請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/101376完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 林致廷 | zh_TW |
| dc.contributor.advisor | Chih-Ting Lin | en |
| dc.contributor.author | 施凡妮 | zh_TW |
| dc.contributor.author | Subhashree Shivani | en |
| dc.date.accessioned | 2026-01-27T16:20:32Z | - |
| dc.date.available | 2026-01-28 | - |
| dc.date.copyright | 2026-01-27 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2026-01-20 | - |
| dc.identifier.citation | [1] “The top 10 causes of death.” Accessed: Feb. 21, 2025. [Online]. Available: https://www.who.int/news-room/fact-sheets/detail/the-top-10-causes-of-death
[2] I. V. Hinkson, B. Madej, and E. A. Stahlberg, “Accelerating Therapeutics for Opportunities in Medicine: A Paradigm Shift in Drug Discovery,” Front Pharmacol, vol. 11, p. 770, June 2020, doi: 10.3389/fphar.2020.00770. [3] “Poor Translatability of Biomedical Research Using Animals — A Narrative Review - Lindsay J. Marshall, Jarrod Bailey, Manuela Cassotta, Kathrin Herrmann, Francesca Pistollato, 2023.” Accessed: Feb. 21, 2025. [Online]. Available: https://journals.sagepub.com/doi/10.1177/02611929231157756 [4] “Pre-clinical animal models are poor predictors of human toxicities in phase 1 oncology clinical trials | British Journal of Cancer.” Accessed: Feb. 21, 2025. [Online]. Available: https://www.nature.com/articles/s41416-020-01033-x [5] G. A. Van Norman, “Limitations of Animal Studies for Predicting Toxicity in Clinical Trials: Is it Time to Rethink Our Current Approach?,” JACC: Basic to Translational Science, vol. 4, no. 7, pp. 845–854, Nov. 2019, doi: 10.1016/j.jacbts.2019.10.008. [6] “Classification & Structure of Blood Vessels | SEER Training.” Accessed: Nov. 20, 2025. [Online]. Available: https://training.seer.cancer.gov/anatomy/cardiovascular/blood/classification.html [7] M. Kapałczyńska et al., “2D and 3D cell cultures – a comparison of different types of cancer cell cultures,” Arch Med Sci, vol. 14, no. 4, pp. 910–919, June 2018, doi: 10.5114/aoms.2016.63743. [8] M. C. Koyilot et al., “Breakthroughs and Applications of Organ-on-a-Chip Technology,” Cells, vol. 11, no. 11, p. 1828, June 2022, doi: 10.3390/cells11111828. [9] P. Zamprogno et al., “Second-generation lung-on-a-chip with an array of stretchable alveoli made with a biological membrane,” Commun Biol, vol. 4, no. 1, p. 168, Feb. 2021, doi: 10.1038/s42003-021-01695-0. [10] A. Valiei, J. Aminian-Dehkordi, and M. R. K. Mofrad, “Gut-on-a-chip models for dissecting the gut microbiology and physiology,” APL Bioeng, vol. 7, no. 1, p. 011502, Feb. 2023, doi: 10.1063/5.0126541. [11] J. Lee and S. Kim, “Kidney-on-a-Chip: A New Technology for Predicting Drug Efficacy, Interactions, and Drug-induced Nephrotoxicity,” Curr Drug Metab, vol. 19, no. 7, pp. 577–583, 2018, doi: 10.2174/1389200219666180309101844. [12] B. Liu et al., “Heart-on-a-chip: a revolutionary organ-on-chip platform for cardiovascular disease modeling,” Journal of Translational Medicine, vol. 23, no. 1, p. 132, Jan. 2025, doi: 10.1186/s12967-024-05986-y. [13] L. Qiu, B. Kong, T. Kong, and H. Wang, “Recent advances in liver-on-chips: Design, fabrication, and applications,” Smart Medicine, vol. 2, no. 1, p. e20220010, 2023, doi: 10.1002/SMMD.20220010. [14] L. Amirifar et al., “Brain-on-a-chip: Recent advances in design and techniques for microfluidic models of the brain in health and disease,” Biomaterials, vol. 285, p. 121531, June 2022, doi: 10.1016/j.biomaterials.2022.121531. [15] S. R. Moses, J. J. Adorno, A. F. Palmer, and J. W. Song, “Vessel-on-a-chip models for studying microvascular physiology, transport, and function in vitro,” Am J Physiol Cell Physiol, vol. 320, no. 1, pp. C92–C105, Jan. 2021, doi: 10.1152/ajpcell.00355.2020. [16] H. Deng, A. Eichmann, and M. A. Schwartz, “Fluid Shear Stress–Regulated Vascular Remodeling: Past, Present, and Future,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 45, no. 6, pp. 882–900, June 2025, doi: 10.1161/ATVBAHA.125.322557. [17] “Frequency of a Beating Heart - The Physics