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Abstract

The application of deep learning in atmospheric sciences has expanded rapidly in recent
years. However, these models are often treated as "black boxes" lacking physical
transparency, which limits their reliability for scientific inference. This dissertation aims
to establish an explainable deep learning framework by proposing "morphology" as a key
physical indicator to bridge the gap between data-driven predictions and atmospheric

physical processes.

This research validates the proposed framework through three distinct atmospheric scales
using appropriate deep learning architectures. First, at the large scale, focusing on Sudden
Stratospheric Warmings (SSWs), we use a Convolutional Variational Autoencoder (VAE)
to construct a latent space phase diagram of the stratospheric polar vortex. The results
demonstrate that the VAE effectively captures the nonlinear continuous evolution of the
vortex—transitioning between displacement and splitting events—outperforming
Principal Component Analysis (PCA) and providing a novel perspective on vortex

dynamics.

Second, at the mesoscale, investigating tropical convective aggregation, we develop an
iterative feature-removal framework using Convolutional Neural Networks (CNNs). By
iteratively training the model and masking dominant features (such as average cloud
water path) from the input data, we aim to identify and extract the hidden morphological
factors driving the network's decisions. This study reveals that, beyond cloud coverage,
the complexity of cloud edges (fractal dimension) serves as an important nonlinear feature

for identifying the occurrence of the convective aggregation.

A\
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Finally, at the small scale, addressing cold pool dynamics within deep convection, we
apply a U-Net model to deal with the resolution gap in Global Storm-Resolving Models
(GSRMs). Using high-resolution Large-Eddy Simulation (LES) data, we successfully
reconstruct high-resolution cold pool morphology and intensity distributions from coarse-
grained environmental fields. Sensitivity analysis further reveals that the near-surface
dynamic field (wind divergence signals) is important for reconstructing cold pool

boundaries, playing a more critical role than thermodynamic variables alone.

In conclusion, this dissertation demonstrates that when properly designed, deep learning
models can serve not only as prediction tools but also as powerful physical analysis
instruments for exploring nonlinear atmospheric morphology. By representing large-scale
evolution, extracting mesoscale features, and reconstructing subgrid details, this
framework is expected to provide a foundation for improving parameterization schemes
and enhancing physical interpretability of deep learning research in atmospheric sciences

in the future.

Keywords: Explainable Deep Learning, Atmospheric Morphology, Convolutional Neural

Network, Variational Autoencoder, Cold Pool, Sudden Stratospheric Warming
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List of Figures

2-1  Illustration of the bilinear interpolation method applied to a Z10 field of a
split-type SSW event from WACCM6 simulations. (a) The longitude—
latitude map of the Northern Hemisphere in an orthographic projection
with 90> N at the center, with the region of color shadings indicating the
domain to be interpolated. (b) The resultant 36 x 36 squared grid after using
the bilinear interpolation method. The parallels on are respectively at 80,

60, and 40 degrees from the innermost to the outermost. 11

2-2  Aschematic of the VAE structure used in this study. The top row represents
the combination of a decoder and an encoder, which form the VAE model.
The middle row illustrates the details of the encoder, while the bottom row
those of the decoder. The vertical solid line after each layer denotes the
max-pooling/upsampling layers, which reduce or increase the dimension
of pixeled images, whereas the cubes represent the convolutional layers
with varying numbers of channels. The encoder reads in a 36 x 36 Z10
input image, compresses its information through the convolutional layers,
and outputs two means (n0, pul) and two variances (v0, v1) that form the
latent space. The decoder utilizes these sampled results based on Gaussian
distribution and generates a 36 x 36 Z10 output through multiple
convolutional layers. The mean squared error (MSE) between the original
and generated images and the Kullback—Leibler divergence between the
latent space and the Gaussian distribution are computed. These errors are
backpropagated to train the encoder and decoder. The light blue color
shading highlights the two means of the latent space, which is used to
produce the phase diagram in this study. 13

2-3  This figure illustrates the corresponding Z10 field generated by the VAE
decoder when given the varying values of z0 and zI in the latent space.

The green circle in each panel represents the circle of 60° N. 15

2-4  (a) The evolution track of a displacement-type SSW event from WACCM6
simulations mapped onto the VAE phase diagram. (b) As in (a), but for the
track mapped onto the PCA phase diagram. (c) The WACCM®6 Z10 spatial
patterns during days [—10, 10]. (d) The VAE reconstructed Z10 fields 17
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2-5

2-6

2-7

2-8

3-1

during days [—10, 10]. (e) As in (d), but for PCA reconstructed Z10 fields.
The values in the subtitle parenthesis in (c) are the aspect ratio (r) and
central latitude (¢_o) of this SSW event, whereas those in (c) and (d) denote
the pattern correlation (R) and RMSE. The green circle in each panel of
(c)—(e) represents the circle of 60 N.

The same as in Figure 2-4, but for a split-type SSW.

(a) The occurrence probability of the Z10 fields associated with all
displacement-type SSWs from the WACCMG6 testing dataset in the VAE
phase diagram. The values are presented as percentages after normalized
by the total number of events. (b) As in (a) but for split-type SSWs from
WACCM6 simulations. Figures (c) and (d) are the same as (a) and (b), but
for the PCA phase diagram. The blue dots are the Z10 fields from the
reanalysis dataset mapped onto the VAE and PCA phase diagrams.

The pattern correlation (R) and root mean squared error (RMSE) for (a)
and (b) the reconstructed displacement-type SSWs and (c) and (d) the
reconstructed split-type SSWs from WACCM6 simulation against
corresponding full Z10 during the period of days [—10, 10]. The color

shading indicates the range of one standard deviation.

(a) Distributions of distance traveled in the VAE phase diagram for all split-
type (magenta bars) and displacement-type (blue bars) SSWs. (b)
Distributions of distance traveled for all simulated SSWs (blue bars) and
observational (magenta bars) SSWs. (c¢) and (d) The same as (a) and (b)
but for the distributions of distance traveled in the PCA phase diagram.

A schematic diagram shows the data flow of the CNN model and our
framework. Each kernel of the convolution layers is 3 x 3, and the
activations are ReLUs. The pool size of the max-pooling layers is 3 x 3,
and the activation function of the output layer is sigmoid to represent the
probability in [0,1]. The flowchart shows our framework for retrieving the

physics process and the role of the CNN model in our framework.

(Non agg-1) to (non agg-4) shows the examples of the nonaggregated case,
and (Agg-1) to (Agg-4) shows the aggregated case with the cloud water
path values in (kg-m—2). Each subgraph shows the simulations' 512 x 512
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3-3

(km) domain. The solid red lines represent the area that may be difficult to
classify visually. Those areas can be the clouds before elimination in the
nonaggregation cases, and the clouds are not at the core of the convection

in the aggregation cases.

The model predicted probabilities of the aggregation (y-axis in each
subgraph) from the CNN model in the different iterations and the potential
property derived from the CWP values (x-axis in each subgraph). Blue
points in each subgraph stand for the actual label of the training data are
nonaggregation cases, and the orange points stand for the aggregation
cases. (a) The 128 x 128 km”2 domain averaged CWP (kg-m”"-2), (b) the
maximum of the CWP (kg-m”-2) in the 128 % 128 km"2 crops. (c) The
cloudy area covers 128 x 128 km2 crops after being masked by the value
of 2 kg'm—2.

(a) and (b) show the example of the comparison between nonaggregation
and aggregation labeled data in the training dataset. The cropped cloud
water path field on a 128 x 128 km2 is masked by a 2 kg-m—2 threshold.
The green grid will be regarded as one, while dark blue grids will be
regarded as zero. The ones and zeros will be inputted into the input layer
of the CNN model. The graph in (c) shows the referenced cloud water
(masked) inputted into the CNN models. From (d-0) to (d-4), show the
graphs of the encoded channel 0 to 4, representing the max-pooling layer
with the 42 x 42 grid or the 128 x 128 km domain. Each grid concludes
the signal from the 3 x 3 km2 box. The brightness in the graphs shows the
strength of the signal outputted. Each channel has its scale, so we will only
focus on the relative strengths and the spatial distributions. The channel
order may vary due to the randomness of the training process; however, the
characteristics of the relative strengths and the spatial distributions will

remain.

Cold pool and convection characteristics from Large-Eddy simulations.
Snapshots from high-resolution Large-Eddy Simulation (LES) illustrating
two convective cases, case 1 from (A) to (C), and case 2 from (D) to (F).
Outgoing Longwave Radiation (OLR, as shown in A and D) indicates
cloud-top temperatures and convective activity with the domain-averaged

value on the bottom right. Cold pool intensity (as shown in B and E)

33

34

computed by vertically integrating negative buoyancy over the boundary 40
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42

layer, and red contours denote precipitation rates exceeding 1 mm h—1.
Vertical cross-sections (as shown in C and F) show the vertical structures
of cloud water, ice, and rainwater within the boxed regions in (A) (B) and
(D) (E). The top row from (A) to (C) represents shallow convection with
limited OLR depression and small cold pools, while the bottom row from
(D) to (F) shows deep convection with extensive anvil clouds and deep

vertical development.

U-Net framework for cold pool intensity prediction. This figure presents
the data processing pipeline and U-Net architecture used to predict high-
resolution cold pool intensity from coarse-resolution atmospheric fields.
(A) Subsampled Input: Low-resolution input fields (wind, relative
humidity, potential temperature) at 0.8, 1.6, 3.2, 6.4 km resolution; we take
3.2 km resolution as an example in this figure. (B) U-Net structure: The
deep learning network structures used in this study, which predict high-
resolution cold pool intensity from low-resolution physics fields. (C) Cold
pool intensity binary masks: The model outputs five binary masks
corresponding to cold pool intensity thresholds from 1 to 5 m/s. These are
compared with LES ground truth to compute Dice loss and guide model
training. (D) Synthesized cold pool intensity and LES ground truth: The
binary masks are combined to reconstruct the predicted cold pool field
(left), which can be compared visually against the LES ground truth (right).

The Dice score shown in the bottom right quantifies the prediction quality.

Comparison of cold pool predictions using U-Net and linear regression
models. (A) High-resolution cold pool intensity from LES (100 m
resolution). (B) Cold pool boundaries (marked as “Edge” in B and with
orange boundary areas in C to J) based on 10-min propagation. (C to F) U-
Net predictions at input resolutions of 0.8, 1.6, 3.2, and 6.4 km, and (G) to
(J) Linear regression model predictions at the same resolutions. The value
D on each subgraph's title represents Dice coefficients, which quantify the

prediction accuracy.

