrates the details of the encoder, 

while the bottom row those of the decoder. The vertical solid line after each layer denotes the max-

pooling/upsampling layers, which reduce or increase the dimension of pixeled images, whereas the cubes 

represent the convolutional layers with varying numbers of channels. The encoder reads in a 36 × 36 Z10 

input image, compresses its information through the convolutional layers, and outputs two means (µ0, µ1) 

and two variances (v0, v1) that form the latent space. The decoder utilizes these sampled results based on 

Gaussian distribution and generates a 36 × 36 Z10 output through multiple convolutional layers. The mean 

squared error (MSE) between the original and generated images and the Kullback–Leibler divergence 

between the latent space and the Gaussian distribution are computed. These errors are backpropagated to 

train the encoder and decoder. The light blue color shading highlights the two means of the latent space, 

which is used to produce the phase diagram in this study. 

 

Looking into the latent space yields an understanding of how the VAE learns the 

continuous variations in the patterns. In this study, we focus on the two "modes" 

(dimensions) of the trained VAE, 𝑧଴  and 𝑧ଵ . These two dimensions form a two-

dimensional phase diagram, making it easy to examine the evolution of the SSWs. By 

minimizing the difference between the input and the generated output, the VAE optimizes 

the latent space to represent the continuous variations of the vortex patterns from the input 

data. 

 

To provide a baseline for assessing the VAE's ability to capture nonlinear morphology, 

we also perform Principal Component Analysis (PCA) over the same Z10 training data. 
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As a linear baseline, the first two principal components (PCs) explain 30.6% and 21.4% 

of the total variance, respectively, accounting for over 50% of the variability combined. 

While PC1 typically represents the vortex displacement and PC2 captures the wave-

number 1 or 2 features, we will demonstrate in the following sections that this linear 

decomposition struggles to fully capture the complex, non-linear deformation of splitting 

events compared to the VAE. Physically, the first PCA mode is characterized by a dipole 

in Z10 anomalies between northwestern North America and the Barents-Kara Seas, while 

the second mode features lower Z10 values over Greenland together with higher values 

over eastern Siberia. Although these two modes are statistically distinguishable based on 

North’s rule (North et al., 1982) and combined explain more than 50% of the total 

variance, their linear combination struggles to represent the continuous structural 

deformation observed during splitting events. 

 

Before constructing the balanced dataset, we processed the entire collection of identified 

SSW events. We prepared a total of 32,319 Z10 images from the Z10 anomalies over 10 

days prior to and after the onset date. To ensure robust model training and evaluation, we 

adopted an 80%–9%–11% ratio for separating the data, resulting in 25,893 images for 

training, 3,024 for validation, and 3,402 for testing. This strict separation ensures that the 

morphological features learned by the VAE are generalizable and does not result from 

overfitting to specific events. 

 

To prevent the model from being biased toward the more frequent displacement events 

(class imbalance), we constructed a balanced training dataset. We randomly sampled an 

equal number of images (1,299 images) from three categories: displacement, splitting, 

and 'neither' (transition states), resulting in a total of 3,897 images for training. The model 
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was trained using the Adam optimizer.  

 

2.3 Results: The Morphological Phase Diagram 

A key outcome of the VAE is the generative phase diagram obtained by passing varying 

latent variables (𝑧଴,𝑧ଵ)  through the decoder. This diagram provides insight into the 

morphology and spatiotemporal evolution of SSWs. As shown in Figure 2-3, we can 

observe that the phase diagram captures a wide variety of various vortex structures. 

 

Figure 2-3. This figure illustrates the corresponding Z10 field generated by the VAE decoder when given 

the varying values of z0 and z1 in the latent space. The green circle in each panel represents the circle of 

60◦ N. 
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The constructed phase diagram depicts a continuous transition of the vortex pattern. In 

the upper-left quadrant (large negative 𝑧଴, positive 𝑧ଵ) in Figure 2-3, the vortex is rather 

circular and centered near the pole. Towards the lower-left, the vortex becomes displaced. 

In the upper-right quadrant, the spatial pattern demonstrates the splitting of the vortex 

into two smaller vortices. 

 

Interestingly, the phase diagram shows a gradual, continuous transition of the vortex 

structure from one shape to another. This confirms that the VAE has learned to map the 

complex, nonlinear morphology of the stratospheric vortex onto a simplified 2D vector. 

2.3.1 Evolutionary Tracks and Reconstruction 

To further shed insight on the capability of the VAE phase diagram, we project the 

temporal evolution of specific SSW events onto the diagram. Visualization in Figure 2-4 

allows us to track the morphological changes through the 2D phase-space. 
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Figure 2-4. (a) The evolution track of a displacement-type SSW event from WACCM6 simulations mapped 

onto the VAE phase diagram. (b) As in (a), but for the track mapped onto the PCA phase diagram. (c) The 

WACCM6 Z10 spatial patterns during days [−10, 10]. (d) The VAE reconstructed Z10 fields during days 

[−10, 10]. (e) As in (d), but for PCA reconstructed Z10 fields. The values in the subtitle parenthesis in (c) 

are the aspect ratio (r) and central latitude (ϕo) of this SSW event, whereas those in (c) and (d) denote the 



doi:10.6342/NTU202600119

 

18 

 

pattern correlation (R) and RMSE. The green circle in each panel of (c)–(e) represents the circle of 60◦ N. 

 

Figure 2-4 shows a displacement-type event. The VAE track stays within the lower-left 

quadrant, consistent with the displacement-dominant status of the event. The VAE 

reconstructed fields (Figure 2-4D) successfully capture the elongated and displaced 

nature of the vortex. In contrast, while PCA (Figure 2-4E) also captures the general 

evolution, the VAE gives a better-reconstructed vortex morphology, particularly in 

preserving the structural integrity of the vortex core. 

 

This advantage of VAE becomes even more apparent for split-type events in Figure 2-5. 
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Figure 2-5. The same as in Figure 2-4, but for a split-type SSW. 

 

Figure 2-5 shows a splitting event. VAE is capable of reconstructing the varied spatial 

patterns—from a circular structure to a stretched one and finally to splitting patterns. 



doi:10.6342/NTU202600119

 

20 

 

However, the PCA (Figure 2-5E) fails to retrieve these important vortex features; it cannot 

produce two distinct vortices but instead yields only one vortex. This implies that the 

linear combination of two PCA modes is insufficient to represent the highly nonlinear 

morphology of a splitting vortex. 

2.3.2 Statistical Distribution and Model Validation 

We further investigate if different types of SSWs favor certain regions of the 2D phase-

space by mapping all test events onto the heatmap (Figure 2-6). 

 

Figure 2-6. (a) The occurrence probability of the Z10 fields associated with all displacement-type SSWs 

from the WACCM6 testing dataset in the VAE phase diagram. The values are presented as percentages 

after normalized by the total number of events. (b) As in (a) but for split-type SSWs from WACCM6 
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simulations. Figures (c) and (d) are the same as (a) and (b), but for the PCA phase diagram. The blue dots 

are the Z10 fields from the reanalysis dataset mapped onto the VAE and PCA phase diagrams. 

 

The VAE heatmaps (Figures 2-6A, 2-6B) separates the regimes for displacement (lower-

left) and splitting (upper-right) events. The observed SSWs from MERRA-2 (blue dots) 

also map differently onto these regimes, suggesting that the VAE trained on simulation 

data can be applied to observational data. Conversely, the PCA phase diagram (Figures 

2-6C, 2-6D) shows less organized regimes, confirming that VAE offers a more robust 

framework for mapping vortex structures into two modes. 