Factbook.” Accessed: Nov. 14, 2025. [Online]. Available: https://hypertextbook.com/facts/1998/ArsheAhmed.shtml [18] S. Dimmeler, I. Fleming, B. Fisslthaler, C. Hermann, R. Busse, and A. M. Zeiher, “Activation of nitric oxide synthase in endothelial cells by Akt-dependent phosphorylation,” Nature, vol. 399, no. 6736, pp. 601–605, June 1999, doi: 10.1038/21224. [19] I. Fleming, B. Fisslthaler, M. Dixit, and R. Busse, “Role of PECAM-1 in the shear-stress-induced activation of Akt and the endothelial nitric oxide synthase (eNOS) in endothelial cells,” J Cell Sci, vol. 118, no. Pt 18, pp. 4103–4111, Sept. 2005, doi: 10.1242/jcs.02541. [20] A. Yamashita and Y. Asada, “Underlying mechanisms of thrombus formation/growth in atherothrombosis and deep vein thrombosis,” Pathol Int, vol. 73, no. 2, pp. 65–80, Feb. 2023, doi: 10.1111/pin.13305. [21] A. Michels, D. Lillicrap, and M. Yacob, “Role of von Willebrand factor in venous thromboembolic disease,” JVS Vasc Sci, vol. 3, pp. 17–29, Oct. 2021, doi: 10.1016/j.jvssci.2021.08.002. [22] Z. M. Ruggeri, “The role of von Willebrand factor in thrombus formation,” Thromb Res, vol. 120 Suppl 1, no. Suppl 1, pp. S5-9, 2007, doi: 10.1016/j.thromres.2007.03.011. [23] M. Franchini and G. Lippi, “Von Willebrand factor and thrombosis,” Ann Hematol, vol. 85, no. 7, pp. 415–423, July 2006, doi: 10.1007/s00277-006-0085-5. [24] G. Y. H. Lip and A. Blann, “von Willebrand factor: a marker of endothelial dysfunction in vascular disorders?,” Cardiovasc Res, vol. 34, no. 2, pp. 255–265, May 1997, doi: 10.1016/S0008-6363(97)00039-4. [25] S. Jebari-Benslaiman et al., “Pathophysiology of Atherosclerosis,” Int J Mol Sci, vol. 23, no. 6, p. 3346, Mar. 2022, doi: 10.3390/ijms23063346. [26] H. Pan et al., “Atherosclerosis Is a Smooth Muscle Cell–Driven Tumor-Like Disease,” Circulation, vol. 149, no. 24, pp. 1885–1898, June 2024, doi: 10.1161/CIRCULATIONAHA.123.067587. [27] Y. H. Oktaviono et al., “The roles of trimethylamine-N-oxide in atherosclerosis and its potential therapeutic aspect: A literature review,” Biomol Biomed, vol. 23, no. 6, pp. 936–948, Nov. 2023, doi: 10.17305/bb.2023.8893. [28] M. M. Seldin et al., “Trimethylamine N-Oxide Promotes Vascular Inflammation Through Signaling of Mitogen-Activated Protein Kinase and Nuclear Factor-κB,” J Am Heart Assoc, vol. 5, no. 2, p. e002767, Feb. 2016, doi: 10.1161/JAHA.115.002767. [29] Y. Zhu, Q. Li, and H. Jiang, “Gut microbiota in atherosclerosis: focus on trimethylamine N‐oxide,” APMIS, vol. 128, no. 5, pp. 353–366, May 2020, doi: 10.1111/apm.13038. [30] W. Risau and I. Flamme, “Vasculogenesis,” Annual Review of Cell and Developmental Biology, vol. 11, no. Volume 11, 1995, pp. 73–91, Nov. 1995, doi: 10.1146/annurev.cb.11.110195.000445. [31] “Angiogenesis, Vasculogenesis, and Induction of Healing in Chronic Wounds.” Accessed: July 30, 2025. [Online]. Available: https://journals.sagepub.com/doi/epdf/10.1177/153857440503900401 [32] S. Balaji, A. King, T. M. Crombleholme, and S. G. Keswani, “The Role of Endothelial Progenitor Cells in Postnatal Vasculogenesis: Implications for Therapeutic Neovascularization and Wound Healing,” Adv Wound Care (New Rochelle), vol. 2, no. 6, pp. 283–295, July 2013, doi: 10.1089/wound.2012.0398. [33] S. Patel-Hett and P. A. DAmore, “Signal transduction in vasculogenesis and developmental angiogenesis,” Int. J. Dev. Biol., vol. 55, no. 4–5, pp. 353–363, 2011, doi: 10.1387/ijdb.103213sp. [34] R. K. Jain, “Molecular regulation of vessel maturation,” Nat Med, vol. 9, no. 6, pp. 685–693, June 2003, doi: 10.1038/nm0603-685. [35] A. M. Goodwin and PatriciaA. D’Amore, “Vessel Maturation and Perivascular Cells,” in Tumor Angiogenesis: Basic Mechanisms and Cancer Therapy, D. Marmé and N. Fusenig, Eds., Berlin, Heidelberg: Springer, 2008, pp. 273–288. doi: 10.1007/978-3-540-33177-3_15. [36] D. Stenzel, E. Nye, M. Nisancioglu, R. H. Adams, Y. Yamaguchi, and H. Gerhardt, “Peripheral mural cell recruitment requires cell-autonomous heparan sulfate,” Blood, vol. 114, no. 4, pp. 915–924, July 2009, doi: 10.1182/blood-2008-10-186239. [37] K. Yrigoin and G. E. Davis, “Selective mural cell recruitment of pericytes to networks of assembling endothelial cell-lined tubes,” Front. Cell Dev. Biol., vol. 12, June 2024, doi: 10.3389/fcell.2024.1389607. [38] D. S. Grant, H. K. Kleinman, and G. R. Martin, “The Role of Basement Membranes in Vascular Development,” Annals of the New York Academy of Sciences, vol. 588, no. 1, pp. 61–72, 1990, doi: 10.1111/j.1749-6632.1990.tb13197.x. [39] A. S. Harris, R. Lennon, and J.