Evaluation of U-Net cold pool predictions at 3.2 km resolution. This figure
provides a detailed comparison between the cold pool intensity from LES
and the U-Net predictions. Figure (A) represents the example of cold pool
intensity from LES at 100 m resolution, and (B) the corresponding

synthesized U-Net prediction. The corresponding input low resolution
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4-6

4-7

physics fields are shown from (C) to (F), we take 3.2 km resolution input
fields in this example. From (G) to (K) compare the ground truth cold pool
intensity masks (gray regions) with U-Net predicted intensity masks (blue
regions) at different intensity thresholds (1.0, 2.0, 3.0, 4.0, and 5.0 m/s).
(L) presents a schematic of the intensity mask ranges predicted by LES and
U-Net.

Performance comparison of U-Net and linear regression in predicting cold
pools. Boxplots show Dice coefficients for U-Net (green) and linear
regression (blue) at four resolutions (R _08: 0.8, R _16: 1.6, R 32: 3.2,
R 64: 6.4 km) using subsampled input. At each resolution, the Dice
coefficients are computed based on comparisons over 720 test samples. (A)
represents the cold pool intensity prediction, while (B) covers the cold pool
intensity and boundary prediction. The result shows that U-Net model

outperforms linear regression model across all resolutions.

Sensitivity analysis of cold pool prediction using different input fields.
Each row shows U-Net input maps (U, V, RH, 0) on 3.2 km resolution (A—
D, F-I, and K—N), with the corresponding cold pool intensity from U-Net
prediction (E, J, and O) and LES (P). Group 1 from (A) to (E) includes all
variables included, group 2 from (F) to (J) masked the dynamic variables
(the wind components), and group 3 from (K) to (O) mask the
thermodynamic variables (the RH and 0). The ground truth of cold pool
intensity from LES is shown in (P). Results show that wind information

may be more critical for U-Net cold pool prediction.

Impact of input variables on cold pool prediction performance. Boxplots
show correlation coefficients between predicted and ground-truth cold
pool fields for four resolutions (R 08 to R 64). Colors represent the
combination of input fields: Thermal fields only (pink), dynamic fields
only (green), and all variables (blue). The group with the wind fields
appears to improve the predictions, especially at finer resolutions. For each
resolution and each input group, the correlation coefficients are computed

based on 720 test samples.
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Chapter 1

Introduction

1.1 The Rise of Deep Learning in Atmospheric Sciences

Adapting deep learning techniques to atmospheric science research has become a
prominent field in recent years. The use of neural network statistical methods has been
widely applied to climatology, meteorology, atmospheric chemistry, and other
atmospheric sciences fields (Gentine et al., 2018; Rasp et al., 2018; Yuval & O'Gorman,
2020). By building various neural network frameworks and using both existing
observational and simulated data, data-driven prediction model construction can be

achieved automatically.

As neural network architectures become increasingly complex, deep learning, which
involves increasing the number of parameters or deep architectural depth in neural
networks, has been introduced to atmospheric sciences research. In the past few years,
with the development of artificial intelligence receiving significant attention and
resources in the data science field, the application of deep learning techniques—
especially the generative model—in atmospheric forecasting has increased. These
applications range from down-scaling and probabilistic forecasting to satellite image
recognition (Agrawal et al., 2019; Briining et al., 2024; Higa et al., 2021; Hoeller et al.,

2022).

doi:10.6342/NTU202600119



1.2 The Problem of Black Box: The Need for Interpretability

and Explainability

With high-quality datasets, these deep learning models often achieve acceptable results
in prediction tasks. However, their output relies on computations among numerous
parameters, making it difficult for researchers to understand why specific results are
produced. This deep learning model operates like a "black box," which may lack

transparency, interpretability, and explainability (Samek et al., 2017).

These black box models often cannot explain the causal relationships between predictions
and the physics variables. The increasing number of high-accuracy black box models
raises significant challenges for scientific discussions, and there are many doubts about
the robustness and generalizability of these models (Beucler et al., 2021). Without a clear
understanding of the underlying reasoning, applying these models to study complex

atmospheric dynamics remains risky and scientifically insufficient.

1.3 Morphology as a Physical Indicator: Linking Visual

Features to Domain Knowledge

To address this lack of underlying reasoning, we propose a framework focused on specific
physical attributes. In this research, we tried to construct the linkage between the
morphology of atmospheric physics variables and the deep learning model predictions.
We chose morphology as an important indicator because it not only integrates the
outcomes of nonlinear physical processes, but also provides interpretable visual cues.

Human visual perception plays an important role in judging the reasonableness of natural

2
doi:10.6342/NTU202600119



variables, including their correlations and causal inferences.

When interpreting deep learning models, we can apply our domain-knowledge of
atmospheric physical variables to effectively assess the validity of the outputs and
reasoning processes of the deep learning models. Using the morphology of physics
variables to assess the reasonableness of deep learning model construction can be applied

to various scales of atmospheric science problems.

In this research, we hypothesize that by extracting nonlinear morphological features, we

can bridge the gap between data-driven predictions and physical consistency. This

approach is tested across three distinct scales of atmospheric processes:

1. Large-scale: The changes in the morphology of pressure fields during sudden
stratospheric warming (SSW) phenomena.

2. Mesoscale: The relationship between aggregated convection development
characteristics and cloud water distribution morphology.

3. Small-scale: The relationship between the cold pool in the subgrid-scale of Global

Storm Resolving Model (GSRM) and the environmental variables morphology.

1.4 Thesis Objectives and Framework

Convolutional neural networks (CNNs) and their variants are frequently used to capture
the morphology of physical variables and construct predictive models (Chattopadhyay et
al., 2020; Ham et al., 2019; Weyn et al., 2020). By using CNNs, we can allow the model
to automatically determine and extract key features such as edges, areas, positions,

maxima, and minima, and even complex nonlinear structures from the input data.
3
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To demonstrate the robustness and generalizability of this deep learning framework, we
adopted a cross-scale approach for case selection. We identified three distinct
phenomena—Sudden Stratospheric Warmings (Planetary scale), Convective Aggregation
(Mesoscale), and Cold Pools (Sub-grid scale). These cases were selected not only to
represent a hierarchy of atmospheric scales but also because they share a common
scientific challenge: their physical states and evolutions are governed by nonlinear spatial
structures (or morphological features) that are difficult to quantify using traditional scalar
statistics. By applying our framework across these diverse scales, we aim to validate that
morphology can serve as a universal physical indicator connecting data patterns to

dynamic mechanisms.

However, the specific morphological tasks differ across these scales, ranging from global
evolution representation to local feature extraction and subgrid reconstruction. Therefore,
various CNN-based network architectures must be adapted. Our research used three
different CNN-based deep learning networks to build the framework linking physical
variables' morphology in atmospheric science problems of various scales. This

dissertation contains the following three parts:

1. Representing Large-Scale Evolution (Chapter 2):

In the first part of this study, we conducted a morphological analysis of sudden
stratospheric warming (SSW) phenomena. Traditional classification methods (e.g., linear
PCA) may not be suitable to categorize all events fully due to the complex spatial
deformation of the polar vortex. Therefore, we demonstrated the use of a combination
of Variational Autoencoder (VAE) and CNN to capture the large-scale atmospheric

physics variables and compress the morphology into scatter plots. This visualization

doi:10.6342/NTU202600119



effectively captures the temporal and spatial changes of the 10 hPa geopotential height,
providing a continuous phase diagram to study the spatial-temporal characteristics of

SSWs.

2. Extracting Mesoscale Nonlinear Features (Chapter 3):

In the second part, we investigate the relationship between cloud water distribution
patterns and the development of aggregated convection. We constructed a framework that
uses CNN models and gradually reduces the key physics features of the input dataset. By
repeatedly removing characteristics we believed were important (such as cloud water path
magnitude) and retraining the model, we discovered the nonlinear relationships between
edge complexity and the area of cloud water patterns. This "iterative feature removal"
strategy allows us to identify the important morphological features that distinguish

convective aggregation.

3. Reconstructing Subgrid-Scale Dynamics (Chapter 4):

In the third part, we explore the potential of deep learning as a subgrid parameterization
tool. We use a CNN-based U-Net deep learning model to predict high-resolution cold
pool patterns from low-resolution physics fields—mimicking the resolution gap in Global
Storm-Resolving Models (GSRMs). By designing the U-Net output as binary masks of
cold pool intensity, we can focus on the overall range and intensity distribution pattern.
Analyzing the key morphology concluded by U-Net enables us to understand the
important physics variables (specifically dynamic fields vs. thermodynamic fields)

required for parameterizing high-resolution cold pools.

These chapters are derived from three scientific papers conducted during the doctoral

doi:10.6342/NTU202600119



program, each corresponding to a specific peer-reviewed publication:

Chapter 2 is adapted from the work published in Chen et al. (2024), "Exploiting a
variational auto-encoder to represent the evolution of sudden stratospheric warmings."
Environmental Research: Climate 3(2), https://doi.org/10.1088/2752-5295/ad3a0d,
which investigates the morphological evolution of Sudden Stratospheric Warmings using

a variational autoencoder framework.

Chapter 3 corresponds to the study presented in Chen et al. (2023), A deep learning
framework for analyzing cloud characteristics of aggregated convection using cloud-
resolving model simulations. Atmospheric Science Letters, 24(5), ell150.
https://doi.org/10.1002/asl.1150, focusing on extracting nonlinear features of mesoscale

convective aggregation via an iterative deep learning approach.

Chapter 4 is based on Y. C. Chen and C. M. Wu (2025). “Capturing Subgrid Cold Pool
Dynamics With U-Net: Insights From Large-Eddy Simulation for Storm-Resolving
Modeling.” Atmospheric Science Letters 26, no. 7: e1309.
https://doi.org/10.1002/as1.1309, demonstrating the reconstruction of subgrid-scale cold

pool morphology from coarse-grained environmental fields.

Following these case studies, Chapter 5 synthesizes the findings across these three distinct
scales, providing a general discussion on the role of different neural network architectures
and the interpretability of morphology as a physical indicator. Finally, Chapter 6
summarizes the major scientific contributions of this dissertation and outlines potential

directions for future research.
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Through these parts of studies, this dissertation aims to establish an explainable deep
learning framework that not only achieves acceptable prediction accuracy but also reveals

the underlying nonlinear morphological features of atmospheric processes.
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Chapter 2

Representing the Morphological Evolution of
Large-Scale Circulation wusing Variational

Autoencoder

2.1 Introduction

Sudden stratospheric warmings (SSWs) are the most dramatic events in the wintertime
stratosphere, characterized by substantial disruption to the stratospheric polar vortex
(Andrews, 1987; Baldwin et al., 2021; Charlton & Polvani, 2007; Limpasuvan et al.,
2004). These extreme events are typically categorized into displacement and splitting
types depending on the morphology of the vortex (Baldwin et al., 2021; Charlton &
Polvani, 2007; Lehtonen & Karpechko, 2016; Matthewman et al., 2009; Mitchell et al.,
2011; Seviour et al., 2013). Monitoring the genesis and evolution of these morphological
changes is important because they are usually followed by anomalous tropospheric
circulation regimes that are important for subseasonal-to-seasonal prediction(Baldwin et
al., 2003; Davis et al., 2022; Domeisen et al., 2020; Kidston et al., 2015; Sigmond et al.,

2013; Tripathi, Baldwin, et al., 2015; Tripathi, Charlton-Perez, et al., 2015).
Despite several analysis methods that have been used to study the evolution of SSWs, the

potential of deep learning methods to capture these complex spatial structures has not yet

been fully explored. This is mainly due to the relative scarcity of observed events, which
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creates a small sample size problem for training data-driven models. To overcome this
limitation, we use data from historical simulations of the Whole Atmosphere Community
Climate Model version 6 (WACCMS6, Gettelman et al. (2019); Liang et al. (2020); Liang
et al. (2022)) to identify thousands of simulated SSWs. We then use their spatial patterns

to train a deep learning model.