2.3.3 Quantitative Assessment 

To provide quantitative evidence that the VAE reconstructs better evolutions of SSWs 

than the PCA, we calculate the pattern correlation (𝑅) and root mean squared error (𝑅𝑀𝑆𝐸) 

as a function of time. 
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Figure 2-7. The pattern correlation (R) and root mean squared error (RMSE) for (a) and (b) the 

reconstructed displacement-type SSWs and (c) and (d) the reconstructed split-type SSWs from WACCM6 

simulation against corresponding full Z10 during the period of days [−10, 10]. The color shading indicates 

the range of one standard deviation. 

 

Figure 2-7 shows that for both displacement and splitting events, the VAE gives 

higher 𝑅  and lower 𝑅𝑀𝑆𝐸  than the PCA throughout most of the period. This 

quantitatively supports our visual finding that the VAE performs better in terms of spatial 

reconstruction. 

 

Finally, we examine the "travel distance" in the phase space to understand the variability 
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of the events. 

 
Figure 2-8. (a) Distributions of distance traveled in the VAE phase diagram for all split-type (magenta 

bars) and displacement-type (blue bars) SSWs. (b) Distributions of distance traveled for all simulated SSWs 

(blue bars) and observational (magenta bars) SSWs. (c) and (d) The same as (a) and (b) but for the 

distributions of distance traveled in the PCA phase diagram. 

 

Figure 2-8 shows that the VAE produces a more skewed distribution of travel distances 

compared to PCA, reflecting its ability to generate more disrupted (and thus more variable) 

vortex structures. 

2.4 Discussion 
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The latent space of the VAE plays an essential role in this study. We have shown that the 

dimensions of the latent space (𝑧଴, 𝑧ଵ) are not just abstract numbers but correspond to 

physical morphological characteristics: 𝑧଴  largely controls the transition between 

displacement (wavenumber-1) and splitting (wavenumber-2) structures, while 𝑧ଵ relates 

to the vortex strength and distortion. 

 

This interpretability is practical. It moves the deep learning model away from being a 

"black box" towards a "glass box" where we can observe the reasoning process. The phase 

diagram provides an innovative means to study the evolution of the vortex structure in 

the duration of SSW, revealing that splitting events are not just discrete jumps but follow 

continuous morphological pathways. 

 

Furthermore, the VAE phase diagram provides an innovative approach to manifest the 

discrepancy between SSWs in global climate model simulations and reanalysis data. As 

shown in the distribution comparison (Figure 2-6), the simulated vortex structures from 

WACCM6 occur less frequently in the upper-right quadrant compared to the observed 

events from MERRA-2. This implies that there may exist model biases in the 

stratospheric polar vortex of WACCM6, particularly affecting the structure of stationary 

waves. By projecting both datasets onto the same latent space, the VAE effectively 

highlights these subtle morphological differences that scalar metrics might miss, 

demonstrating its potential as a benchmark tool to evaluate model performance in 

simulating extreme stratospheric events. 

 

However, a question arises: do the generated vortex structures in the latent space (e.g., in 

the empty quadrants of the phase diagram) represent physically realizable states? While 
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some patterns may be rare in the current climate, they represent potential morphological 

configurations that the atmosphere could theoretically explore. This generative capability 

is a distinct advantage of the VAE over discriminative models. 

2.5 Summary and Conclusion 

In this chapter, we have successfully trained a VAE using the stratospheric polar vortex 

during SSWs from large-ensemble WACCM6 simulations. By deriving a phase diagram 

from the latent space, we characterized the spatiotemporal evolution of SSWs from a 

morphological perspective. 

 

Compared with the baseline results obtained from the PCA approach, reconstructions 

from VAE have better spatial structures, showing the vortex stretching, deformation, and 

splitting with higher fidelity. Also, VAE provides a continuous latent space that maps the 

nonlinear transition of the vortex. 

 

These results demonstrate that identifying morphological features via deep learning can 

provide new insights into large-scale atmospheric dynamics. The VAE effectively 

compressed the global morphology of the polar vortex into a low-dimensional space, 

allowing us to track its evolution. 

 

Though VAE successfully captured the evolution of the large-scale field by compressing 

the entire image into a latent vector by encoding the entire map at once, in many 

atmospheric problems, particularly at the mesoscale, we are interested in 

identifying which specific local features within the scene drive a physical process (such 

as convection aggregation). The VAE's latent variables (𝑧଴, 𝑧ଵ) describe the "what" (the 
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state), but they do not explicitly isolate the "why" (the causal features) in a way that allows 

us to analyze the physics of organization. 

 

Therefore, in the next chapter, we will shift our focus from representation to feature 

extraction and explanation. We will introduce an iterative framework to identify the 

nonlinear morphological features, moving deeper into the interpretability of the neural 

network's hidden layers. 
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Chapter 3 

Extracting Nonlinear Morphological Features of 

Mesoscale Convection via an Iterative Deep 

Learning Framework 

3.1 Introduction 

Tropical deep convection can aggregate into organized systems that can reach mesoscale 

or even hundred-kilometer scales horizontally. These aggregated convection systems play 

an important role in the climate system and regional extreme weather (Hamada et al., 

2014). While the theoretical understanding of aggregation has advanced (e.g., the "moist-

convective quasi-equilibrium" hypothesis, Arakawa (2004); Arakawa and Schubert 

(1974)), defining the state of aggregation often relies on simple linear metrics or scalar 

statistics. However, aggregated convection in nature involves high-dimensional nonlinear 

relationships of multiple physical characteristics (Xu et al., 2019) that are best observed 

through their morphology. 

 

As discussed in Chapter 1, identifying these morphological features is challenging for 

traditional statistical methods but is a strength of Convolutional Neural Networks (CNNs). 

CNNs can statistically capture the characteristics of gridded data (Chattopadhyay et al., 

2020; Higa et al., 2021; Tsou et al., 2019), effectively learning from the "snapshot" of 

aggregated convection in the model simulations. However, a standard CNN operates as a 
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"black box." Though it may achieve high accuracy, the specific morphological features it 

uses to distinguish aggregated from non-aggregated convection remain hidden in the 

high-dimensional weighted parameters (Ribeiro et al., 2016; Roscher et al., 2020). 

 

In this chapter, we construct an "explainable framework" to extract these hidden 

relationships. Unlike Chapter 2, where we used a VAE to represent the evolution of a state, 

here we use a CNN to analyze the state. By iteratively training the model and eliminating 

known physical features (a process we term "Iterative Feature Removal"), we force the 

neural network to reveal the nonlinear morphological features that are important for 

identifying organized convection. 

3.2 Methodology 

3.2.1 CNN Model and the Hidden Layer 

The convolutional neural network (CNN) is a robust model for recognizing the image or 

the distribution with spatial characteristics. The structure of the CNN applied in this study 

is visualized in Figure 3-1, which is inspired by the Visual Geometric Group (VGG)-net 

(Simonyan & Zisserman, 2015). 

 

Figure 3-1. A schematic diagram shows the data flow of the CNN model and our framework. Each kernel 

of the convolution layers is 3 × 3, and the activations are ReLUs. The pool size of the max-pooling layers 
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is 3 × 3, and the activation function of the output layer is sigmoid to represent the probability in [0,1]. The 

flowchart shows our framework for retrieving the physics process and the role of the CNN model in our 

framework. 

 

This typical network can be applied to image classification. The convolutional structure 

preserves the spatial distribution's characteristics while reducing trainable parameters. 

Since the logic of identifying the aggregation hides in the connection between layers of 

CNN, a common way to understand the logic is to visualize the signal output from the 

hidden layer and connect it with the physics meaning we are familiar with. This study 

will visualize the first max-pooling layer right after the first convolution layer showed in 

Figure 3-1 to find out the connection with physical variables. 

 

We intentionally constructed a CNN model with only a few layers. While deeper networks 

with more trainable parameters might increase classification accuracy, they often hide the 

physical signals through complex, high-level abstractions, making interpretation difficult. 

By limiting the network depth, we may ensure that the signals captured in the first max-

pooling layer preserve more original spatial information, allowing us to directly trace the 

learned features back to specific morphological structures of the clouds. 