-M. Schwartz, “Building basement membranes with computational approaches,” Matrix Biology, vol. 140, pp. 88–99, Sept. 2025, doi: 10.1016/j.matbio.2025.07.001. [40] J. H. Miner, “Renal basement membrane components,” Kidney International, vol. 56, no. 6, pp. 2016–2024, Dec. 1999, doi: 10.1046/j.1523-1755.1999.00785.x. [41] M. S. Thomsen, L. J. Routhe, and T. Moos, “The vascular basement membrane in the healthy and pathological brain,” J Cereb Blood Flow Metab, vol. 37, no. 10, pp. 3300–3317, Oct. 2017, doi: 10.1177/0271678X17722436. [42] S. Patan, “Vasculogenesis and Angiogenesis,” in Angiogenesis in Brain Tumors, M. Kirsch and P. McL. Black, Eds., Boston, MA: Springer US, 2004, pp. 3–32. doi: 10.1007/978-1-4419-8871-3_1. [43] P. Carmeliet, “Angiogenesis in life, disease and medicine,” Nature, vol. 438, no. 7070, pp. 932–936, Dec. 2005, doi: 10.1038/nature04478. [44] M. G. Tonnesen, X. Feng, and R. A. F. Clark, “Angiogenesis in Wound Healing,” Journal of Investigative Dermatology Symposium Proceedings, vol. 5, no. 1, pp. 40–46, Dec. 2000, doi: 10.1046/j.1087-0024.2000.00014.x. [45] T. H. Adair and J.-P. Montani, “Overview of Angiogenesis,” in Angiogenesis, Morgan & Claypool Life Sciences, 2010. Accessed: Aug. 05, 2025. [Online]. Available: https://www.ncbi.nlm.nih.gov/books/NBK53238/ [46] “Tumour Angiogenesis | Radiology Key.” Accessed: Aug. 05, 2025. [Online]. Available: https://radiologykey.com/tumour-angiogenesis/ [47] T. H. Adair and J.-P. Montani, “Overview of Angiogenesis,” in Angiogenesis, Morgan & Claypool Life Sciences, 2010. Accessed: Dec. 05, 2025. [Online]. Available: https://www.ncbi.nlm.nih.gov/books/NBK53238/ [48] R. S. Alameddine, L. Hamieh, and A. Shamseddine, “From Sprouting Angiogenesis to Erythrocytes Generation by Cancer Stem Cells: Evolving Concepts in Tumor Microcirculation,” Biomed Res Int, vol. 2014, p. 986768, 2014, doi: 10.1155/2014/986768. [49] “Angiopoietin-2, a Natural Antagonist for Tie2 That Disrupts in vivo Angiogenesis | Science.” Accessed: Aug. 05, 2025. [Online]. Available: https://www.science.org/doi/10.1126/science.277.5322.55?url_ver=Z39.88-2003&rfr_id=ori:rid:crossref.org&rfr_dat=cr_pub%20%200pubmed [50] N. W. Gale and G. D. Yancopoulos, “Growth factors acting via endothelial cell-specific receptor tyrosine kinases: VEGFs, angiopoietins, and ephrins in vascular development,” Genes Dev, vol. 13, no. 9, pp. 1055–1066, May 1999, doi: 10.1101/gad.13.9.1055. [51] L. M. Coussens et al., “Inflammatory mast cells up-regulate angiogenesis during squamous epithelial carcinogenesis,” Genes Dev., vol. 13, no. 11, pp. 1382–1397, June 1999. [52] D. Kolte, J. A. McClung, and W. S. Aronow, “Chapter 6 - Vasculogenesis and Angiogenesis,” in Translational Research in Coronary Artery Disease, W. S. Aronow and J. A. McClung, Eds., Boston: Academic Press, 2016, pp. 49–65. doi: 10.1016/B978-0-12-802385-3.00006-1. [53] I. Cebola, G. M. Birdsey, and A. M. Randi, “Transcriptional pausing as a molecular mechanism of sprouting angiogenesis,” Nat Cardiovasc Res, vol. 3, no. 10, pp. 1184–1186, Oct. 2024, doi: 10.1038/s44161-024-00547-4. [54] A. A. Ucuzian, A. A. Gassman, A. T. East, and H. P. Greisler, “Molecular Mediators of Angiogenesis,” J Burn Care Res, vol. 31, no. 1, p. 158, 2010, doi: 10.1097/BCR.0b013e3181c7ed82. [55] S. J. Mentzer and M. A. Konerding, “Intussusceptive Angiogenesis: Expansion and Remodeling of Microvascular Networks,” Angiogenesis, vol. 17, no. 3, pp. 499–509, July 2014, doi: 10.1007/s10456-014-9428-3. [56] R. Gianni-Barrera et al., “VEGF over-expression in skeletal muscle induces