In this chapter, we use a convolutional neural network (CNN) combined with a variational
auto-encoder (VAE, Kingma and Welling (2013))—a generative deep learning model—
to construct a phase diagram that characterizes the SSW evolution. This approach aligns
with our dissertation's goal of extracting nonlinear features: it allows us to create a latent
space that encapsulates the essential features of the vortex structure during SSWs. By
projecting the high-dimensional geopotential height fields into a compressed 2D space,
this visualization effectively concludes the temporal and spatial changes of the polar
vortex. Unlike linear methods such as Principal Component Analysis (PCA), the VAE
captures the nonlinear continuous transition of the vortex pattern, providing a new

perspective for discussing the evolutionary paths of SSWs.

2.2 Data and Methods

2.2.1 Data Description and Preprocessing

We use daily-mean zonal wind and geopotential height fields at 10 hPa (Z10) from the
National Aeronautics and Space Administration’s Modern-Era Retrospective Analysis for
Research and Applications, version 2 (MERRA-2, Gelaro et al. (2017)) reanalysis and
two sets of large-ensemble historical simulations conducted using WACCM6. The

WACCM6 simulations provide a total of 1539 SSW events, offering a rich dataset to train
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our deep learning model.

The WACCMBG6 is a high-top chemistry-climate model with 70 vertical levels extending
from the surface to 6 X 107® hPa(~ 140 km), allowing for a robust representation of
stratospheric dynamics. The simulations have a horizontal resolution of 0.95° x 1.25°

in latitude and longitude. The dataset comprises two sets of historical simulations (1979—
2014) forced by observed sea surface temperatures and sea ice concentrations, with each
set containing 30 ensemble members generated via micro-perturbations to the initial
atmospheric temperature fields. This large-ensemble approach (totaling 2,160 simulation
years) is important for overcoming the sampling limitations of observational records

when studying extreme events like SSWs.

Specifically, the simulations consist of two configurations to account for different forcing
factors. The first set involves WACCMS6 being forced by the daily time-varying global
sea-surface temperature (SST) and sea-ice concentration (SIC) (Eyring et al., 2016;
Haarsma et al., 2016). The second set replicates the first but replaces the Northern
Hemisphere SIC with daily climatological values. This experimental design ensures that
the atmospheric circulation in the second set remains unaffected by variations in Arctic
sea ice, allowing us to isolate the stratospheric variability driven by internal atmospheric

dynamics from that forced by sea-ice anomalies.

As discussed in Chapter 1, appropriate preprocessing must be done according to the data
characteristics to facilitate the CNN's ability to extract key features. The Z10 field output
from WACCMG6 simulations is originally in a latitude-longitude grid. To maintain the grid

area size at high latitudes and avoid distortion that might confuse the morphological
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learning, we employ a bilinear interpolation method (Kim et al., 2019) to project the data
onto a generic square grid. Figure 2-1 shows an example of the original range of data and

the interpolated data.

(A) Original Data and Reshaped Range (B) Cubic Sphere Reshaped Grid

29200 29360 29520 29680 29840 30000 30160 30320 30480 30640 30800
710 [m]

Figure 2-1. lllustration of the bilinear interpolation method applied to a Z10 field of a split-type SSW event
from WACCMG6 simulations. (a) The longitude—latitude map of the Northern Hemisphere in an
orthographic projection with 90° N at the center, with the region of color shadings indicating the domain
to be interpolated. (b) The resultant 36 % 36 squared grid after using the bilinear interpolation method.

The parallels on are respectively at 80, 60, and 40 degrees from the innermost to the outermost.

This spatial interpolation allows the VAE model to extract features in a more feasible way
(i.e., squared images) as the stratospheric polar vortex can be distorted in the longitude—
latitude grid. These squared images of Z10 fields are then standardized to the Z-score to

accelerate the convergence rate of the neural network.

2.2.2 Definition and Classification of SSWs

To identify SSW events, we follow the standard criterion proposed by Charlton and
Polvani (2007), defined by the reversal of zonal-mean zonal winds at 10 hPa and 60°N
from westerly to easterly during the boreal extended winter (November to March). The

onset date (day 0) is defined as the first day of wind reversal.
11
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Furthermore, to categorize the morphology of the polar vortex, we adopt the two-
dimensional vortex moment analysis (Seviour et al., 2013). This method calculates two
key geometric indices based on the geopotential height field: the aspect ratio (r)

and the centroid latitude ().

Displacement Events: Defined when the vortex centroid is shifted equatorward
(b < 66°N) for at least 7 days, while the aspect ratio remains low.
Splitting Events: Defined when the vortex becomes elongated and splits, indicated

by an aspect ratio (r > 2.4) for at least 7 days.

Using these criteria, we identified 1,177 displacement events and 362 splitting events

from the WACCMG6 simulations.

2.2.3 Variational Auto-Encoder (VAE) Framework

To capture the morphology of the polar vortex, we constructed a CNN-based VAE model.
The VAE consists of two components: an encoder and a decoder. The encoder allows the
model to automatically determine and extract key spatial structures—such as the vortex
edge, position, and intensity—and compresses this information into a latent space. The
decoder then samples from this compacted representation to generate (reconstruct) the
output data. The structure of CNN-based VAE model used in this study can be found in

Figure 2-2.
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36x36x1 Latent Space 36x36x1
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Figure 2-2. A schematic of the VAE structure used in this study. The top row represents the combination of

a decoder and an encoder, which form the VAE model. The middle row illustrates the details of the encoder,
while the bottom row those of the decoder. The vertical solid line after each layer denotes the max-
pooling/upsampling layers, which reduce or increase the dimension of pixeled images, whereas the cubes
represent the convolutional layers with varying numbers of channels. The encoder reads in a 36 x 36 Z10
input image, compresses its information through the convolutional layers, and outputs two means (u0, ul)
and two variances (v0, vl) that form the latent space. The decoder utilizes these sampled results based on
Gaussian distribution and generates a 36 x 36 Z10 output through multiple convolutional layers. The mean
squared error (MSE) between the original and generated images and the Kullback—Leibler divergence
between the latent space and the Gaussian distribution are computed. These errors are backpropagated to
train the encoder and decoder. The light blue color shading highlights the two means of the latent space,

which is used to produce the phase diagram in this study.

Looking into the latent space yields an understanding of how the VAE learns the
continuous variations in the patterns. In this study, we focus on the two "modes"
(dimensions) of the trained VAE, z, and z;. These two dimensions form a two-
dimensional phase diagram, making it easy to examine the evolution of the SSWs. By
minimizing the difference between the input and the generated output, the VAE optimizes
the latent space to represent the continuous variations of the vortex patterns from the input

data.

To provide a baseline for assessing the VAE's ability to capture nonlinear morphology,
we also perform Principal Component Analysis (PCA) over the same Z10 training data.

13
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As a linear baseline, the first two principal components (PCs) explain 30.6% and 21.4%
of the total variance, respectively, accounting for over 50% of the variability combined.
While PC1 typically represents the vortex displacement and PC2 captures the wave-
number 1 or 2 features, we will demonstrate in the following sections that this linear
decomposition struggles to fully capture the complex, non-linear deformation of splitting
events compared to the VAE. Physically, the first PCA mode is characterized by a dipole
in Z10 anomalies between northwestern North America and the Barents-Kara Seas, while
the second mode features lower Z10 values over Greenland together with higher values
over eastern Siberia. Although these two modes are statistically distinguishable based on
North’s rule (North et al., 1982) and combined explain more than 50% of the total
variance, their linear combination struggles to represent the continuous structural

deformation observed during splitting events.

Before constructing the balanced dataset, we processed the entire collection of identified
SSW events. We prepared a total of 32,319 Z10 images from the Z10 anomalies over 10
days prior to and after the onset date. To ensure robust model training and evaluation, we
adopted an 80%—-9%—11% ratio for separating the data, resulting in 25,893 images for
training, 3,024 for validation, and 3,402 for testing. This strict separation ensures that the
morphological features learned by the VAE are generalizable and does not result from

overfitting to specific events.

To prevent the model from being biased toward the more frequent displacement events
(class imbalance), we constructed a balanced training dataset. We randomly sampled an
equal number of images (1,299 images) from three categories: displacement, splitting,

and 'meither' (transition states), resulting in a total of 3,897 images for training. The model

14
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was trained using the Adam optimizer.

2.3 Results: The Morphological Phase Diagram

A key outcome of the VAE is the generative phase diagram obtained by passing varying

latent variables (zz;) through the decoder. This diagram provides insight into the

morphology and spatiotemporal evolution of SSWs. As shown in Figure 2-3, we can

observe that the phase diagram captures a wide variety of various vortex structures.
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Figure 2-3. This figure illustrates the corresponding Z10 field generated by the VAE decoder when given

the varying values of z0 and z1 in the latent space. The green circle in each panel represents the circle of

60° N.
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The constructed phase diagram depicts a continuous transition of the vortex pattern. In
the upper-left quadrant (large negative z,, positive z;) in Figure 2-3, the vortex is rather
circular and centered near the pole. Towards the lower-left, the vortex becomes displaced.
In the upper-right quadrant, the spatial pattern demonstrates the splitting of the vortex

into two smaller vortices.

Interestingly, the phase diagram shows a gradual, continuous transition of the vortex
structure from one shape to another. This confirms that the VAE has learned to map the

complex, nonlinear morphology of the stratospheric vortex onto a simplified 2D vector.

2.3.1 Evolutionary Tracks and Reconstruction

To further shed insight on the capability of the VAE phase diagram, we project the
temporal evolution of specific SSW events onto the diagram. Visualization in Figure 2-4

allows us to track the morphological changes through the 2D phase-space.
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(B) Track of PCA
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Figure 2-4. (a) The evolution track of a displacement-type SSW event from WACCMG6 simulations mapped
onto the VAE phase diagram. (b) As in (a), but for the track mapped onto the PCA phase diagram. (c) The
WACCMG6 Z10 spatial patterns during days [—10, 10]. (d) The VAE reconstructed Z10 fields during days
[—10, 10]. (e) As in (d), but for PCA reconstructed Z10 fields. The values in the subtitle parenthesis in (c)

are the aspect ratio (r) and central latitude (¢o) of this SSW event, whereas those in (c) and (d) denote the
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pattern correlation (R) and RMSE. The green circle in each panel of (c)—(e) represents the circle of 60> N.