3.2.2 Dataset 

To obtain data covering aggregated states, we use outputs from the Vector Vorticity 

Equation Cloud-Resolving Model (VVM, Jung and Arakawa (2008); Wu et al. (2019)) 

simulations (Tsai & Wu, 2017). The dataset includes simulations with varying degrees of 

environmental moistening. Following Tsai and Wu (2017), we identify distinct modes in 

cloud size distribution to label "aggregated" versus "non-aggregated" cases. Our 

framework treats the cloud water field as the primary input for the CNN to classify these 

states. Specifically, we use the Cloud Water Path (CWP) in each column (𝐶𝑊𝑃௜,௝), as our 
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input variables, which is calculated by 

𝐶𝑊𝑃௜,௝ = ෍ 𝜌௞ ⋅ (𝑞𝑐 + 𝑞𝑖)௜,௝,௞ ⋅ 10଺

௞

⋅ ∆𝑧௞ 

where (𝑞𝑐 + 𝑞𝑖)௜,௝,௞ represents the mixing ratio of the cloud condensate (𝑘𝑔 ⋅ 𝑘𝑔ିଵ) in 

each grid point. 𝜌௞ represents the density in the specific height, and ∆𝑧௞ represents the 

grid height in the stretching grid. 

 

The simulations are initialized with profiles based on the GATE Phase III field campaign. 

The imposed large-scale forcing is prescribed as constant in time but modulated to create 

various environmental conditions. Specifically, the large-scale moistening effect is 

controlled by multiplying a scale factor ranging from +6 (very moist) to -6 (very dry) with 

an interval of 1.5. This results in nine distinct experiments representing a spectrum of 

environments. Following Tsai and Wu (2017), we identified that the simulations with the 

strongest moistening factors (+6 and +4.5) successfully developed into aggregated 

convection, while the drier cases (factors -4.5 and -6) remained in a scattered, non-

aggregated state. 

 

Figure 3-2. (Non agg-1) to (non agg-4) shows the examples of the nonaggregated case, and (Agg-1) to 

(Agg-4) shows the aggregated case with the cloud water path values in (kg·m−2). Each subgraph shows 

the simulations' 512 × 512 (km) domain. The solid red lines represent the area that may be difficult to 
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classify visually. Those areas can be the clouds before elimination in the nonaggregation cases, and the 

clouds are not at the core of the convection in the aggregation cases. 

 

Figure 3-2 shows snapshots of an aggregation and a non-aggregation case. To focus on 

the characteristics of aggregated convection and its environment, we selected 128 ×

128 𝑘𝑚ଶ cloud condensate path crops. The selection of the crop size is motivated by the 

characteristic length scale of convective aggregation. While individual convective cells 

typically operate on scales of a few kilometers, the organization process behave as the 

spatial separation of moist and dry regions on the mesoscale (tens to hundreds of 

kilometers). A 128 km domain is sufficiently large to capture the morphological clusters 

of aggregated convection and their surrounding dry area, yet small enough to serve as a 

local sample for the neural network, allowing us to augment the dataset and focus on the 

local texture of organization rather than global statistics. 

 

3.2.3 Framework: Iterative Feature Removal 

A CNN model with many parameters trained on a limited dataset can suffer from 

overfitting or rely on trivial features. To address this and ensure explainability, our 

framework is designed to iteratively modify the training dataset. The logic is as follows: 

We train the model, identify the leading characteristic the model relies on (e.g., average 

CWP), and then remove or mask that characteristic from the dataset. We then re-train the 

model. If the model can still predict accurately, it must be using a different set of features.  

 

It is important to clarify the mechanism of "Feature Removal" in this framework. We do 

not remove the input variable (Cloud Water Path) entirely, as it serves as the carrier of 

morphological information. Instead, we perform Information Masking on the spatial field 
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to eliminate specific statistical properties that are known to be highly correlated with 

aggregation. For example: 

1. Masking Intensity: By converting the continuous CWP field into a binary mask (0 

or 1), we remove the functional dependence on cloud thickness/intensity while 

preserving the spatial layout. 

2. Masking Coverage: By restricting the dataset to samples with similar cloud 

fractions, we remove the statistical dependence on cloud coverage area. 

This process is analogous to causal discovery via intervention. By systematically 

blocking the "easy" pathways (intensity and coverage) that the neural network would 

typically use for classification, we force the model to seek alternative discriminative 

features hidden in the remaining information, specifically, the spatial distribution and 

edge complexity (morphology). This ensures that the learned features represent nonlinear 

structural drivers rather than simple scalar correlations. 

 

By repeating this process in this framework, we may dig out the deeper, nonlinear 

morphological relationships. 

3.3 Iterative Extraction of Morphological Features 

Iteration 1: The Role of Average Cloud Water Path 

In the first round, the trained model based on the complete CWP information achieves an 

accuracy of about 98%. By analyzing the predicted probability against the domain-

averaged CWP (Figure 3-3A), we find that cases with averaged CWP greater than 

1 𝑘𝑔 ⋅ 𝑚ିଶ are easily classified as aggregated. This is a trivial feature for distinguishing 

between aggregated and non-aggregated cases according to our knowledge of convective 

aggregation. To force the model to learn more detailed variables, we removed these high-
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average-CWP cases from the dataset. 

 

Figure 3-3. The model predicted probabilities of the aggregation (y-axis in each subgraph) from the CNN 

model in the different iterations and the potential property derived from the CWP values (x-axis in each 

subgraph). Blue points in each subgraph stand for the actual label of the training data are nonaggregation 

cases, and the orange points stand for the aggregation cases. (a) The 128 × 128 km2 domain averaged 

CWP (kg·m−2), (b) the maximum of the CWP (kg·m−2) in the 128 × 128 km2 crops. (c) The cloudy area 

covers 128 × 128 km2 crops after being masked by the value of 2 kg·m−2. 

 

Iteration 2: The Role of Maximum Intensity 

The model trained on the remaining dataset still achieved 95% accuracy. Figure 3-3B 

shows that the maximum CWP can be a potential discriminator—aggregated cases tend 

to have higher extrema. To eliminate this intensity-based feature and focus on the spatial 

distribution, we masked the CWP information by setting a threshold (2𝑘𝑔 ⋅ 𝑚ିଶ). Grids 

with values above this are set to 1, and others to 0. This retains the cloud 

shape (morphology) while removing the intensity distribution. 

 

Iteration 3: The Role of Cloud Coverage 

In the third round, even with intensity masked, the model persists with 90% accuracy. We 

hypothesized that cloud coverage rate (Cloud Fraction) is the key. As shown in Figure 3-

3C, low coverage rates are associated with non-aggregation. To challenge the CNN model 

further, we limited the dataset to cases with cloud coverage between 5% and 10%, which 

are the hard cases in Figure 3-3C 
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After these iterations, the modified dataset is difficult even for humans to distinguish 

visually (Figure 3-4A, B). Yet, the CNN model still achieves 73% accuracy (better than 

random guessing). This suggests the existence of a hidden morphological relationship that 

is related to the mechanisms of cloud organization. 

 

 

Figure 3-4. (a) and (b) show the example of the comparison between nonaggregation and aggregation 

labeled data in the training dataset. The cropped cloud water path field on a 128 × 128 km2 is masked by 

a 2 kg·m−2 threshold. The green grid will be regarded as one, while dark blue grids will be regarded as 

zero. The ones and zeros will be inputted into the input layer of the CNN model. The graph in (c) shows the 

referenced cloud water (masked) inputted into the CNN models. From (d-0) to (d-4), show the graphs of 

the encoded channel 0 to 4, representing the max-pooling layer with the 42 × 42 grid or the 128 × 128 km 

domain. Each grid concludes the signal from the 3 × 3 km2 box. The brightness in the graphs shows the 

strength of the signal outputted. Each channel has its scale, so we will only focus on the relative strengths 
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and the spatial distributions. The channel order may vary due to the randomness of the training process; 

however, the characteristics of the relative strengths and the spatial distributions will remain. 