angiogenesis by intussusception rather than sprouting,” Angiogenesis, vol. 16, no. 1, pp. 123–136, Jan. 2013, doi: 10.1007/s10456-012-9304-y. [57] A. Pandita et al., “Intussusceptive Angiogenesis in Human Metastatic Malignant Melanoma,” Am J Pathol, vol. 191, no. 11, pp. 2023–2038, Nov. 2021, doi: 10.1016/j.ajpath.2021.07.009. [58] P. Schlatter, M. F. König, L. M. Karlsson, and P. H. Burri, “Quantitative Study of Intussusceptive Capillary Growth in the Chorioallantoic Membrane (CAM) of the Chicken Embryo,” Microvascular Research, vol. 54, no. 1, pp. 65–73, July 1997, doi: 10.1006/mvre.1997.2022. [59] A. N. Makanya, D. Stauffer, D. Ribatti, P. H. Burri, and V. Djonov, “Microvascular growth, development, and remodeling in the embryonic avian kidney: The interplay between sprouting and intussusceptive angiogenic mechanisms,” Microscopy Research and Technique, vol. 66, no. 6, pp. 275–288, 2005, doi: 10.1002/jemt.20169. [60] M. D. Brown and O. Hudlicka, “Modulation of physiological angiogenesis in skeletal muscle by mechanical forces: Involvement of VEGF and metalloproteinases,” Angiogenesis, vol. 6, no. 1, pp. 1–14, Oct. 2003, doi: 10.1023/A:1025809808697. [61] W. De Spiegelaere et al., “Intussusceptive Angiogenesis: A Biologically Relevant Form of Angiogenesis,” J Vasc Res, vol. 49, no. 5, pp. 390–404, June 2012, doi: 10.1159/000338278. [62] V. Djonov, M. Schmid, S. A. Tschanz, and P. H. Burri, “Intussusceptive Angiogenesis,” Circulation Research, vol. 86, no. 3, pp. 286–292, Feb. 2000, doi: 10.1161/01.RES.86.3.286. [63] S. Paku et al., “A New Mechanism for Pillar Formation during Tumor-Induced Intussusceptive Angiogenesis: Inverse Sprouting,” The American Journal of Pathology, vol. 179, no. 3, pp. 1573–1585, Sept. 2011, doi: 10.1016/j.ajpath.2011.05.033. [64] R. Hlushchuk et al., “Tumor Recovery by Angiogenic Switch from Sprouting to Intussusceptive Angiogenesis after Treatment with PTK787/ZK222584 or Ionizing Radiation,” The American Journal of Pathology, vol. 173, no. 4, pp. 1173–1185, Oct. 2008, doi: 10.2353/ajpath.2008.071131. [65] M. A. Konerding et al., “Inflammation-Induced Intussusceptive Angiogenesis in Murine Colitis,” Anat Rec (Hoboken), vol. 293, no. 5, pp. 849–857, May 2010, doi: 10.1002/ar.21110. [66] M. Ackermann et al., “Pulmonary Vascular Endothelialitis, Thrombosis, and Angiogenesis in Covid-19,” New England Journal of Medicine, vol. 383, no. 2, pp. 120–128, July 2020, doi: 10.1056/NEJMoa2015432. [67] E. Deindl and W. Schaper, “The art of arteriogenesis,” Cell Biochem Biophys, vol. 43, no. 1, pp. 1–15, Aug. 2005, doi: 10.1385/CBB:43:1:001. [68] W. Cai and W. Schaper, “Mechanisms of arteriogenesis,” ABBS, vol. 40, no. 8, pp. 681–692, Aug. 2008, doi: 10.1093/abbs/40.8.681. [69] “Influence of Mechanical, Cellular, and Molecular Factors on Collateral Artery Growth (Arteriogenesis) | Circulation Research.” Accessed: Sept. 12, 2025. [Online]. Available: https://www.ahajournals.org/doi/10.1161/01.RES.0000141145.78900.44?url_ver=Z39.88-2003&rfr_id=ori:rid:crossref.org&rfr_dat=cr_pub%20%200pubmed [70] B. J. Ballermann, A. Dardik, E. Eng, and A. Liu, “Shear stress and the endothelium,” Kidney International, vol. 54, pp. S100–S108, Sept. 1998, doi: 10.1046/j.1523-1755.1998.06720.x. [71] “The distribution of blood rheological parameters in the microvasculature of cat mesentery.” Accessed: Sept. 15, 2025. [Online]. Available: https://www.ahajournals.org/doi/epdf/10.1161/01.RES.43.5.738 [72] N. Raj, C. Pan, A. M. Starke, A. L. L. Matos, O. Soehnlein, and V. Gerke, “Altered shear stress of blood flow causes plasma membrane damage in endothelial cells,” Blood Vessels, Thrombosis & Hemostasis, vol. 2, no. 1, p. 100040, Jan. 2025, doi: 10.1016/j.bvth.2024.100040. [73] “Role of Shear Stress in Atherosclerosis and Restenosis After Coronary Stent Implantation,” Revista Española de Cardiología (English Edition), vol. 59, no. 1, pp. 1–4, Jan. 2006, doi: 10.1016/S1885-5857(06)60040-6. [74] K. S. Cunningham and A. I. Gotlieb, “The role of shear stress in the pathogenesis of atherosclerosis,” Laboratory