Figure 2-4 shows a displacement-type event. The VAE track stays within the lower-left
quadrant, consistent with the displacement-dominant status of the event. The VAE
reconstructed fields (Figure 2-4D) successfully capture the elongated and displaced
nature of the vortex. In contrast, while PCA (Figure 2-4E) also captures the general
evolution, the VAE gives a better-reconstructed vortex morphology, particularly in

preserving the structural integrity of the vortex core.

This advantage of VAE becomes even more apparent for split-type events in Figure 2-5.
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Figure 2-5. The same as in Figure 2-4, but for a split-type SSW.

Figure 2-5 shows a splitting event. VAE is capable of reconstructing the varied spatial

patterns—from a circular structure to a stretched one and finally to splitting patterns.
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However, the PCA (Figure 2-5E) fails to retrieve these important vortex features; it cannot
produce two distinct vortices but instead yields only one vortex. This implies that the
linear combination of two PCA modes is insufficient to represent the highly nonlinear

morphology of a splitting vortex.

2.3.2 Statistical Distribution and Model Validation

We further investigate if different types of SSWs favor certain regions of the 2D phase-

space by mapping all test events onto the heatmap (Figure 2-6).
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Figure 2-6. (a) The occurrence probability of the Z10 fields associated with all displacement-type SSWs
from the WACCMG6 testing dataset in the VAE phase diagram. The values are presented as percentages
after normalized by the total number of events. (b) As in (a) but for split-type SSWs from WACCMG6
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simulations. Figures (c) and (d) are the same as (a) and (b), but for the PCA phase diagram. The blue dots
are the Z10 fields from the reanalysis dataset mapped onto the VAE and PCA phase diagrams.

The VAE heatmaps (Figures 2-6A, 2-6B) separates the regimes for displacement (lower-
left) and splitting (upper-right) events. The observed SSWs from MERRA-2 (blue dots)
also map differently onto these regimes, suggesting that the VAE trained on simulation
data can be applied to observational data. Conversely, the PCA phase diagram (Figures
2-6C, 2-6D) shows less organized regimes, confirming that VAE offers a more robust

framework for mapping vortex structures into two modes.

2.3.3 Quantitative Assessment

To provide quantitative evidence that the VAE reconstructs better evolutions of SSWs
than the PCA, we calculate the pattern correlation (R) and root mean squared error (RMSE)

as a function of time.
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Figure 2-7. The pattern correlation (R) and root mean squared error (RMSE) for (a) and (b) the
reconstructed displacement-type SSWs and (c) and (d) the reconstructed split-type SSWs from WACCMG6
simulation against corresponding full Z10 during the period of days [—10, 10]. The color shading indicates

the range of one standard deviation.

Figure 2-7 shows that for both displacement and splitting events, the VAE gives
higher R and lower RMSE than the PCA throughout most of the period. This
quantitatively supports our visual finding that the VAE performs better in terms of spatial

reconstruction.

Finally, we examine the "travel distance" in the phase space to understand the variability
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of the events.
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Figure 2-8. (a) Distributions of distance traveled in the VAE phase diagram for all split-type (magenta
bars) and displacement-type (blue bars) SSWs. (b) Distributions of distance traveled for all simulated SSWs

(blue bars) and observational (magenta bars) SSWs. (c) and (d) The same as (a) and (b) but for the
distributions of distance traveled in the PCA phase diagram.

Figure 2-8 shows that the VAE produces a more skewed distribution of travel distances

compared to PCA, reflecting its ability to generate more disrupted (and thus more variable)

vortex structures.

2.4 Discussion
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The latent space of the VAE plays an essential role in this study. We have shown that the
dimensions of the latent space (z,,z;) are not just abstract numbers but correspond to
physical morphological characteristics: z, largely controls the transition between
displacement (wavenumber-1) and splitting (wavenumber-2) structures, while z; relates

to the vortex strength and distortion.

This interpretability is practical. It moves the deep learning model away from being a
"black box" towards a "glass box" where we can observe the reasoning process. The phase
diagram provides an innovative means to study the evolution of the vortex structure in
the duration of SSW, revealing that splitting events are not just discrete jumps but follow

continuous morphological pathways.

Furthermore, the VAE phase diagram provides an innovative approach to manifest the
discrepancy between SSWs in global climate model simulations and reanalysis data. As
shown in the distribution comparison (Figure 2-6), the simulated vortex structures from
WACCMBS6 occur less frequently in the upper-right quadrant compared to the observed
events from MERRA-2. This implies that there may exist model biases in the
stratospheric polar vortex of WACCMBG6, particularly affecting the structure of stationary
waves. By projecting both datasets onto the same latent space, the VAE eftectively
highlights these subtle morphological differences that scalar metrics might miss,
demonstrating its potential as a benchmark tool to evaluate model performance in

simulating extreme stratospheric events.

However, a question arises: do the generated vortex structures in the latent space (e.g., in

the empty quadrants of the phase diagram) represent physically realizable states? While
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some patterns may be rare in the current climate, they represent potential morphological
configurations that the atmosphere could theoretically explore. This generative capability

is a distinct advantage of the VAE over discriminative models.

2.5 Summary and Conclusion

In this chapter, we have successfully trained a VAE using the stratospheric polar vortex
during SSWs from large-ensemble WACCMG6 simulations. By deriving a phase diagram
from the latent space, we characterized the spatiotemporal evolution of SSWs from a

morphological perspective.

Compared with the baseline results obtained from the PCA approach, reconstructions
from VAE have better spatial structures, showing the vortex stretching, deformation, and
splitting with higher fidelity. Also, VAE provides a continuous latent space that maps the

nonlinear transition of the vortex.

These results demonstrate that identifying morphological features via deep learning can
provide new insights into large-scale atmospheric dynamics. The VAE effectively
compressed the global morphology of the polar vortex into a low-dimensional space,

allowing us to track its evolution.

Though VAE successfully captured the evolution of the large-scale field by compressing
the entire image into a latent vector by encoding the entire map at once, in many
atmospheric problems, particularly at the mesoscale, we are interested in
identifying which specific local features within the scene drive a physical process (such

as convection aggregation). The VAE's latent variables (z,, z;) describe the "what" (the
25
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state), but they do not explicitly isolate the "why" (the causal features) in a way that allows

us to analyze the physics of organization.

Therefore, in the next chapter, we will shift our focus from representation to feature
extraction and explanation. We will introduce an iterative framework to identify the
nonlinear morphological features, moving deeper into the interpretability of the neural

network's hidden layers.
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Chapter 3

Extracting Nonlinear Morphological Features of
Mesoscale Convection via an Iterative Deep

Learning Framework

3.1 Introduction

Tropical deep convection can aggregate into organized systems that can reach mesoscale
or even hundred-kilometer scales horizontally. These aggregated convection systems play
an important role in the climate system and regional extreme weather (Hamada et al.,
2014). While the theoretical understanding of aggregation has advanced (e.g., the "moist-
convective quasi-equilibrium" hypothesis, Arakawa (2004); Arakawa and Schubert
(1974)), defining the state of aggregation often relies on simple linear metrics or scalar
statistics. However, aggregated convection in nature involves high-dimensional nonlinear
relationships of multiple physical characteristics (Xu et al., 2019) that are best observed

through their morphology.

As discussed in Chapter 1, identifying these morphological features is challenging for
traditional statistical methods but is a strength of Convolutional Neural Networks (CNNs).
CNN s can statistically capture the characteristics of gridded data (Chattopadhyay et al.,
2020; Higa et al., 2021; Tsou et al., 2019), effectively learning from the "snapshot" of

aggregated convection in the model simulations. However, a standard CNN operates as a
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"black box." Though it may achieve high accuracy, the specific morphological features it
uses to distinguish aggregated from non-aggregated convection remain hidden in the

high-dimensional weighted parameters (Ribeiro et al., 2016; Roscher et al., 2020).

In this chapter, we construct an "explainable framework" to extract these hidden
relationships. Unlike Chapter 2, where we used a VAE to represent the evolution of a state,
here we use a CNN to analyze the state. By iteratively training the model and eliminating
known physical features (a process we term "Iterative Feature Removal"), we force the
neural network to reveal the nonlinear morphological features that are important for

identifying organized convection.

3.2 Methodology

3.2.1 CNN Model and the Hidden Layer

The convolutional neural network (CNN) is a robust model for recognizing the image or
the distribution with spatial characteristics. The structure of the CNN applied in this study
is visualized in Figure 3-1, which is inspired by the Visual Geometric Group (VGG)-net

(Simonyan & Zisserman, 2015).

Input Convolution Max pooling Convolution Max pooling Flatten Output
> —> E— % e § e O
O
128 x 128 42x42x5 42x42x5 14x14 x5 980 1
128 x 128 x 5
L J
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Model Trainin: [ Fminad Kiedial | Classify Dataset
Data Set 9 » Trained Model saaity Detass }[ Explained Characteristics }
Remove Explained Characteristics From Dataset J

Text is not SVG - cannot display

Figure 3-1. A schematic diagram shows the data flow of the CNN model and our framework. Each kernel

of the convolution layers is 3 % 3, and the activations are ReLUs. The pool size of the max-pooling layers
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is 3 x 3, and the activation function of the output layer is sigmoid to represent the probability in [0,1]. The
flowchart shows our framework for retrieving the physics process and the role of the CNN model in our

framework.

This typical network can be applied to image classification. The convolutional structure
preserves the spatial distribution's characteristics while reducing trainable parameters.
Since the logic of identifying the aggregation hides in the connection between layers of
CNN, a common way to understand the logic is to visualize the signal output from the
hidden layer and connect it with the physics meaning we are familiar with. This study
will visualize the first max-pooling layer right after the first convolution layer showed in

Figure 3-1 to find out the connection with physical variables.

We intentionally constructed a CNN model with only a few layers. While deeper networks
with more trainable parameters might increase classification accuracy, they often hide the
physical signals through complex, high-level abstractions, making interpretation difficult.
By limiting the network depth, we may ensure that the signals captured in the first max-
pooling layer preserve more original spatial information, allowing us to directly trace the

learned features back to specific morphological structures of the clouds.

3.2.2 Dataset

To obtain data covering aggregated states, we use outputs from the Vector Vorticity
Equation Cloud-Resolving Model (VVM, Jung and Arakawa (2008); Wu et al. (2019))
simulations (Tsai & Wu, 2017). The dataset includes simulations with varying degrees of
environmental moistening. Following Tsai and Wu (2017), we identify distinct modes in
cloud size distribution to label "aggregated" versus "non-aggregated" cases. Our
framework treats the cloud water field as the primary input for the CNN to classify these

states. Specifically, we use the Cloud Water Path (CWP) in each column (CW P, ), as our
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input variables, which is calculated by
CWP;; = zpk -(qc + qi)i g - 10° - Az
k

where (gc + qi); jj represents the mixing ratio of the cloud condensate (kg - k g~ Hin
each grid point. p; represents the density in the specific height, and Az, represents the

grid height in the stretching grid.