3.4 Discussion: Decoding the Hidden Layer 

To quantify the complexity of the cloud edges, we calculated the fractal dimension of the 

cloud clusters. In this study, the fractal dimension is applied to the binary cloud mask 

(where CWP > 2 kg/m²). A higher fractal dimension indicates a more complex, rougher 

boundary, whereas simple, smooth shapes typically yield lower dimensions. 

 

To understand the "black box" logic of the final iteration, we visualize the signals from 

the CNN's first max-pooling layer with 5 channels (Figure 3-4D, channel 0 to 4). Strong 

signals appear at the center of clouds in one channel (Channel 2) and at the edges in others 

(Channels 0, 1, 3, 4). 

 

This indicates that the model is looking at the fractal dimension or the complexity of the 

cloud boundaries. To quantify this, we analyzed the correlation (𝑅ଶ) between the signal 

sums of specific channels and physical properties (Cloud Fraction vs. Fractal Dimension). 

  
Cloud Fraction Fractal Dimension 

 R2 

 values 

Non-Aggregation Aggregation Non-Aggregation  Aggregation  1.0 

Channel 0 0.33 0.09 0.17 0.66  0.9 

Channel 1 0.49 0.11 0.09 0.61  0.8 

Channel 2 0.88 0.63 0.01 0.16  0.7 

Channel 3 0.51 0.12 0.07 0.62  0.6 

Channel 4 0.26 0.08 0.23 0.68  0.5 

Table 3-1. R2 values of the cloud fraction/fractal dimension and the channel signal sums corresponded to 

the model used in Figure 3-4 (d-0) to (d-4), separated by the aggregated and non-aggregated cases. 

Table 3-1 reveals a striking result: In non-aggregated cases, the CNN signals correlate 
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strongly with Cloud Fraction (Channel 2, 𝑅ଶ = 0.88). This means the model may simply 

count how many cloud grids there are to confirm the non-aggregation cases. 

In aggregated cases, the CNN signals correlate strongly with Fractal 

Dimension (Channels 0, 1, 3, 4, 𝑅ଶ > 0.6 ). This implies that when convection is 

aggregating, the geometry of the cloud edges and their nonlinear complexity become the 

dominant feature for classification. This confirms that the CNN has learned that 

aggregated convection is morphologically distinct not just in size, but in the nonlinearity 

of its spatial structure. 

 

The result highlights a fundamental difference in the underlying logic of convective states. 

The high correlation in non-aggregated cases suggests that the model finds a linear 

relationship with a simple scalar metric—cloud fraction. In contrast, the difference in 

linearities observed in aggregated cases indicates that scalar metrics are insufficient. The 

model instead shifts its focus to the fractal dimension, which represents the nonlinearity 

in the geometry of the cloud structure. This confirms that as convection aggregates, its 

defining characteristic transitions from “how much cloud is there” (linear) to “how 

complex is the cloud shape” (nonlinear morphology). 

 

Also, the choice of using CWP as the input variable is strategically aligned with 

observational capabilities. The processed dataset, after removing trivial intensity features, 

may be similar to the imagery obtained from satellite liquid water or ice channels. Unlike 

nadir-view visual images that may be obscured by cirrus shields, these channels provide 

a more direct representation of the convective core structure. Thus, demonstrating that 

the CNN can identify aggregation solely from the morphology of CWP suggests that this 

framework has the potential to be adapted for diagnosing convective organization from 



doi:10.6342/NTU202600119

 

37 

 

geostationary satellite observations. 

3.5 Summary 

In this chapter, we introduced a data-driven framework to retrieve essential cloud 

characteristics using CNN models and VVM simulations. By employing an iterative 

feature removal strategy, we analyze the layers of the "black box." We identified that 

while average CWP and cloud coverage are primary indicators, the nonlinear 

morphological features—specifically the cloud coverage and edge complexity of 

clouds—can be the hidden features that distinguish aggregated convection when other 

statistical features are ambiguous. 

 

This chapter demonstrated that this framework of deep learning can successfully extract 

morphological features from mesoscale fields to classify convective organization. 

However, in the context of Global Storm-Resolving Models (GSRMs), many crucial 

morphological processes occur at even finer scales—specifically, the subgrid-scale of 

GSRMs. 

 

One such critical phenomenon that related to convective organization is the Cold Pool, 

whose dynamic edges (the morphology of which drives new convection) are often smaller 

than the grid size of current global models. While Chapter 3 focused 

on identifying existing cloud patterns, Chapter 4 will shift the focus 

to reconstructing these subgrid details. We will move from a classification task (CNN) to 

a segmentation and downscaling task using a U-Net architecture, aiming to predict the 

high-resolution morphology of cold pools from coarse-grained environmental fields, 

thereby providing a pathway for future parameterization.  
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Chapter 4 

Capturing Subgrid-Scale Cold Pool Morphology: 

A U-Net Based Morphological Reconstruction 

4.1 Introduction 

In the previous chapters, we demonstrated how deep learning can identify morphological 

features at the large scale (SSW evolution via VAE) and mesoscale (convective 

aggregation via CNN). In this chapter, we descend to the subgrid scale—an important 

scale for the development of the next generation of climate modeling. 

 

The interaction between convective clouds, driven by cold pool dynamics, plays an 

important role in triggering convective systems and producing extreme rainfall events 

(Khairoutdinov & Randall, 2006; Moseley et al., 2016; Tompkins, 2001). Observations 

and simulations show that the morphology of cold pools—specifically their intensity 

gradients and spreading boundaries—strongly influences nearby convective initiation 

(Böing, 2016; Feng et al., 2015; Haerter, 2019; Haerter et al., 2019; Khairoutdinov & 

Randall, 2006). To better capture the role of cloud convection in climate, recent 

development of Global Storm-Resolving Models (GSRMs, Stevens et al. (2019)) has 

raised the focus on how variability in convective systems interacts with large-scale 

circulation. 

 

However, the horizontal resolution currently used in GSRMs (typically a few kilometers) 
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may be insufficient to fully resolve the physical processes related to cold pools. Since the 

dynamics of cold pools are highly nonlinear (Hohenegger & Schlemmer, 2014; Torri & 

Kuang, 2019), accurately capturing these processes requires models capable of 

representing complex, nonlinear physical interactions with high spatial simulation 

resolution (Kao et al., 2025; Moseley et al., 2016; Wang et al., 2024). 

 

In the context of this dissertation, we propose that deep learning can serve as a bridge 

across this resolution gap. We employ high-resolution Large-Eddy Simulation (LES) to 

generate the "ground truth" morphology of cold pools. We then develop a U-Net deep 

learning model—a network designed for image segmentation and reconstruction—to 

predict the high-resolution distribution of cold pools using coarsened physical variables. 

This allows us to assess whether the nonlinear morphological features of cold pools can 

be retrieved from variables resolved by GSRMs, providing insights for future subgrid 

parameterizations. 

4.2 Methodology 

4.2.1 Data Description: Generating Ground Truth Morphology 

The dataset is generated using the Vector Vorticity Equation Cloud-Resolving Model 

(VVM) to simulate the evolution of cold pools. This model has been run at 100 m 

horizontal resolution to capture the fine-scale structures (Kao et al., 2025; Tsai & Wu, 

2016; Wang et al., 2024; Wu & Arakawa, 2011). We adopt simulations from Kao et al. 