Investigation, vol. 85, no. 1, pp. 9–23, Jan. 2005, doi: 10.1038/labinvest.3700215. [75] M. Zhou et al., “Wall shear stress and its role in atherosclerosis,” Front. Cardiovasc. Med., vol. 10, Apr. 2023, doi: 10.3389/fcvm.2023.1083547. [76] C. M. Warboys, N. Amini, A. de Luca, and P. C. Evans, “The role of blood flow in determining the sites of atherosclerotic plaques,” F1000 Med Rep, vol. 3, p. 5, Mar. 2011, doi: 10.3410/M3-5. [77] L. D. C. Casa, D. H. Deaton, and D. N. Ku, “Role of high shear rate in thrombosis,” Journal of Vascular Surgery, vol. 61, no. 4, pp. 1068–1080, Apr. 2015, doi: 10.1016/j.jvs.2014.12.050. [78] “Flow-Dependent Remodeling of Small Arteries.” Accessed: Sept. 16, 2025. [Online]. Available: https://www.ahajournals.org/doi/epub/10.1161/01.RES.0000233144.65663.23 [79] M. J. Mulvany, “Vascular remodelling of resistance vessels: can we define this?,” Cardiovasc Res, vol. 41, no. 1, pp. 9–13, Jan. 1999, doi: 10.1016/S0008-6363(98)00289-2. [80] C. A. Franco et al., “Dynamic Endothelial Cell Rearrangements Drive Developmental Vessel Regression,” PLOS Biology, vol. 13, no. 4, p. e1002125, Apr. 2015, doi: 10.1371/journal.pbio.1002125. [81] J. R. Crawshaw, J. A. Flegg, M. O. Bernabeu, and J. M. Osborne, “Mathematical models of developmental vascular remodelling: A review,” PLoS Comput Biol, vol. 19, no. 8, p. e1011130, Aug. 2023, doi: 10.1371/journal.pcbi.1011130. [82] W. Yao, Y. Li, and G. Ding, “Interstitial Fluid Flow: The Mechanical Environment of Cells and Foundation of Meridians,” Evid Based Complement Alternat Med, vol. 2012, p. 853516, 2012, doi: 10.1155/2012/853516. [83] J. Scallan, V. H. Huxley, and R. J. Korthuis, “The Interstitium,” in Capillary Fluid Exchange: Regulation, Functions, and Pathology, Morgan & Claypool Life Sciences, 2010. Accessed: Sept. 17, 2025. [Online]. Available: https://www.ncbi.nlm.nih.gov/books/NBK53446/ [84] W. Liu, Y. Cao, X. Zhou, and D. Han, “Interstitial Fluid Behavior and Diseases,” Adv Sci (Weinh), vol. 9, no. 6, p. 2100617, Jan. 2022, doi: 10.1002/advs.202100617. [85] J. M. Munson and A. C. Shieh, “Interstitial fluid flow in cancer: implications for disease progression and treatment,” Cancer Management and Research, vol. 6, pp. 317–328, Aug. 2014, doi: 10.2147/CMAR.S65444. [86] G. Follain et al., “Fluids and their mechanics in tumour transit: shaping metastasis,” Nat Rev Cancer, vol. 20, no. 2, pp. 107–124, Feb. 2020, doi: 10.1038/s41568-019-0221-x. [87] J. Choi, E. Choi, and D. Choi, “The ambivalent nature of the relationship between lymphatics and cancer,” Front. Cell Dev. Biol., vol. 10, Sept. 2022, doi: 10.3389/fcell.2022.931335. [88] J. M. Munson, “Interstitial fluid flow under the microscope: is it a future drug target for high-grade brain tumours such as glioblastoma?,” Expert Opin Ther Targets, p. 10.1080/14728222.2019.1647167, July 2019, doi: 10.1080/14728222.2019.1647167. [89] G. Sriram and H. Makkar, “Microfluidic organ-on-chip systems for periodontal research: advances and future directions,” Front. Bioeng. Biotechnol., vol. 12, Jan. 2025, doi: 10.3389/fbioe.2024.1490453. [90] S. Shuchat, G. Yossifon, and M. Huleihel, “Perfusion in Organ-on-Chip Models and Its Applicability to the Replication of Spermatogenesis In Vitro,” Int J Mol Sci, vol. 23, no. 10, p. 5402, May 2022, doi: 10.3390/ijms23105402. [91] B. Kramer et al., “Interstitial Flow Recapitulates Gemcitabine Chemoresistance in A 3D Microfluidic Pancreatic Ductal Adenocarcinoma Model by Induction of Multidrug Resistance Proteins,” International Journal of Molecular Sciences, vol. 20, no. 18, p. 4647, Jan. 2019, doi: 10.3390/ijms20184647. [92] D. Bazou, M. R. Ng, J. W. Song, S. M. Chin, N. Maimon, and L. L. Munn, “Flow-induced HDAC1 phosphorylation and nuclear export in angiogenic sprouting,” Sci Rep, vol. 6, no. 1, p. 34046, Sept. 2016, doi: 10.1038/srep34046. [93] V. S. Shirure, A. Lezia, A. Tao, L. F. Alonzo, and S. C. George, “Low levels of physiological interstitial flow eliminate morphogen gradients and guide angiogenesis,” Angiogenesis, vol. 20, no. 4, pp. 493–504, Nov. 2017, doi: 10.1007/s10456-017-9559-4. [94] M. L. Moya, Y.