The simulations are initialized with profiles based on the GATE Phase III field campaign.
The imposed large-scale forcing is prescribed as constant in time but modulated to create
various environmental conditions. Specifically, the large-scale moistening effect is
controlled by multiplying a scale factor ranging from +6 (very moist) to -6 (very dry) with
an interval of 1.5. This results in nine distinct experiments representing a spectrum of
environments. Following Tsai and Wu (2017), we identified that the simulations with the
strongest moistening factors (+6 and +4.5) successfully developed into aggregated
convection, while the drier cases (factors -4.5 and -6) remained in a scattered, non-
aggregated state.
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Figure 3-2. (Non agg-1) to (non agg-4) shows the examples of the nonaggregated case, and (Agg-1) to
(Agg-4) shows the aggregated case with the cloud water path values in (kg-m—2). Each subgraph shows

the simulations' 512 x 512 (km) domain. The solid red lines represent the area that may be difficult to
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classify visually. Those areas can be the clouds before elimination in the nonaggregation cases, and the

clouds are not at the core of the convection in the aggregation cases.

Figure 3-2 shows snapshots of an aggregation and a non-aggregation case. To focus on
the characteristics of aggregated convection and its environment, we selected 128 X
128 km? cloud condensate path crops. The selection of the crop size is motivated by the
characteristic length scale of convective aggregation. While individual convective cells
typically operate on scales of a few kilometers, the organization process behave as the
spatial separation of moist and dry regions on the mesoscale (tens to hundreds of
kilometers). A 128 km domain is sufficiently large to capture the morphological clusters
of aggregated convection and their surrounding dry area, yet small enough to serve as a
local sample for the neural network, allowing us to augment the dataset and focus on the

local texture of organization rather than global statistics.

3.2.3 Framework: Iterative Feature Removal

A CNN model with many parameters trained on a limited dataset can suffer from
overfitting or rely on trivial features. To address this and ensure explainability, our
framework is designed to iteratively modify the training dataset. The logic is as follows:
We train the model, identify the leading characteristic the model relies on (e.g., average
CWP), and then remove or mask that characteristic from the dataset. We then re-train the

model. If the model can still predict accurately, it must be using a different set of features.

It is important to clarify the mechanism of "Feature Removal" in this framework. We do
not remove the input variable (Cloud Water Path) entirely, as it serves as the carrier of

morphological information. Instead, we perform Information Masking on the spatial field
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to eliminate specific statistical properties that are known to be highly correlated with
aggregation. For example:

1. Masking Intensity: By converting the continuous CWP field into a binary mask (0
or 1), we remove the functional dependence on cloud thickness/intensity while
preserving the spatial layout.

2. Masking Coverage: By restricting the dataset to samples with similar cloud
fractions, we remove the statistical dependence on cloud coverage area.

This process is analogous to causal discovery via intervention. By systematically
blocking the "easy" pathways (intensity and coverage) that the neural network would
typically use for classification, we force the model to seek alternative discriminative
features hidden in the remaining information, specifically, the spatial distribution and
edge complexity (morphology). This ensures that the learned features represent nonlinear

structural drivers rather than simple scalar correlations.

By repeating this process in this framework, we may dig out the deeper, nonlinear

morphological relationships.

3.3 Iterative Extraction of Morphological Features

Iteration 1: The Role of Average Cloud Water Path

In the first round, the trained model based on the complete CWP information achieves an
accuracy of about 98%. By analyzing the predicted probability against the domain-
averaged CWP (Figure 3-3A), we find that cases with averaged CWP greater than
1 kg - m~2 are easily classified as aggregated. This is a trivial feature for distinguishing
between aggregated and non-aggregated cases according to our knowledge of convective

aggregation. To force the model to learn more detailed variables, we removed these high-
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average-CWP cases from the dataset.
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Figure 3-3. The model predicted probabilities of the aggregation (y-axis in each subgraph) from the CNN
model in the different iterations and the potential property derived from the CWP values (x-axis in each
subgraph). Blue points in each subgraph stand for the actual label of the training data are nonaggregation
cases, and the orange points stand for the aggregation cases. (a) The 128 x 128 km2 domain averaged
CWP (kg'm—2), (b) the maximum of the CWP (kg-m—2) in the 128 x 128 km2 crops. (c) The cloudy area
covers 128 x 128 km2 crops after being masked by the value of 2 kg-m—2.

Iteration 2: The Role of Maximum Intensity

The model trained on the remaining dataset still achieved 95% accuracy. Figure 3-3B
shows that the maximum CWP can be a potential discriminator—aggregated cases tend
to have higher extrema. To eliminate this intensity-based feature and focus on the spatial
distribution, we masked the CWP information by setting a threshold (2kg - m~2). Grids
with values above this are set to 1, and others to 0. This retains the cloud

shape (morphology) while removing the intensity distribution.

Iteration 3: The Role of Cloud Coverage

In the third round, even with intensity masked, the model persists with 90% accuracy. We
hypothesized that cloud coverage rate (Cloud Fraction) is the key. As shown in Figure 3-
3C, low coverage rates are associated with non-aggregation. To challenge the CNN model
further, we limited the dataset to cases with cloud coverage between 5% and 10%, which

are the hard cases in Figure 3-3C
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After these iterations, the modified dataset is difficult even for humans to distinguish
visually (Figure 3-4A, B). Yet, the CNN model still achieves 73% accuracy (better than
random guessing). This suggests the existence of a hidden morphological relationship that
is related to the mechanisms of cloud organization.

(a) Example From Aggregation (b)

Example From Non-Aggregation
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Figure 3-4. (a) and (b) show the example of the comparison between nonaggregation and aggregation
labeled data in the training dataset. The cropped cloud water path field on a 128 x 128 km2 is masked by
a 2 kg:m—2 threshold. The green grid will be regarded as one, while dark blue grids will be regarded as
zero. The ones and zeros will be inputted into the input layer of the CNN model. The graph in (c) shows the
referenced cloud water (masked) inputted into the CNN models. From (d-0) to (d-4), show the graphs of
the encoded channel 0 to 4, representing the max-pooling layer with the 42 x 42 grid or the 128 x 128 km
domain. Each grid concludes the signal from the 3 x 3 km2 box. The brightness in the graphs shows the

strength of the signal outputted. Each channel has its scale, so we will only focus on the relative strengths
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and the spatial distributions. The channel order may vary due to the randomness of the training process;

however, the characteristics of the relative strengths and the spatial distributions will remain.

3.4 Discussion: Decoding the Hidden Layer

To quantify the complexity of the cloud edges, we calculated the fractal dimension of the
cloud clusters. In this study, the fractal dimension is applied to the binary cloud mask
(where CWP > 2 kg/m?). A higher fractal dimension indicates a more complex, rougher

boundary, whereas simple, smooth shapes typically yield lower dimensions.

To understand the "black box" logic of the final iteration, we visualize the signals from
the CNN's first max-pooling layer with 5 channels (Figure 3-4D, channel O to 4). Strong
signals appear at the center of clouds in one channel (Channel 2) and at the edges in others

(Channels 0, 1, 3, 4).

This indicates that the model is looking at the fractal dimension or the complexity of the
cloud boundaries. To quantify this, we analyzed the correlation (R?) between the signal

sums of specific channels and physical properties (Cloud Fraction vs. Fractal Dimension).

Cloud Fraction Fractal Dimension K
values
Non-Aggregation Aggregation Non-Aggregation | Aggregation -
Channel 0 0.33 0.09 0.17 0.66 0.9
Channel 1 0.49 0.11 0.09 0.61 0.8
Channel 2 0.88 0.63 0.01 0.16 0.7
Channel 3 0.51 0.12 0.07 0.62 0.6
Channel 4 0.26 0.08 0.23 0.68 0.5

Table 3-1. R’ values of the cloud fraction/fractal dimension and the channel signal sums corresponded to
the model used in Figure 3-4 (d-0) to (d-4), separated by the aggregated and non-aggregated cases.

Table 3-1 reveals a striking result: In non-aggregated cases, the CNN signals correlate
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strongly with Cloud Fraction (Channel 2, R? = 0.88). This means the model may simply
count how many cloud grids there are to confirm the non-aggregation cases.
In aggregated cases, the CNN  signals correlate  strongly ~ with Fractal
Dimension (Channels 0, 1, 3, 4, R? > 0.6). This implies that when convection is
aggregating, the geometry of the cloud edges and their nonlinear complexity become the
dominant feature for classification. This confirms that the CNN has learned that
aggregated convection is morphologically distinct not just in size, but in the nonlinearity

of its spatial structure.

The result highlights a fundamental difference in the underlying logic of convective states.
The high correlation in non-aggregated cases suggests that the model finds a linear
relationship with a simple scalar metric—cloud fraction. In contrast, the difference in
linearities observed in aggregated cases indicates that scalar metrics are insufficient. The
model instead shifts its focus to the fractal dimension, which represents the nonlinearity
in the geometry of the cloud structure. This confirms that as convection aggregates, its
defining characteristic transitions from “how much cloud is there” (linear) to “how

complex is the cloud shape” (nonlinear morphology).

Also, the choice of using CWP as the input variable is strategically aligned with
observational capabilities. The processed dataset, after removing trivial intensity features,
may be similar to the imagery obtained from satellite liquid water or ice channels. Unlike
nadir-view visual images that may be obscured by cirrus shields, these channels provide
a more direct representation of the convective core structure. Thus, demonstrating that
the CNN can identify aggregation solely from the morphology of CWP suggests that this

framework has the potential to be adapted for diagnosing convective organization from
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geostationary satellite observations.

3.5 Summary

In this chapter, we introduced a data-driven framework to retrieve essential cloud
characteristics using CNN models and VVM simulations. By employing an iterative
feature removal strategy, we analyze the layers of the "black box." We identified that
while average CWP and cloud coverage are primary indicators, the nonlinear
morphological features—specifically the cloud coverage and edge complexity of
clouds—can be the hidden features that distinguish aggregated convection when other

statistical features are ambiguous.

This chapter demonstrated that this framework of deep learning can successfully extract
morphological features from mesoscale fields to classify convective organization.
However, in the context of Global Storm-Resolving Models (GSRMs), many crucial
morphological processes occur at even finer scales—specifically, the subgrid-scale of

GSRMs.