(2025), which represent typical oceanic conditions and encompass a variety of convective 

regimes. 
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To ensure the physical realism of the cold pool structures in our training data, the 

simulations incorporate comprehensive physical parameterizations. Specifically, the 

model use the RRTMG scheme (Iacono et al., 2008) for radiation processes, the P3 

scheme (Morrison & Milbrandt, 2015) for microphysics, and a first-order closure for 

turbulence representation (Shutts & Gray, 2006). This setup ensures that the simulated 

cold pools are driven by realistic interactions between radiative cooling, precipitation 

evaporation, and boundary layer mixing. 

 

 
Figure 4-1. Cold pool and convection characteristics from Large-Eddy simulations. Snapshots from high-

resolution Large-Eddy Simulation (LES) illustrating two convective cases, case 1 from (A) to (C), and case 

2 from (D) to (F). Outgoing Longwave Radiation (OLR, as shown in A and D) indicates cloud-top 

temperatures and convective activity with the domain-averaged value on the bottom right. Cold pool 

intensity (as shown in B and E) computed by vertically integrating negative buoyancy over the boundary 

layer, and red contours denote precipitation rates exceeding 1 mm h−1. Vertical cross-sections (as shown 

in C and F) show the vertical structures of cloud water, ice, and rainwater within the boxed regions in (A) 

(B) and (D) (E). The top row from (A) to (C) represents shallow convection with limited OLR depression 

and small cold pools, while the bottom row from (D) to (F) shows deep convection with extensive anvil 

clouds and deep vertical development. 

 

Figure 4-1 demonstrates the variability of cold pools, in which cold pools intensity 𝐵 is 

calculated by the vertically integrated negative buoyancy over the boundary layer, 
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following (Feng et al., 2015; Rotunno et al., 1988; Tompkins, 2001).  

𝐵 = ඩ2 × න −𝑔
𝜃௣ − 𝜃௣

തതത

𝜃௣
തതത

௛

଴

𝑑𝑧  [𝑚 𝑠⁄ ] 

where 𝜃௣  and 𝜃௣
തതത  specify the cold pool and horizontal averaged virtual potential 

temperature, ℎ  specifies the height when negative buoyancy is greater than 

−0.003 [𝑚 ⋅  𝑠ିଶ] as used in Feng et al. (2015). Importantly, cold pools do not always 

coincide spatially with precipitation (Figure 4-1B, 4-1E), emphasizing that their 

morphology is driven by complex boundary-layer processes that cannot be inferred solely 

from rainfall. 

 

The selection of input variables, horizontal winds (𝑢, 𝑣), potential temperature (𝜃), and 

relative humidity (𝑅𝐻), presents our target physics of cold pool. While the cold pool is 

fundamentally a thermodynamic anomaly (dense, cold air), its propagation and ability to 

trigger secondary convection are dynamically driven by the leading gust front. It is 

important to note that simply interpolating these high-resolution dynamics from a sub-

kilometer scale to a coarse grid (e.g., via linear interpolation) results in a significant loss 

of physical accuracy. The sharp gradients characterizing the gust front are smoothed out 

in the coarsening process, erasing the signal of mechanical lifting. Therefore, our deep 

learning task is not only downscaling, but also involving the nonlinear reconstruction of 

these sharp morphological boundaries that are dynamically consistent with the coarse-

grained environmental kinematic fields (specifically the divergence signatures 

in 𝑢 and 𝑣), which traditional interpolation methods fail to preserve. 

 

 



doi:10.6342/NTU202600119

 

42 

 

4.2.2 U-Net Architecture for Morphological Reconstruction 

Unlike the CNN used in Chapter 3 which compressed spatial information into a scalar 

probability, here we adopt the U-Net (Ronneberger et al., 2015) deep learning model, 

which is a variation of CNN. The U-Net architecture preserves spatial information 

through skip connections, making it ideal for reconstructing high-resolution features from 

low-resolution inputs. 

 

Figure 4-2. U-Net framework for cold pool intensity prediction. This figure presents the data processing 

pipeline and U-Net architecture used to predict high-resolution cold pool intensity from coarse-resolution 

atmospheric fields. (A) Subsampled Input: Low-resolution input fields (wind, relative humidity, potential 

temperature) at 0.8, 1.6, 3.2, 6.4 km resolution; we take 3.2 km resolution as an example in this figure. (B) 

U-Net structure: The deep learning network structures used in this study, which predict high-resolution 

cold pool intensity from low-resolution physics fields. (C) Cold pool intensity binary masks: The model 

outputs five binary masks corresponding to cold pool intensity thresholds from 1 to 5 m/s. These are 
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compared with LES ground truth to compute Dice loss and guide model training. (D) Synthesized cold pool 

intensity and LES ground truth: The binary masks are combined to reconstruct the predicted cold pool field 

(left), which can be compared visually against the LES ground truth (right). The Dice score shown in the 

bottom right quantifies the prediction quality. 

 

Our strategy involves taking the high-resolution model outputs and coarsening them to 

various resolutions (0.8, 1.6, 3.2, and 6.4 km) to serve as U-Net inputs. The model is 

trained to predict the high-resolution (100 m) cold pool intensity. Instead of regressing 

the continuous cold pool intensity directly, we discretized the field into five binary masks 

at intervals of 1 m/s (Figure 4-2C). This design fits the physical nature of cold pools, 

which function as density currents characterized by sharp gradients (gust fronts) rather 

than smooth variations. By training the U-Net to predict these discrete intensity contours, 

we force the model to explicitly learn the morphological boundaries and the internal 

structure of the cold pools. This avoids the common issue in regression where models 

produce smoothed, blurry fields that fail to capture the sharp dynamic edges essential for 

triggering secondary convection. 

4.2.3 Data Balancing 

To ensure the model generalizes well across different convective regimes, we applied a 

class balancing strategy. The dataset was divided into six predefined intervals based on 

the cold pool fraction to ensure a balanced representation of both strong and weak cold 

pool events in the training process. The final dataset consists of 3,600 samples, split into 

2,880 samples for training and 720 samples for testing. Also, to evaluate the U-Net's 

capability to bridge the resolution gap, we train four models with identical architectures 

using inputs at different coarse resolutions. 
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4.3 Results: Reconstructing Sub-grid Morphology 

4.3.1 Overall Performance 

Figure 4-3 compares the U-Net (C-F) and a baseline Linear Regression (LR) model (G-

J). We define cold pool boundaries ("Edges", Figure 4-3B) to assess how well the model 

captures the spreading morphology. 

 

Specifically, the cold pool edges are determined by extrapolating the current cold pool 

position based on a propagation speed derived from the density current theory. This 

extrapolation estimates the potential spreading area of the cold pool over a 10-minute 

interval, serving as an estimation for assessing the model's ability to capture the 

morphology in all the intensity prediction. The orange contours in Figure 4-3 indicate this 

“Edges”. 

 

To benchmark the performance of the U-Net, a pixel-wise Linear Regression (LR) model 

was employed. It is acknowledged that LR represents a relatively simple baseline 

compared to more advanced regression methods. However, the primary purpose of using 

LR here is to visualize and quantify the nonlinearity of the subgrid reconstruction 

problem. If the relationship between the coarse-grained environment and fine-scale cold 

pool morphology were linear, the LR model would yield reasonable approximations.  
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Figure 4-3. Comparison of cold pool predictions using U-Net and linear regression models. (A) High-

resolution cold pool intensity from LES (100 m resolution). (B) Cold pool boundaries (marked as “Edge” 

in B and with orange boundary areas in C to J) based on 10-min propagation. (C to F) U-Net predictions 

at input resolutions of 0.8, 1.6, 3.2, and 6.4 km, and (G) to (J) Linear regression model predictions at the 

same resolutions. The value D on each subgraph's title represents Dice coefficients, which quantify the 

prediction accuracy. 