-H. Hsu, A. P. Lee, C. C. W. Hughes, and S. C. George, “In Vitro Perfused Human Capillary Networks,” Tissue Eng Part C Methods, vol. 19, no. 9, pp. 730–737, Sept. 2013, doi: 10.1089/ten.tec.2012.0430. [95] Y.-H. Hsu, M. L. Moya, P. Abiri, C. C. W. Hughes, S. C. George, and A. P. Lee, “Full range physiological mass transport control in 3D tissue cultures,” Lab Chip, vol. 13, no. 1, pp. 81–89, Jan. 2013, doi: 10.1039/c2lc40787f. [96] Y.-H. Hsu, M. L. Moya, C. C. W. Hughes, S. C. Georgea, and A. P. Lee, “A microfluidic platform for generating large-scale nearly identical human microphysiological system arrays,” Lab Chip, vol. 13, no. 15, pp. 2990–2998, Aug. 2013, doi: 10.1039/c3lc50424g. [97] I. S. Ilan, A. R. Yslas, Y. Peng, R. Lu, and E. Lee, “A 3D Human Lymphatic Vessel-on-Chip Reveals the Roles of Interstitial Flow and VEGF-A/C for Lymphatic Sprouting and Discontinuous Junction Formation,” Cell Mol Bioeng, vol. 16, no. 4, pp. 325–339, Aug. 2023, doi: 10.1007/s12195-023-00780-0. [98] K. C. Boardman and M. A. Swartz, “Interstitial Flow as a Guide for Lymphangiogenesis,” Circulation Research, vol. 92, no. 7, pp. 801–808, Apr. 2003, doi: 10.1161/01.RES.0000065621.69843.49. [99] Y. L. Huang, Y. Ma, C. Wu, C. Shiau, J. E. Segall, and M. Wu, “Tumor spheroids under perfusion within a 3D microfluidic platform reveal critical roles of cell-cell adhesion in tumor invasion,” Sci Rep, vol. 10, p. 9648, June 2020, doi: 10.1038/s41598-020-66528-2. [100] Q. D. Tran, Marcos, and D. Gonzalez-Rodriguez, “Permeability and viscoelastic fracture of a model tumor under interstitial flow,” Soft Matter, vol. 14, no. 30, pp. 6386–6392, Aug. 2018, doi: 10.1039/C8SM00844B. [101] W. J. Polacheck, J. L. Charest, and R. D. Kamm, “Interstitial flow influences direction of tumor cell migration through competing mechanisms,” Proceedings of the National Academy of Sciences, vol. 108, no. 27, pp. 11115–11120, July 2011, doi: 10.1073/pnas.1103581108. [102] C. P. Ng, B. Hinz, and M. A. Swartz, “Interstitial fluid flow induces myofibroblast differentiation and collagen alignment in vitro,” J Cell Sci, vol. 118, no. Pt 20, pp. 4731–4739, Oct. 2005, doi: 10.1242/jcs.02605. [103] J. M. Rutkowski and M. A. Swartz, “A driving force for change: interstitial flow as a morphoregulator,” Trends in Cell Biology, vol. 17, no. 1, pp. 44–50, Jan. 2007, doi: 10.1016/j.tcb.2006.11.007. [104] M. Daems, H. M. Peacock, and E. A. V. Jones, “Fluid flow as a driver of embryonic morphogenesis,” Development, vol. 147, no. 15, p. dev185579, Aug. 2020, doi: 10.1242/dev.185579. [105] X.-Y. Wang et al., “An artificial blood vessel implanted three-dimensional microsystem for modeling transvascular migration of tumor cells,” Lab Chip, vol. 15, no. 4, pp. 1178–1187, 2015, doi: 10.1039/C4LC00973H. [106] G. Lamberti et al., “Bioinspired Microfluidic Assay for In Vitro Modeling of Leukocyte–Endothelium Interactions,” Anal. Chem., vol. 86, no. 16, pp. 8344–8351, Aug. 2014, doi: 10.1021/ac5018716. [107] S. Zhang, Z. Wan, and R. D. Kamm, “Vascularized organoids on a chip: Strategies for engineering organoids with functional vasculature,” Lab Chip, vol. 21, no. 3, pp. 473–488, Feb. 2021, doi: 10.1039/d0lc01186j. [108] D.-H. T. Nguyen et al., “Biomimetic model to reconstitute angiogenic sprouting morphogenesis in vitro,” Proceedings of the National Academy of Sciences, vol. 110, no. 17, pp. 6712–6717, Apr. 2013, doi: 10.1073/pnas.1221526110. [109] C. F. Buchanan, S. S. Verbridge, P. P. Vlachos, and M. N. Rylander, “Flow shear stress regulates endothelial barrier function and expression of angiogenic factors in a 3D microfluidic tumor vascular model,” Cell Adhesion & Migration, vol. 8, no. 5, pp. 517–524, Sept. 2014, doi: 10.4161/19336918.2014.970001. [110] J. Lim et al., “The Edifice of Vasculature-On-Chips: A Focused Review on the Key Elements and Assembly of Angiogenesis Models,” ACS Biomater. Sci. Eng., vol. 10, no. 6, pp. 3548–3567, June 2024, doi: 10.1021/acsbiomaterials.3c01978. [111] S. Kim, H. Lee, M. Chung, and