One such critical phenomenon that related to convective organization is the Cold Pool,
whose dynamic edges (the morphology of which drives new convection) are often smaller
than the grid size of current global models. While Chapter 3 focused
on identifying existing cloud patterns, Chapter 4 will shift the focus
to reconstructing these subgrid details. We will move from a classification task (CNN) to
a segmentation and downscaling task using a U-Net architecture, aiming to predict the
high-resolution morphology of cold pools from coarse-grained environmental fields,

thereby providing a pathway for future parameterization.
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Chapter 4

Capturing Subgrid-Scale Cold Pool Morphology:
A U-Net Based Morphological Reconstruction

4.1 Introduction

In the previous chapters, we demonstrated how deep learning can identify morphological
features at the large scale (SSW evolution via VAE) and mesoscale (convective
aggregation via CNN). In this chapter, we descend to the subgrid scale—an important

scale for the development of the next generation of climate modeling.

The interaction between convective clouds, driven by cold pool dynamics, plays an
important role in triggering convective systems and producing extreme rainfall events
(Khairoutdinov & Randall, 2006; Moseley et al., 2016; Tompkins, 2001). Observations
and simulations show that the morphology of cold pools—specifically their intensity
gradients and spreading boundaries—strongly influences nearby convective initiation
(Boing, 2016; Feng et al., 2015; Haerter, 2019; Haerter et al., 2019; Khairoutdinov &
Randall, 2006). To better capture the role of cloud convection in climate, recent
development of Global Storm-Resolving Models (GSRMs, Stevens et al. (2019)) has
raised the focus on how variability in convective systems interacts with large-scale

circulation.

However, the horizontal resolution currently used in GSRMs (typically a few kilometers)
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may be insufficient to fully resolve the physical processes related to cold pools. Since the
dynamics of cold pools are highly nonlinear (Hohenegger & Schlemmer, 2014; Torri &
Kuang, 2019), accurately capturing these processes requires models capable of
representing complex, nonlinear physical interactions with high spatial simulation

resolution (Kao et al., 2025; Moseley et al., 2016; Wang et al., 2024).

In the context of this dissertation, we propose that deep learning can serve as a bridge
across this resolution gap. We employ high-resolution Large-Eddy Simulation (LES) to
generate the "ground truth" morphology of cold pools. We then develop a U-Net deep
learning model—a network designed for image segmentation and reconstruction—to
predict the high-resolution distribution of cold pools using coarsened physical variables.
This allows us to assess whether the nonlinear morphological features of cold pools can
be retrieved from variables resolved by GSRMs, providing insights for future subgrid

parameterizations.

4.2 Methodology

4.2.1 Data Description: Generating Ground Truth Morphology

The dataset is generated using the Vector Vorticity Equation Cloud-Resolving Model
(VVM) to simulate the evolution of cold pools. This model has been run at 100 m
horizontal resolution to capture the fine-scale structures (Kao et al., 2025; Tsai & Wu,
2016; Wang et al., 2024; Wu & Arakawa, 2011). We adopt simulations from Kao et al.
(2025), which represent typical oceanic conditions and encompass a variety of convective

regimes.
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To ensure the physical realism of the cold pool structures in our training data, the
simulations incorporate comprehensive physical parameterizations. Specifically, the
model use the RRTMG scheme (Iacono et al., 2008) for radiation processes, the P3
scheme (Morrison & Milbrandt, 2015) for microphysics, and a first-order closure for
turbulence representation (Shutts & Gray, 2006). This setup ensures that the simulated
cold pools are driven by realistic interactions between radiative cooling, precipitation

evaporation, and boundary layer mixing.
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Figure 4-1. Cold pool and convection characteristics from Large-Eddy simulations. Snapshots from high-
resolution Large-Eddy Simulation (LES) illustrating two convective cases, case I from (A) to (C), and case
2 from (D) to (F). Outgoing Longwave Radiation (OLR, as shown in A and D) indicates cloud-top
temperatures and convective activity with the domain-averaged value on the bottom right. Cold pool
intensity (as shown in B and E) computed by vertically integrating negative buoyancy over the boundary
layer, and red contours denote precipitation rates exceeding 1 mm h—1. Vertical cross-sections (as shown
in C and F) show the vertical structures of cloud water, ice, and rainwater within the boxed regions in (4)
(B) and (D) (E). The top row from (4) to (C) represents shallow convection with limited OLR depression
and small cold pools, while the bottom row from (D) to (F) shows deep convection with extensive anvil

clouds and deep vertical development.

Figure 4-1 demonstrates the variability of cold pools, in which cold pools intensity B is
calculated by the vertically integrated negative buoyancy over the boundary layer,

40
doi:10.6342/NTU202600119



following (Feng et al., 2015; Rotunno et al., 1988; Tompkins, 2001).

h

0 7"
B = 2><f—g P__Pdz [m/s]
Op

0

where 6, and @ specify the cold pool and horizontal averaged virtual potential
temperature, h specifies the height when negative buoyancy is greater than
—0.003 [m - s72] as used in Feng et al. (2015). Importantly, cold pools do not always
coincide spatially with precipitation (Figure 4-1B, 4-1E), emphasizing that their
morphology is driven by complex boundary-layer processes that cannot be inferred solely

from rainfall.

The selection of input variables, horizontal winds (u, v), potential temperature (6), and
relative humidity (RH), presents our target physics of cold pool. While the cold pool is
fundamentally a thermodynamic anomaly (dense, cold air), its propagation and ability to
trigger secondary convection are dynamically driven by the leading gust front. It is
important to note that simply interpolating these high-resolution dynamics from a sub-
kilometer scale to a coarse grid (e.g., via linear interpolation) results in a significant loss
of physical accuracy. The sharp gradients characterizing the gust front are smoothed out
in the coarsening process, erasing the signal of mechanical lifting. Therefore, our deep
learning task is not only downscaling, but also involving the nonlinear reconstruction of
these sharp morphological boundaries that are dynamically consistent with the coarse-
grained environmental kinematic fields (specifically the divergence signatures

in u and v), which traditional interpolation methods fail to preserve.
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4.2.2 U-Net Architecture for Morphological Reconstruction

Unlike the CNN used in Chapter 3 which compressed spatial information into a scalar
probability, here we adopt the U-Net (Ronneberger et al., 2015) deep learning model,
which is a variation of CNN. The U-Net architecture preserves spatial information
through skip connections, making it ideal for reconstructing high-resolution features from

low-resolution inputs.
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Figure 4-2. U-Net framework for cold pool intensity prediction. This figure presents the data processing
pipeline and U-Net architecture used to predict high-resolution cold pool intensity from coarse-resolution
atmospheric fields. (A) Subsampled Input: Low-resolution input fields (wind, relative humidity, potential
temperature) at 0.8, 1.6, 3.2, 6.4 km resolution; we take 3.2 km resolution as an example in this figure. (B)
U-Net structure: The deep learning network structures used in this study, which predict high-resolution
cold pool intensity from low-resolution physics fields. (C) Cold pool intensity binary masks: The model

outputs five binary masks corresponding to cold pool intensity thresholds from 1 to 5 m/s. These are
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compared with LES ground truth to compute Dice loss and guide model training. (D) Synthesized cold pool
intensity and LES ground truth: The binary masks are combined to reconstruct the predicted cold pool field
(left), which can be compared visually against the LES ground truth (vight). The Dice score shown in the

bottom right quantifies the prediction quality.

Our strategy involves taking the high-resolution model outputs and coarsening them to
various resolutions (0.8, 1.6, 3.2, and 6.4 km) to serve as U-Net inputs. The model is
trained to predict the high-resolution (100 m) cold pool intensity. Instead of regressing
the continuous cold pool intensity directly, we discretized the field into five binary masks
at intervals of 1 m/s (Figure 4-2C). This design fits the physical nature of cold pools,
which function as density currents characterized by sharp gradients (gust fronts) rather
than smooth variations. By training the U-Net to predict these discrete intensity contours,
we force the model to explicitly learn the morphological boundaries and the internal
structure of the cold pools. This avoids the common issue in regression where models
produce smoothed, blurry fields that fail to capture the sharp dynamic edges essential for

triggering secondary convection.

4.2.3 Data Balancing

To ensure the model generalizes well across different convective regimes, we applied a
class balancing strategy. The dataset was divided into six predefined intervals based on
the cold pool fraction to ensure a balanced representation of both strong and weak cold
pool events in the training process. The final dataset consists of 3,600 samples, split into
2,880 samples for training and 720 samples for testing. Also, to evaluate the U-Net's
capability to bridge the resolution gap, we train four models with identical architectures

using inputs at different coarse resolutions.
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4.3 Results: Reconstructing Sub-grid Morphology

4.3.1 Overall Performance

Figure 4-3 compares the U-Net (C-F) and a baseline Linear Regression (LR) model (G-
J). We define cold pool boundaries ("Edges", Figure 4-3B) to assess how well the model

captures the spreading morphology.

Specifically, the cold pool edges are determined by extrapolating the current cold pool
position based on a propagation speed derived from the density current theory. This
extrapolation estimates the potential spreading area of the cold pool over a 10-minute
interval, serving as an estimation for assessing the model's ability to capture the
morphology in all the intensity prediction. The orange contours in Figure 4-3 indicate this

“Edges”.

To benchmark the performance of the U-Net, a pixel-wise Linear Regression (LR) model
was employed. It is acknowledged that LR represents a relatively simple baseline
compared to more advanced regression methods. However, the primary purpose of using
LR here isto visualize and quantify the nonlinearity of the subgrid reconstruction
problem. If the relationship between the coarse-grained environment and fine-scale cold

pool morphology were linear, the LR model would yield reasonable approximations.
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Figure 4-3. Comparison of cold pool predictions using U-Net and linear regression models. (4) High-
resolution cold pool intensity from LES (100 m resolution). (B) Cold pool boundaries (marked as “Edge”
in B and with orange boundary areas in C to J) based on 10-min propagation. (C to F) U-Net predictions
at input resolutions of 0.8, 1.6, 3.2, and 6.4 km, and (G) to (J) Linear regression model predictions at the
same resolutions. The value D on each subgraph's title represents Dice coefficients, which quantify the

prediction accuracy.

At finer resolutions (0.8 and 1.6 km), U-Net accurately captures both the spatial extent
and intensity of cold pools. As the resolution becomes coarser (3.2 and 6.4 km), the
prediction quality naturally declines, showing reduced heterogeneity. However, the
contrast with the LR model is noticeable. The obvious contrast in performance between
LR (Figure 4-3 G-J) and U-Net (Figure 4-3 C-F), where LR produces fragmented, blocky
prediction while U-Net successfully reconstructs coherent boundaries, serves as a
demonstration that the mapping from environmental variables to subgrid morphology is
highly nonlinear. The LR thus establishes a necessary performance lower bound,
confirming that the structural complexity of cold pools requires the hierarchical feature

extraction capabilities of deep neural networks.
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4.3.2 Detailed Structural Analysis

Figure 4-4 provides a detailed look at the 3.2 km resolution case. Even with coarse inputs

(Figure 4C-F), the U-Net successfully reconstructs the sharp gradients and core intensity

of the cold pools.
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Figure 4-4. Evaluation of U-Net cold pool predictions at 3.2 km resolution. This figure provides a detailed
comparison between the cold pool intensity from LES and the U-Net predictions. Figure (4) represents the
example of cold pool intensity from LES at 100 m resolution, and (B) the corresponding synthesized U-Net
prediction. The corresponding input low resolution physics fields are shown from (C) to (F), we take 3.2
km resolution input fields in this example. From (G) to (K) compare the ground truth cold pool intensity
masks (gray regions) with U-Net predicted intensity masks (blue regions) at different intensity thresholds
(1.0, 2.0, 3.0, 4.0, and 5.0 m/s). (L) presents a schematic of the intensity mask ranges predicted by LES and

U-Net.