 

At finer resolutions (0.8 and 1.6 km), U-Net accurately captures both the spatial extent 

and intensity of cold pools. As the resolution becomes coarser (3.2 and 6.4 km), the 

prediction quality naturally declines, showing reduced heterogeneity. However, the 

contrast with the LR model is noticeable.  The obvious contrast in performance between 

LR (Figure 4-3 G-J) and U-Net (Figure 4-3 C-F), where LR produces fragmented, blocky 

prediction while U-Net successfully reconstructs coherent boundaries, serves as a 

demonstration that the mapping from environmental variables to subgrid morphology is 

highly nonlinear. The LR thus establishes a necessary performance lower bound, 

confirming that the structural complexity of cold pools requires the hierarchical feature 

extraction capabilities of deep neural networks. 
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4.3.2 Detailed Structural Analysis 

Figure 4-4 provides a detailed look at the 3.2 km resolution case. Even with coarse inputs 

(Figure 4C-F), the U-Net successfully reconstructs the sharp gradients and core intensity 

of the cold pools. 

 
Figure 4-4. Evaluation of U-Net cold pool predictions at 3.2 km resolution. This figure provides a detailed 

comparison between the cold pool intensity from LES and the U-Net predictions. Figure (A) represents the 

example of cold pool intensity from LES at 100 m resolution, and (B) the corresponding synthesized U-Net 

prediction. The corresponding input low resolution physics fields are shown from (C) to (F), we take 3.2 

km resolution input fields in this example. From (G) to (K) compare the ground truth cold pool intensity 

masks (gray regions) with U-Net predicted intensity masks (blue regions) at different intensity thresholds 

(1.0, 2.0, 3.0, 4.0, and 5.0 m/s). (L) presents a schematic of the intensity mask ranges predicted by LES and 

U-Net. 

 

While minor differences appear near the boundaries (weak intensity regions), the model 

captures the core structure (intensity > 3.0 m/s) effectively. 

4.3.3 Statistical Validation 

We also statistically compare the performance across all resolutions. Figure 4-5 show that 

the U-Net consistently outperforms the LR model across all resolutions, confirming its 

robustness in handling nonlinear spatial patterns. 
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Figure 4-5. Performance comparison of U-Net and linear regression in predicting cold pools. Boxplots 

show Dice coefficients for U-Net (green) and linear regression (blue) at four resolutions (R_08: 0.8, R_16: 

1.6, R_32: 3.2, R_64: 6.4 km) using subsampled input. At each resolution, the Dice coefficients are 

computed based on comparisons over 720 test samples. (A) represents the cold pool intensity prediction, 

while (B) covers the cold pool intensity and boundary prediction. The result shows that U-Net model 

outperforms linear regression model across all resolutions. 

4.4 Explainability: Identifying Key Morphological Features 

To interpret the U-Net model and ensure it is learning physically meaningful features, we 

conduct a sensitivity analysis by selectively masking input fields. This aligns with the 

goal of the dissertation. 

 

Figure 4-6. Sensitivity analysis of cold pool prediction using different input fields. Each row shows U-Net 
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input maps (U, V, RH, θ) on 3.2 km resolution (A–D, F–I, and K–N), with the corresponding cold pool 

intensity from U-Net prediction (E, J, and O) and LES (P). Group 1 from (A) to (E) includes all variables 

included, group 2 from (F) to (J) masked the dynamic variables (the wind components), and group 3 from 

(K) to (O) mask the thermodynamic variables (the RH and θ). The ground truth of cold pool intensity from 

LES is shown in (P). Results show that wind information may be more critical for U-Net cold pool prediction. 

 

Comparing Figure 4-6 from F to J (dynamic masked) and Figure 4-6, from K to O 

(thermodynamic masked) reveals an insight: Wind fields seem to be more important than 

thermodynamic fields. When wind information is removed, the model fails to locate the 

cold pools accurately. This suggests that the U-Net may retrieve the divergence pattern as 

the primary predictor for cold pool structure, while thermodynamic fields primarily refine 

the intensity distribution. 

 
Figure 4-7. Impact of input variables on cold pool prediction performance. Boxplots show correlation 

coefficients between predicted and ground-truth cold pool fields for four resolutions (R_08 to R_64). Colors 

represent the combination of input fields: Thermal fields only (pink), dynamic fields only (green), and all 

variables (blue). The group with the wind fields appears to improve the predictions, especially at finer 

resolutions. For each resolution and each input group, the correlation coefficients are computed based on 

720 test samples. 
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Figure 4-7 quantifies this finding. The "Dynamic-only" (green) performance is much 

closer to "All" (blue) than "Thermal-only" (pink) is, especially at finer resolutions. This 

indicates that near-surface wind may represent a morphological indicator of subgrid cold 

pool activity. 

 

The sensitivity analysis reveals a crucial physical insight: the dynamic fields (𝑢, 𝑣) play 

a more significant role in morphological reconstruction than the thermodynamic fields 

( 𝜃, 𝑅𝐻 ). This is particularly relevant for strong convective systems, such as those 

frequently observed in oceanic deep convection regions. In these regimes, the mechanical 

lifting at the gust front driven by the propagation of the density current is the primary 

trigger for new convection. While the cold pool is thermally defined, the thermal 

characteristics may lag behind the leading edge. In contrast, the kinematic characteristics 

(surface divergence and convergence) provides an immediate and sharp indicator of the 

cold pool distribution, especially the boundary location. The U-Net's reliance on wind 

fields suggests that the model may learn to identify the dynamical representation of the 

cold pool, specifically the gust front convergence. 

 

4.5 Summary and Discussion 

In this chapter, we investigated the capability of deep learning to bridge the scale gap in 

atmospheric modeling. We developed a U-Net model to predict high-resolution subgrid 

cold pool morphology from coarse-resolution environmental fields. Our findings reveal 

that U-Net effectively captures the nonlinear morphological characteristics of cold pools, 

particularly their edges and intensity gradients, significantly outperforming linear 

methods. Also, through sensitivity experiments, we identified that the morphology of the 
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wind field can provide the important information for reconstructing cold pool structures, 

more than thermodynamic variables alone. 

 

A remaining question is how can the predicted cold pool morphology be physically 

integrated into a coarse-resolution model to improve convection? We propose a pathway 

following the approach of Kao et al. (2025). The U-Net predicted cold pool intensity, 

which represents the vertically integrated negative buoyancy, can be used to estimate the 

“nonlocal vertical acceleration.” This dynamically derived term can then be introduced 

as a source term in the vertical momentum equation of the global model. In this way, the 

morphological features reconstructed by deep learning may be directly translated into the 

statistical information for a mechanical lifting force, explicitly representing the subgrid 

triggering mechanism of cold pools. 

 

This study so far completes the third tier of our framework. 

 In Chapter 2, we used VAE to represent large-scale global morphology by 

representing the Z10 in the duration of SSW. 

 In Chapter 3, we used CNNs to extract mesoscale convection features by iteratively 

removing the recognized physics process. 

 In Chapter 4, we have used U-Net to reconstruct subgrid-scale details of cold pool 

intensity from low resolution physics field. 

 

These three chapters collectively demonstrate that, when designed with explainability in 

mind, the deep learning model can potentially capture and interpret atmospheric 

morphology across scales. In the next chapter, we will synthesize these findings to discuss 

the broader implications of using "Morphology" as a physical indicator and how these 
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"Glass Box" models can transform our understanding of atmospheric dynamics and 

parameterization. 
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Chapter 5 

General Discussion 

5.1 Linking multi-scale phenomena through morphology 

Following the detailed investigations in the previous chapters, we try to address a 

fundamental challenge in atmospheric science: how to quantify and interpret the complex, 

nonlinear spatial structures that drive atmospheric dynamics. Traditional statistical 

methods often reduce these structures to scalar metrics, losing spatial information or 

distributions. To overcome this, we proposed an explainable deep learning 

framework that treats "morphology" as a primary physical indicator. 