N. L. Jeon, “Engineering of functional, perfusable 3D microvascular networks on a chip,” Lab Chip, vol. 13, no. 8, pp. 1489–1500, Mar. 2013, doi: 10.1039/C3LC41320A. [112] M. Campisi, Y. Shin, T. Osaki, C. Hajal, V. Chiono, and R. D. Kamm, “3D Self-Organized Microvascular Model of the Human Blood-Brain Barrier with Endothelial Cells, Pericytes and Astrocytes,” Biomaterials, vol. 180, pp. 117–129, Oct. 2018, doi: 10.1016/j.biomaterials.2018.07.014. [113] A. Günther et al., “A microfluidic platform for probing small artery structure and function,” Lab Chip, vol. 10, no. 18, pp. 2341–2349, Aug. 2010, doi: 10.1039/C004675B. [114] N. C. A. van Engeland, A. M. A. O. Pollet, J. M. J. den Toonder, C. V. C. Bouten, O. M. J. A. Stassen, and C. M. Sahlgren, “A biomimetic microfluidic model to study signalling between endothelial and vascular smooth muscle cells under hemodynamic conditions,” Lab Chip, vol. 18, no. 11, pp. 1607–1620, May 2018, doi: 10.1039/C8LC00286J. [115] M. Vila Cuenca et al., “Engineered 3D vessel-on-chip using hiPSC-derived endothelial- and vascular smooth muscle cells,” Stem Cell Reports, vol. 16, no. 9, pp. 2159–2168, Sept. 2021, doi: 10.1016/j.stemcr.2021.08.003. [116] C. Su et al., “A novel human arterial wall-on-a-chip to study endothelial inflammation and vascular smooth muscle cell migration in early atherosclerosis,” Lab Chip, vol. 21, no. 12, pp. 2359–2371, June 2021, doi: 10.1039/D1LC00131K. [117] Y. Zheng et al., “In vitro microvessels for the study of angiogenesis and thrombosis,” Proceedings of the National Academy of Sciences, vol. 109, no. 24, pp. 9342–9347, June 2012, doi: 10.1073/pnas.1201240109. [118] Y. S. Zhang et al., “Bioprinted Thrombosis-on-a-Chip,” Lab Chip, vol. 16, no. 21, pp. 4097–4105, Oct. 2016, doi: 10.1039/c6lc00380j. [119] A. Shakeri et al., “Engineering organ-on-a-chip systems for vascular diseases,” Arterioscler Thromb Vasc Biol, vol. 43, no. 12, pp. 2241–2255, Dec. 2023, doi: 10.1161/ATVBAHA.123.318233. [120] J. Zhou, Y.-S. Li, and S. Chien, “Shear Stress–Initiated Signaling and Its Regulation of Endothelial Function,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 34, no. 10, pp. 2191–2198, Oct. 2014, doi: 10.1161/ATVBAHA.114.303422. [121] Y. I. Wang and M. L. Shuler, “UniChip enables long-term recirculating unidirectional perfusion with gravity-driven flow for microphysiological systems,” Lab Chip, vol. 18, no. 17, pp. 2563–2574, Aug. 2018, doi: 10.1039/C8LC00394G. [122] H. Ehlers, T. Olivier, S. J. Trietsch, P. Vulto, T. P. Burton, and L. J. van den Broek, “Microfluidic artery-on-a-chip model with unidirectional gravity-driven flow for high-throughput applications,” Lab Chip, vol. 25, no. 10, pp. 2376–2389, May 2025, doi: 10.1039/D4LC01109K. [123] F. Mirzapour-Shafiyi et al., “Flow-Induced Vascular Remodeling on-Chip: Implications for Anti-VEGF Therapy,” Advanced Functional Materials, vol. n/a, no. n/a, p. 2501416, doi: 10.1002/adfm.202501416. [124] “madar-ju.com/storage/images/files/file_1738964502J91C4.pdf.” Accessed: Nov. 24, 2025. [Online]. Available: https://madar-ju.com/storage/images/files/file_1738964502J91C4.pdf [125] S. J. Ling, W. Moebs, J. Sanny, S. J. Ling, W. Moebs, and J. Sanny, “9.4 Ohm’s Law - University Physics Volume 2 | OpenStax.” Accessed: Nov. 24, 2025. [Online]. Available: https://openstax.org/books/university-physics-volume-2/pages/9-4-ohms-law [126] K. W. Oh, K. Lee, B. Ahn, and E. P. Furlani, “Design of pressure-driven microfluidic networks using electric circuit analogy,” Lab Chip, vol. 12, no. 3, pp. 515–545, 2012, doi: 10.1039/C2LC20799K. [127] H. Bruus, “Acoustofluidics 1: Governing equations in microfluidics,” Lab Chip, vol. 11, no. 22, p. 3742, 2011, doi: 10.1039/c1lc20658c. [128] D. Di Carlo, “Inertial microfluidics,” Lab Chip, vol. 9, no. 21, p. 3038, 2009, doi: 10.1039/b912547g. [129] H.-J. Wang and Y.