While minor differences appear near the boundaries (weak intensity regions), the model

captures the core structure (intensity > 3.0 m/s) effectively.

4.3.3 Statistical Validation

We also statistically compare the performance across all resolutions. Figure 4-5 show that
the U-Net consistently outperforms the LR model across all resolutions, confirming its

robustness in handling nonlinear spatial patterns.
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Figure 4-5. Performance comparison of U-Net and linear regression in predicting cold pools. Boxplots
show Dice coefficients for U-Net (green) and linear regression (blue) at four resolutions (R_08: 0.8, R_16:
1.6, R _32: 3.2, R 64: 6.4 km) using subsampled input. At each resolution, the Dice coefficients are
computed based on comparisons over 720 test samples. (4) represents the cold pool intensity prediction,
while (B) covers the cold pool intensity and boundary prediction. The result shows that U-Net model

outperforms linear regression model across all resolutions.

4.4 Explainability: Identifying Key Morphological Features

To interpret the U-Net model and ensure it is learning physically meaningful features, we

conduct a sensitivity analysis by selectively masking input fields. This aligns with the

goal of the dissertation.
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Figure 4-6. Sensitivity analysis of cold pool prediction using different input fields. Each row shows U-Net
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input maps (U, V, RH, ) on 3.2 km resolution (A-D, F—I, and K—N), with the corresponding cold pool
intensity from U-Net prediction (E, J, and O) and LES (P). Group 1 from (A) to (E) includes all variables
included, group 2 from (F) to (J) masked the dynamic variables (the wind components), and group 3 from
(K) to (O) mask the thermodynamic variables (the RH and 6). The ground truth of cold pool intensity from

LES is shown in (P). Results show that wind information may be more critical for U-Net cold pool prediction.

Comparing Figure 4-6 from F to J (dynamic masked) and Figure 4-6, from K to O
(thermodynamic masked) reveals an insight: Wind fields seem to be more important than
thermodynamic fields. When wind information is removed, the model fails to locate the
cold pools accurately. This suggests that the U-Net may retrieve the divergence pattern as
the primary predictor for cold pool structure, while thermodynamic fields primarily refine

the intensity distribution.

Correlation Coeff. of Cold Pool Prediction
1.2

1 Thermal 1 Dynamic 1 All
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Figure 4-7. Impact of input variables on cold pool prediction performance. Boxplots show correlation
coefficients between predicted and ground-truth cold pool fields for four resolutions (R_08 to R_64). Colors
represent the combination of input fields: Thermal fields only (pink), dyvnamic fields only (green), and all
variables (blue). The group with the wind fields appears to improve the predictions, especially at finer
resolutions. For each resolution and each input group, the correlation coefficients are computed based on

720 test samples.
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Figure 4-7 quantifies this finding. The "Dynamic-only" (green) performance is much
closer to "All" (blue) than "Thermal-only" (pink) is, especially at finer resolutions. This
indicates that near-surface wind may represent a morphological indicator of subgrid cold

pool activity.

The sensitivity analysis reveals a crucial physical insight: the dynamic fields (u, v) play
a more significant role in morphological reconstruction than the thermodynamic fields
(6,RH). This is particularly relevant for strong convective systems, such as those
frequently observed in oceanic deep convection regions. In these regimes, the mechanical
lifting at the gust front driven by the propagation of the density current is the primary
trigger for new convection. While the cold pool is thermally defined, the thermal
characteristics may lag behind the leading edge. In contrast, the kinematic characteristics
(surface divergence and convergence) provides an immediate and sharp indicator of the
cold pool distribution, especially the boundary location. The U-Net's reliance on wind
fields suggests that the model may learn to identify the dynamical representation of the

cold pool, specifically the gust front convergence.

4.5 Summary and Discussion

In this chapter, we investigated the capability of deep learning to bridge the scale gap in
atmospheric modeling. We developed a U-Net model to predict high-resolution subgrid
cold pool morphology from coarse-resolution environmental fields. Our findings reveal
that U-Net effectively captures the nonlinear morphological characteristics of cold pools,
particularly their edges and intensity gradients, significantly outperforming linear

methods. Also, through sensitivity experiments, we identified that the morphology of the
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wind field can provide the important information for reconstructing cold pool structures,

more than thermodynamic variables alone.

A remaining question is how can the predicted cold pool morphology be physically
integrated into a coarse-resolution model to improve convection? We propose a pathway
following the approach of Kao et al. (2025). The U-Net predicted cold pool intensity,
which represents the vertically integrated negative buoyancy, can be used to estimate the
“nonlocal vertical acceleration.” This dynamically derived term can then be introduced
as a source term in the vertical momentum equation of the global model. In this way, the
morphological features reconstructed by deep learning may be directly translated into the
statistical information for a mechanical lifting force, explicitly representing the subgrid

triggering mechanism of cold pools.

This study so far completes the third tier of our framework.

e InChapter 2, we used VAE to represent large-scale global morphology by
representing the Z10 in the duration of SSW.

* In Chapter 3, we used CNNs to extract mesoscale convection features by iteratively
removing the recognized physics process.

* In Chapter 4, we have used U-Net to reconstruct subgrid-scale details of cold pool

intensity from low resolution physics field.

These three chapters collectively demonstrate that, when designed with explainability in
mind, the deep learning model can potentially capture and interpret atmospheric
morphology across scales. In the next chapter, we will synthesize these findings to discuss

the broader implications of using "Morphology" as a physical indicator and how these
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"Glass Box" models can transform our understanding of atmospheric dynamics and

parameterization.
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Chapter 5

General Discussion

5.1 Linking multi-scale phenomena through morphology

Following the detailed investigations in the previous chapters, we try to address a
fundamental challenge in atmospheric science: how to quantify and interpret the complex,
nonlinear spatial structures that drive atmospheric dynamics. Traditional statistical
methods often reduce these structures to scalar metrics, losing spatial information or
distributions. To overcome this, we proposed an explainable deep learning

framework that treats "morphology" as a primary physical indicator.

We have applied this framework across three distinct scales: the planetary scale (SSW
evolution), the mesoscale (convective aggregation), and the small scale (cold pool
dynamics). While the specific physical phenomena differ, the underlying methodological
philosophy remains consistent. In this chapter, we synthesize the findings from Chapters
2, 3, and 4 to discuss the role of different neural network architectures in morphological
analysis and how we transitioned from "black box" predictions to "glass box" physical

interpretations.

5.2 The Role of Neural Network Architectures in

Morphological Analysis
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A key finding of this research is that different morphological tasks require distinct deep
learning architectures. The architecture must align with the physical nature of the problem,

which requires the domain knowledge of the problem.

5.2.1 VAE for Representation and Continuity

In Chapter 2, our goal was to understand the evolution of the stratospheric polar vortex.

The physical constraint here is continuity—a vortex does not change abruptly.

*  Why VAE worked: The Variational Autoencoder (VAE) is designed to learn a
continuous latent probability distribution. By compressing the global morphology
into a low-dimensional latent space (z,, z;), the VAE naturally enforced a smooth
transition between states.

*  Comparison: Unlike CNN classification (discrete) or PCA (linear), the VAE
captured the trajectory of morphological change, showing that deep learning can

serve as a powerful dimensionality reduction tool for global circulation patterns.

5.2.2 Iterative CNN for Causal Feature Extraction

In Chapter 3, the problem was identification: what specific feature makes an environment
"aggregated"? The physical constraint here is causality—identifying the driver in the
high-dimensional noise.

*  Why Iterative CNN worked: A standard CNN is good at feature extraction but may
be poor at explanation. By introducing our "Iterative Feature Removal" strategy, we
transformed the CNN from a static classifier into a dynamic exploration.

e Comparison: This approach revealed that once trivial features (intensity, coverage)
are removed, the model relies on other possible features (fractal dimension). This

suggests that we can potentially find the hidden feature through this strategy with
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the involvement of our domain knowledge.

5.2.3 U-Net for Reconstruction and Downscaling

In Chapter 4, the challenge was reconstruction: recovering lost details from coarse data.
The physical constraint here is spatial correspondence—the output must spatially align
with the input environment.

e  Why U-Net worked: The U-Net architecture, with its skip connections, preserves
spatial information while allowing information to flow between different resolution
levels. This allowed us to map coarse-grained environmental conditions to high-
resolution phenomena.

e Comparison: This moved beyond simple regression or parameterization schemes,
demonstrating that deep learning can effectively generate the subgrid morphology
in a physically constrained way, which may be required for low resolution models

that need the statistical information from the subgrid.

5.2.4 The Physical Interpretability of Network Operations

To further bridge the gap between deep learning and atmospheric physics, it is important
to discuss the implicit physical operations performed by standard neural network

components, specifically Normalization and Pooling.

In our framework, normalized input fields (e.g., Z-score standardization) remove the
dimensional units and absolute magnitudes, forcing the neural network to learn based
on relative spatial variations rather than absolute intensities. For the study of organized
convection (Chapter 3), this is particularly important. While the absolute value of cloud

water path indicates how much cloud is present, the normalized pattern reveals how the
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clouds are arranged. By stripping away the mean intensity, normalization ensures that the
model's decision is driven by the nonlinear morphology (shape and texture) of the system,

which we identified as a key indicator of the aggregation state.

The Max-Pooling layers in our CNN and U-Net architectures serve a function analogous
to coarse-graining in physics. By selecting the maximum activation within a window
(usually 2x2 pixels), the network effectively filters out small-scale, stochastic noise while
preserving the most dominant signals. In the context of convection, this operation
emphasizes the convective cores or strong updrafts within a larger system. The
combination of pooling layers thus allows the model to hierarchically extract features,
moving from local cloud textures to larger mesoscale organizational structures, consistent

with the multiscale nature of atmospheric dynamics.