 

We have applied this framework across three distinct scales: the planetary scale (SSW 

evolution), the mesoscale (convective aggregation), and the small scale (cold pool 

dynamics). While the specific physical phenomena differ, the underlying methodological 

philosophy remains consistent. In this chapter, we synthesize the findings from Chapters 

2, 3, and 4 to discuss the role of different neural network architectures in morphological 

analysis and how we transitioned from "black box" predictions to "glass box" physical 

interpretations. 

5.2 The Role of Neural Network Architectures in 

Morphological Analysis 
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A key finding of this research is that different morphological tasks require distinct deep 

learning architectures. The architecture must align with the physical nature of the problem, 

which requires the domain knowledge of the problem. 

5.2.1 VAE for Representation and Continuity 

In Chapter 2, our goal was to understand the evolution of the stratospheric polar vortex. 

The physical constraint here is continuity—a vortex does not change abruptly.  

 Why VAE worked: The Variational Autoencoder (VAE) is designed to learn a 

continuous latent probability distribution. By compressing the global morphology 

into a low-dimensional latent space (𝑧଴, 𝑧ଵ), the VAE naturally enforced a smooth 

transition between states. 

 Comparison: Unlike CNN classification (discrete) or PCA (linear), the VAE 

captured the trajectory of morphological change, showing that deep learning can 

serve as a powerful dimensionality reduction tool for global circulation patterns. 

5.2.2 Iterative CNN for Causal Feature Extraction 

In Chapter 3, the problem was identification: what specific feature makes an environment 

"aggregated"? The physical constraint here is causality—identifying the driver in the 

high-dimensional noise. 

 Why Iterative CNN worked: A standard CNN is good at feature extraction but may 

be poor at explanation. By introducing our "Iterative Feature Removal" strategy, we 

transformed the CNN from a static classifier into a dynamic exploration. 

 Comparison: This approach revealed that once trivial features (intensity, coverage) 

are removed, the model relies on other possible features (fractal dimension). This 

suggests that we can potentially find the hidden feature through this strategy with 
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the involvement of our domain knowledge. 

5.2.3 U-Net for Reconstruction and Downscaling 

In Chapter 4, the challenge was reconstruction: recovering lost details from coarse data. 

The physical constraint here is spatial correspondence—the output must spatially align 

with the input environment. 

 Why U-Net worked: The U-Net architecture, with its skip connections, preserves 

spatial information while allowing information to flow between different resolution 

levels. This allowed us to map coarse-grained environmental conditions to high-

resolution phenomena. 

 Comparison: This moved beyond simple regression or parameterization schemes, 

demonstrating that deep learning can effectively generate the subgrid morphology 

in a physically constrained way, which may be required for low resolution models 

that need the statistical information from the subgrid.  

5.2.4 The Physical Interpretability of Network Operations 

To further bridge the gap between deep learning and atmospheric physics, it is important 

to discuss the implicit physical operations performed by standard neural network 

components, specifically Normalization and Pooling.  

 

In our framework, normalized input fields (e.g., Z-score standardization) remove the 

dimensional units and absolute magnitudes, forcing the neural network to learn based 

on relative spatial variations rather than absolute intensities. For the study of organized 

convection (Chapter 3), this is particularly important. While the absolute value of cloud 

water path indicates how much cloud is present, the normalized pattern reveals how the 
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clouds are arranged. By stripping away the mean intensity, normalization ensures that the 

model's decision is driven by the nonlinear morphology (shape and texture) of the system, 

which we identified as a key indicator of the aggregation state. 

 

The Max-Pooling layers in our CNN and U-Net architectures serve a function analogous 

to coarse-graining in physics. By selecting the maximum activation within a window 

(usually 2×2 pixels), the network effectively filters out small-scale, stochastic noise while 

preserving the most dominant signals. In the context of convection, this operation 

emphasizes the convective cores or strong updrafts within a larger system. The 

combination of pooling layers thus allows the model to hierarchically extract features, 

moving from local cloud textures to larger mesoscale organizational structures, consistent 

with the multiscale nature of atmospheric dynamics. 

 

5.2.5 Model Robustness and Sensitivity 

To ensure that our "glass box" models rely on physical principles rather than spurious 

correlations, the sensitivity analyses have been adapted 

 

A common challenge in applying deep learning to extreme events (like SSWs in Chapter 

2) is the limitation of sample size. While typical computer vision tasks rely on millions 

of images, atmospheric phenomena are often rare. Also, the techniques adapted in the 

computer vision (such as rotation) may not be suitable in the scenario of atmospheric 

sciences problem. We addressed this by employing data augmentation strategies such as 

patch-cropping (in Chapter 3) and class-balancing (in Chapter 4). Our results suggest that, 

with the domain knowledge involved, the morphological features are often more 
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information-dense than scalar metrics. Thus, even with smaller datasets, the models can 

achieve some level of reliability if the distinct spatial patterns (morphology) are 

physically consistent. 

5.3 The Choice of Loss Functions 

In deep learning, the loss function serves as the guiding force that dictates how a network 

learns. A critical aspect of our framework is that the choice of loss function is not arbitrary; 

rather, it represents the translation of domain knowledge into mathematical constraints. 

In this dissertation, we selected distinct loss functions for each scale to align with the 

specific morphological characteristics of the atmospheric process being studied. 

 

For the study of Sudden Stratospheric Warmings (Chapter 2), our physical goal was to 

capture the continuous evolution of the polar vortex. We employed a composite loss 

function combining Mean Squared Error (MSE) and Kullback-Leibler (KL) Divergence. 

 MSE acts as a "fidelity constraint," ensuring that the reconstructed geopotential 

height fields retain their global spatial patterns and intensity. 

 KL Divergence acts as a "regularization constraint" on the latent space. Physically, 

atmospheric variability is continuous; the vortex does not teleport from one state to 

another. The KL term forces the latent distribution to be smooth and continuous, 

allowing the VAE to represent the SSW evolution as a trajectory rather than discrete 

classifications. This combination effectively balances spatial accuracy with temporal 

physical continuity. 

 

In identifying Convective Aggregation (Chapter 3), the objective was to distinguish 

between aggregation states. Here, we used Binary Cross-Entropy (BCE) Loss. Unlike 
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MSE, which focuses on pixel-wise reconstruction, BCE operates on probability 

distributions. It penalizes the model heavily when it is confident but wrong. This forces 

the CNN to focus on the most discriminative morphological features that separate the 

aggregated state from the scattered state. 

 

The design choice appeared in the reconstruction of Cold Pools (Chapter 4). Cold pools 

are physically significant but spatially sparse—they occupy a very small fraction of the 

total domain compared to the environment. If we had used a standard pixel-wise loss (like 

MSE or Cross-Entropy), the model could achieve high accuracy by simply predicting "no 

cold pool" everywhere. To address this class imbalance, we adopted the Dice Loss. 

 Physical Implication: Dice Loss measures the overlap between the predicted and 

actual shapes. It is less sensitive to the large background area and highly sensitive to 

the successful intersection of the cold pool regions. 

 This choice forces the U-Net to focus on the morphology and topology of the cold 

pool objects (in 5 levels of intensity) rather than the exact intensity value of every 

background pixel. This aligns with the physical need to understand the area 

coverage and intensity distribution of subgrid convection. 

 

In conclusion, the selection of loss function reflects our strategy of adapting the 

"optimization goal" to the "physical nature" of the problem. This demonstrates that 

defining the loss function is an important step in making deep learning models physically 

interpretable and robust for atmospheric science applications. 

5.4 Morphology in Time 

While this dissertation primarily focuses on extracting spatial morphological features 
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from atmospheric snapshots, an important perspective of deep-learning research in 

atmospheric sciences is the integration of the time dimension. 

 

In Chapter 2, we touched upon this by mapping the temporal evolution of SSWs into a 

continuous trajectory within the VAE’s latent space. This demonstrates that deep learning 

can capture the track of morphological change, not just static patterns. However, recent 

advancements in Autoregressive models and Transformer architectures (e.g., GraphCast, 

Lam et al. (2023); Pangu-Weather, Bi et al. (2023)) suggest the possibility of learning the 

governing laws of evolution directly from data. By treating the atmospheric state as a 

sequence of morphological embeddings, these models may perform data-driven temporal 

dynamics. 

 

In the context of our framework, this could be achieved by feeding by feeding the 

morphological features extracted by our CNNs or VAEs into a temporal model (such as 

an LSTM or Transformer). This would allow the system to predict not just what the 

morphology is (e.g., is it aggregated?), but how it will evolve (e.g., will the cold pool 

trigger a new cell?), effectively moving from feature extraction to dynamic prediction of 

4D atmospheric processes. 

5.5 From Black Box to Glass Box: Bridging Data and Physics 

The theoretical contribution of this dissertation is the demonstration of interpretability 

and explainability. The "Black Box" of deep learning has long been a barrier to its 

acceptance in physics-based sciences. We addressed this by ensuring that "morphology" 

serves as the common language to balance the prediction score and physical causality. 
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In Chapter 2, the VAE compressed the stratospheric vortex morphology into a continuous 

latent space. Physically, the trajectory within this space (𝑧଴, 𝑧ଵ) does not merely represent 

geometric deformation but serves as a proxy for the dynamical forcing of planetary waves. 

The continuous transition observed between displacement (Wave-1 dominant) and 

splitting (Wave-2 dominant) patterns suggests that these events are governed by a fluid 

spectrum of wave-mean flow interactions rather than discrete regime shifts. The VAE thus 

provides a "dynamical phase diagram," where the coordinates encode the instantaneous 

balance of potential vorticity gradients, offering a new metric to quantify the 

preconditioning and development of stratospheric warming events. 

 

The iterative CNN analysis in Chapter 3 revealed that the complexity of cloud edges 

(fractal dimension) may be a discriminative feature of aggregation. Physically, this 

morphological complexity may reflect the thermodynamic interaction between the 

convective core and the surrounding dry environment. A higher fractal dimension at the 

boundaries implies a sharp, active interface where moisture gradients are steepening. This 

may suggest that the aggregation detected by the model corresponds to the convection 

that has successfully overcome the suppression of dry air entrainment, a critical condition 

of the self-aggregation 

 

In Chapter 4, the U-Net's ability to reconstruct sharp cold pool boundaries and this may 

rely more on the near-surface wind fields. This points to a potential physical interpretation: 

the model is identifying zones of mechanical expanding or lifting. The "edge" of a cold 

pool is physically the gust front, where density currents collide with the environment to 

trigger secondary convection. By successfully segmenting these boundaries from coarse-

grained data, the deep learning model demonstrates that it captures the feature of low-



doi:10.6342/NTU202600119

 

60 

 

level convergence. This implies that the morphology of the cold pool can be a potential  

proxy of the dynamical lifting mechanism required to trigger or sustain the deep 

convection, validating the potential of this approach for sub-grid parameterization in 

global models. 

 

In summary, these approaches validate our hypothesis that morphology serves as a nice 

bridge between data-driven algorithms and atmospheric physics. By forcing the DL 

models to reveal their internal logic through these three frameworks, we confirms that the 

resulting predictions can be physically interpretable. This successful synthesis of deep 

learning and physical reasoning provides the basis for the summary of findings and future 

perspectives discussed in the next chapter 
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Chapter 6 

Conclusion and Future Perspectives 

6.1 Summary of Major Findings 

This dissertation has established a framework for applying explainable deep learning to 

identify and analyze the nonlinear morphological features of atmospheric processes. The 

major findings are summarized as follows: 

1. Large-Scale Evolution: We demonstrated that a Variational Autoencoder (VAE) can 

compress the complex evolution of Sudden Stratospheric Warmings (SSWs) into a 

2D latent space. The resulting phase diagram provides a more continuous and 

physically interpretable trajectory of vortex displacement and splitting than 

traditional PCA methods. 

2. Mesoscale Aggregation: Using an Iterative CNN framework, we identified that the 

transition to convective aggregation is characterized not just by cloud coverage, but 

by specific morphological features—specifically the fractal dimension of cloud 

edges. This confirms that the geometry of cloud systems contains hidden information 

about their convective state, suggesting that the morphological framework could 

potentially be extended to identify other forms of organized convection in the future. 

3. Subgrid-Scale Reconstruction: We showed that a U-Net architecture can accurately 

reconstruct high-resolution cold pool morphology from coarse-grained 

environmental fields. Sensitivity analysis revealed that the near-surface wind field 

is an important predictor, providing a roadmap for the development of future subgrid 
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parameterizations in global models. 

 

6.2 Contributions 

This research contributes to the field of atmospheric science in two ways: 

 Methodological Perspective: We provided a set of strategies (Latent Space Mapping, 

Iterative Feature Removal, Resolution-Aware Segmentation) for opening the "black 

box" of deep learning. These methods allow researchers to use DL not just for 

prediction, but for physical discovery. 

 Theoretical Insight: We reinforced the importance of morphology as a quantifiable 

physical variable. We showed that "shape" and "pattern" can be connected to the 

nonlinear dynamics of the atmosphere. This connection is beyond atmospheric 

scales from the stratosphere to the boundary layer. 

6.3 Future Perspectives 

Building on the foundation laid by this dissertation, several promising directions for 

future research emerge. 

6.3.1 Investigating Cold Pools over Complex Topography 

While Chapter 4 focused on idealized oceanic conditions, real-world convection often 

interacts with complex terrain. In regions like Taiwan, the interaction between cold pools 

and steep topography is an unavoidable challenge, and the mechanism for triggering 

secondary convection and extreme rainfall requires further study to be deeply understood. 
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Future work will apply the deep learning framework to high-

resolution TaiwanVVM simulations (P.-Y. Chen & C.-M. Wu, 2025). The challenge here 

will be to incorporate topographic information into the deep learning model. We 

hypothesize that the morphology of cold pools over terrain will reveal some distinct 

nonlinear features (e.g., blocked flow, channelization) that traditional parameterizations 

struggle to capture, but which a morphology-aware deep learning model could resolve. 

6.3.2 Integration into Global Models (Online Implementation) 

One of the goals of the offline training conducted in Chapter 4 is online implementation. 

Future studies could involve embedding the trained U-Net directly into a GSRM as 

a neural network parameterization. This would allow the global model to generate the 

statistical information from sub-grid cold pool effects at each time step, potentially 

improving the representation of the convection and precipitation extremes. 

6.3.3 Physics-Informed Deep Learning 

To further ensure the robustness discussed in Chapter 1, future models could incorporate 

physical constraints directly into the loss function (Physics-Informed Neural Networks, 

PINNs). For instance, ensuring that the reconstructed cold pool mass satisfies continuity 

equations. Combining the morphological strengths of CNNs with the strict constraints of 

physics-based equations represents the next steps in this research. 

6.3.4 Transfer Learning 

One of the most promising applications of the framework established in this dissertation 

is the transferability to observational data. The morphological features identified in 

simulations—such as the fractal dimension of aggregated clouds or the sharp gradients of 
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cold pools—are consistent physical signatures that exist in the real world. 

 

Future work can employ Transfer Learning to bridge the "Sim-to-Real" gap. A model pre-

trained on high-resolution simulations (e.g., VVM or other LES) to recognize physical 

morphology can be fine-tuned using smaller datasets of satellite imagery or Doppler radar 

reflectivity. This would allow us to apply the "morphology as a physical indicator" 

approach to real-time monitoring of convective organization or sub-grid severe weather 

precursors that are currently difficult to parameterize in operational models. 

 

 

In conclusion, this dissertation demonstrates that by viewing the atmospheric sciences 

problem through the perspective of explainable deep learning, the "morphology" can 

potentially serve as a powerful key to revealing the nonlinear physics process. 
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