5.2.5 Model Robustness and Sensitivity

To ensure that our "glass box" models rely on physical principles rather than spurious

correlations, the sensitivity analyses have been adapted

A common challenge in applying deep learning to extreme events (like SSWs in Chapter
2) is the limitation of sample size. While typical computer vision tasks rely on millions
of images, atmospheric phenomena are often rare. Also, the techniques adapted in the
computer vision (such as rotation) may not be suitable in the scenario of atmospheric
sciences problem. We addressed this by employing data augmentation strategies such as
patch-cropping (in Chapter 3) and class-balancing (in Chapter 4). Our results suggest that,

with the domain knowledge involved, the morphological features are often more
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information-dense than scalar metrics. Thus, even with smaller datasets, the models can
achieve some level of reliability if the distinct spatial patterns (morphology) are

physically consistent.

5.3 The Choice of Loss Functions

In deep learning, the loss function serves as the guiding force that dictates how a network
learns. A critical aspect of our framework is that the choice of loss function is not arbitrary;
rather, it represents the translation of domain knowledge into mathematical constraints.
In this dissertation, we selected distinct loss functions for each scale to align with the

specific morphological characteristics of the atmospheric process being studied.

For the study of Sudden Stratospheric Warmings (Chapter 2), our physical goal was to

capture the continuous evolution of the polar vortex. We employed a composite loss

function combining Mean Squared Error (MSE) and Kullback-Leibler (KL) Divergence.

e MSE acts as a "fidelity constraint," ensuring that the reconstructed geopotential
height fields retain their global spatial patterns and intensity.

KL Divergence acts as a "regularization constraint" on the latent space. Physically,
atmospheric variability is continuous; the vortex does not teleport from one state to
another. The KL term forces the latent distribution to be smooth and continuous,
allowing the VAE to represent the SSW evolution as a trajectory rather than discrete
classifications. This combination effectively balances spatial accuracy with temporal

physical continuity.

In identifying Convective Aggregation (Chapter 3), the objective was to distinguish

between aggregation states. Here, we used Binary Cross-Entropy (BCE) Loss. Unlike
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MSE, which focuses on pixel-wise reconstruction, BCE operates on probability
distributions. It penalizes the model heavily when it is confident but wrong. This forces
the CNN to focus on the most discriminative morphological features that separate the

aggregated state from the scattered state.

The design choice appeared in the reconstruction of Cold Pools (Chapter 4). Cold pools

are physically significant but spatially sparse—they occupy a very small fraction of the

total domain compared to the environment. If we had used a standard pixel-wise loss (like

MSE or Cross-Entropy), the model could achieve high accuracy by simply predicting "no

cold pool" everywhere. To address this class imbalance, we adopted the Dice Loss.

e  Physical Implication: Dice Loss measures the overlap between the predicted and
actual shapes. It is less sensitive to the large background area and highly sensitive to
the successful intersection of the cold pool regions.

*  This choice forces the U-Net to focus on the morphology and topology of the cold
pool objects (in 5 levels of intensity) rather than the exact intensity value of every
background pixel. This aligns with the physical need to understand the area

coverage and intensity distribution of subgrid convection.

In conclusion, the selection of loss function reflects our strategy of adapting the
"optimization goal" to the "physical nature" of the problem. This demonstrates that
defining the loss function is an important step in making deep learning models physically

interpretable and robust for atmospheric science applications.

5.4 Morphology in Time

While this dissertation primarily focuses on extracting spatial morphological features
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from atmospheric snapshots, an important perspective of deep-learning research in

atmospheric sciences is the integration of the time dimension.

In Chapter 2, we touched upon this by mapping the temporal evolution of SSWs into a
continuous trajectory within the VAE’s latent space. This demonstrates that deep learning
can capture the track of morphological change, not just static patterns. However, recent
advancements in Autoregressive models and Transformer architectures (e.g., GraphCast,
Lam et al. (2023); Pangu-Weather, Bi et al. (2023)) suggest the possibility of learning the
governing laws of evolution directly from data. By treating the atmospheric state as a
sequence of morphological embeddings, these models may perform data-driven temporal

dynamics.

In the context of our framework, this could be achieved by feeding by feeding the
morphological features extracted by our CNNs or VAEs into a temporal model (such as
an LSTM or Transformer). This would allow the system to predict not just what the
morphology is (e.g., is it aggregated?), but how it will evolve (e.g., will the cold pool
trigger a new cell?), effectively moving from feature extraction to dynamic prediction of

4D atmospheric processes.

5.5 From Black Box to Glass Box: Bridging Data and Physics

The theoretical contribution of this dissertation is the demonstration of interpretability

and explainability. The "Black Box" of deep learning has long been a barrier to its
acceptance in physics-based sciences. We addressed this by ensuring that "morphology"

serves as the common language to balance the prediction score and physical causality.
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In Chapter 2, the VAE compressed the stratospheric vortex morphology into a continuous
latent space. Physically, the trajectory within this space (z,, z;) does not merely represent
geometric deformation but serves as a proxy for the dynamical forcing of planetary waves.
The continuous transition observed between displacement (Wave-1 dominant) and
splitting (Wave-2 dominant) patterns suggests that these events are governed by a fluid
spectrum of wave-mean flow interactions rather than discrete regime shifts. The VAE thus
provides a "dynamical phase diagram," where the coordinates encode the instantaneous
balance of potential vorticity gradients, offering a new metric to quantify the

preconditioning and development of stratospheric warming events.

The iterative CNN analysis in Chapter 3 revealed that the complexity of cloud edges
(fractal dimension) may be a discriminative feature of aggregation. Physically, this
morphological complexity may reflect the thermodynamic interaction between the
convective core and the surrounding dry environment. A higher fractal dimension at the
boundaries implies a sharp, active interface where moisture gradients are steepening. This
may suggest that the aggregation detected by the model corresponds to the convection
that has successfully overcome the suppression of dry air entrainment, a critical condition

of the self-aggregation

In Chapter 4, the U-Net's ability to reconstruct sharp cold pool boundaries and this may
rely more on the near-surface wind fields. This points to a potential physical interpretation:
the model is identifying zones of mechanical expanding or lifting. The "edge" of a cold
pool is physically the gust front, where density currents collide with the environment to
trigger secondary convection. By successfully segmenting these boundaries from coarse-

grained data, the deep learning model demonstrates that it captures the feature of low-
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level convergence. This implies that the morphology of the cold pool can be a potential
proxy of the dynamical lifting mechanism required to trigger or sustain the deep
convection, validating the potential of this approach for sub-grid parameterization in

global models.

In summary, these approaches validate our hypothesis that morphology serves as a nice
bridge between data-driven algorithms and atmospheric physics. By forcing the DL
models to reveal their internal logic through these three frameworks, we confirms that the
resulting predictions can be physically interpretable. This successful synthesis of deep
learning and physical reasoning provides the basis for the summary of findings and future

perspectives discussed in the next chapter
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Chapter 6

Conclusion and Future Perspectives

6.1 Summary of Major Findings

This dissertation has established a framework for applying explainable deep learning to
identify and analyze the nonlinear morphological features of atmospheric processes. The
major findings are summarized as follows:

1. Large-Scale Evolution: We demonstrated that a Variational Autoencoder (VAE) can
compress the complex evolution of Sudden Stratospheric Warmings (SSWs) into a
2D latent space. The resulting phase diagram provides a more continuous and
physically interpretable trajectory of vortex displacement and splitting than
traditional PCA methods.

2. Mesoscale Aggregation: Using an Iterative CNN framework, we identified that the
transition to convective aggregation is characterized not just by cloud coverage, but
by specific morphological features—specifically the fractal dimension of cloud
edges. This confirms that the geometry of cloud systems contains hidden information
about their convective state, suggesting that the morphological framework could
potentially be extended to identify other forms of organized convection in the future.

3. Subgrid-Scale Reconstruction: We showed that a U-Net architecture can accurately
reconstruct  high-resolution cold pool morphology from coarse-grained
environmental fields. Sensitivity analysis revealed that the near-surface wind field
is an important predictor, providing a roadmap for the development of future subgrid
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parameterizations in global models.

6.2 Contributions

This research contributes to the field of atmospheric science in two ways:
*  Methodological Perspective: We provided a set of strategies (Latent Space Mapping,
Iterative Feature Removal, Resolution-Aware Segmentation) for opening the "black

box" of deep learning. These methods allow researchers to use DL not just for
prediction, but for physical discovery.

*  Theoretical Insight: We reinforced the importance of morphology as a quantifiable
physical variable. We showed that "shape" and "pattern" can be connected to the

nonlinear dynamics of the atmosphere. This connection is beyond atmospheric

scales from the stratosphere to the boundary layer.

6.3 Future Perspectives

Building on the foundation laid by this dissertation, several promising directions for

future research emerge.
6.3.1 Investigating Cold Pools over Complex Topography

While Chapter 4 focused on idealized oceanic conditions, real-world convection often
interacts with complex terrain. In regions like Taiwan, the interaction between cold pools
and steep topography is an unavoidable challenge, and the mechanism for triggering

secondary convection and extreme rainfall requires further study to be deeply understood.
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Future work will apply the deep Ilearning framework to  high-
resolution TaiwanVVM simulations (P.-Y. Chen & C.-M. Wu, 2025). The challenge here
will be to incorporate topographic information into the deep learning model. We
hypothesize that the morphology of cold pools over terrain will reveal some distinct
nonlinear features (e.g., blocked flow, channelization) that traditional parameterizations

struggle to capture, but which a morphology-aware deep learning model could resolve.

6.3.2 Integration into Global Models (Online Implementation)

One of the goals of the offline training conducted in Chapter 4 is online implementation.
Future studies could involve embedding the trained U-Net directly into a GSRM as
a neural network parameterization. This would allow the global model to generate the
statistical information from sub-grid cold pool effects at each time step, potentially

improving the representation of the convection and precipitation extremes.

6.3.3 Physics-Informed Deep Learning

To further ensure the robustness discussed in Chapter 1, future models could incorporate
physical constraints directly into the loss function (Physics-Informed Neural Networks,
PINNs). For instance, ensuring that the reconstructed cold pool mass satisfies continuity
equations. Combining the morphological strengths of CNNs with the strict constraints of

physics-based equations represents the next steps in this research.

6.3.4 Transfer Learning

One of the most promising applications of the framework established in this dissertation
is the transferability to observational data. The morphological features identified in

simulations—such as the fractal dimension of aggregated clouds or the sharp gradients of
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cold pools—are consistent physical signatures that exist in the real world.

Future work can employ Transfer Learning to bridge the "Sim-to-Real" gap. A model pre-
trained on high-resolution simulations (e.g., VVM or other LES) to recognize physical
morphology can be fine-tuned using smaller datasets of satellite imagery or Doppler radar
reflectivity. This would allow us to apply the "morphology as a physical indicator"
approach to real-time monitoring of convective organization or sub-grid severe weather

precursors that are currently difficult to parameterize in operational models.

In conclusion, this dissertation demonstrates that by viewing the atmospheric sciences
problem through the perspective of explainable deep learning, the "morphology" can

potentially serve as a powerful key to revealing the nonlinear physics process.
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