-H. Hsu, “Study on the effect of shear stress on the remodeling of human vessel using a vessel-on-a-chip”. [130] J. Aaron, “Polydimethylsiloxane (PDMS) in Microfluidics: A Comprehensive Guide,” Aline. Accessed: Nov. 30, 2025. [Online]. Available: https://www.alineinc.com/polydimethylsiloxane-pdms-in-microfluidics/ [131] I. Miranda et al., “Properties and Applications of PDMS for Biomedical Engineering: A Review,” J Funct Biomater, vol. 13, no. 1, p. 2, Dec. 2021, doi: 10.3390/jfb13010002. [132] I. T. Whelan, E. Moeendarbary, D. A. Hoey, and D. J. Kelly, “Biofabrication of vasculature in microphysiological models of bone,” Biofabrication, vol. 13, no. 3, p. 032004, July 2021, doi: 10.1088/1758-5090/ac04f7. [133] C. B. X. Huang and T.-Y. Tu, “Recent advances in vascularized tumor-on-a-chip,” Front Oncol, vol. 13, p. 1150332, Mar. 2023, doi: 10.3389/fonc.2023.1150332. [134] S. Shivani, H.-J. Wang, Y.-T. Chen, C.-T. Lin, and Y.-H. Hsu, “Self-assembled human arteriole-on-a-chip for arterial functionality testing and disease modeling,” Lab on a Chip, vol. 25, no. 20, pp. 5162–5179, 2025, doi: 10.1039/D5LC00530B. [135] “3D Slicer image computing platform,” 3D Slicer. Accessed: Nov. 11, 2025. [Online]. Available: https://slicer.org/ [136] J. Sonne, A. Goyal, and W. Lopez-Ojeda, “Dopamine,” in StatPearls, Treasure Island (FL): StatPearls Publishing, 2025. Accessed: Nov. 17, 2025. [Online]. Available: http://www.ncbi.nlm.nih.gov/books/NBK535451/ [137] U. Pfeil et al., “Intrinsic vascular dopamine – a key modulator of hypoxia-induced vasodilatation in splanchnic vessels,” J Physiol, vol. 592, no. Pt 8, pp. 1745–1756, Apr. 2014, doi: 10.1113/jphysiol.2013.262626. [138] C. Zeng et al., “Dopamine D1 Receptor Augmentation of D3 Receptor Action in Rat Aortic or Mesenteric Vascular Smooth Muscles,” Hypertension, vol. 43, no. 3, pp. 673–679, Mar. 2004, doi: 10.1161/01.HYP.0000118958.27649.6f. [139] J. Reinsberg and R. Kullmann, “Characterization of Vascular Dopamine Receptors in the Gastric Circulation of the Rabbit,” Journal of Cardiovascular Pharmacology, vol. 8, no. 5, p. 1067, Sept. 1986. [140] M. Bauer, “Cardiovascular Anatomy and Pharmacology,” Basic Sciences in Anesthesia, pp. 195–228, July 2017, doi: 10.1007/978-3-319-62067-1_11. [141] S. Ayyoub, R. Orriols, E. Oliver, and O. T. Ceide, “Thrombosis Models: An Overview of Common In Vivo and In Vitro Models of Thrombosis,” Int J Mol Sci, vol. 24, no. 3, p. 2569, Jan. 2023, doi: 10.3390/ijms24032569. [142] K. Tomokiyo et al., “Von Willebrand factor accelerates platelet adhesion and thrombus formation on a collagen surface in platelet-reduced blood under flow conditions,” Blood, vol. 105, no. 3, pp. 1078–1084, Feb. 2005, doi: 10.1182/blood-2004-05-1827. [143] P. André et al., “Platelets adhere to and translocate on von Willebrand factor presented by endothelium in stimulated veins,” Blood, vol. 96, no. 10, pp. 3322–3328, Nov. 2000, doi: 10.1182/blood.V96.10.3322. [144] W. Zhu et al., “Gut Microbial Metabolite TMAO Enhances Platelet Hyperreactivity and Thrombosis Risk,” Cell, vol. 165, no. 1, pp. 111–124, Mar. 2016, doi: 10.1016/j.cell.2016.02.011. [145] H. Sano, M. Watanabe, T. Yamashita, K. Tanishita, and R. Sudo, “Control of vessel diameters mediated by flow-induced outward vascular remodeling in vitro,” Biofabrication, vol. 12, no. 4, p. 045008, July 2020, doi: 10.1088/1758-5090/ab9316. [146] A. Blazeski et al., “Engineering microvascular networks using a KLF2 reporter to probe flow-dependent endothelial cell function,” Biomaterials, vol. 311, p. 122686, Dec. 2024, doi: 10.1016/j.biomaterials.2024.122686. [147] M. A. Winkelman, D. Y. Kim, S. Kakarla, A. Grath, N. Silvia, and G. Dai, “Interstitial flow enhances the formation, connectivity, and function of 3D brain microvascular networks generated within a microfluidic device,” Lab Chip, vol. 22, no. 1, pp. 170–192, Dec. 2021, doi: 10.1039/D1LC00605C. [148] S. Zhang, Z. Wan, G. Pavlou, A. X. Zhong, L. Xu, and R. D. Kamm, “Interstitial Flow Promotes the Formation of Functional Microvascular Networks In Vitro through Upregulation of Matrix Metalloproteinase-2,” Advanced Functional Materials, vol. 32, no. 43, p. 2206767, 2022, doi: 10.1002/adfm.202206767. [149] M. E. Cox and B. Dunn, “Oxygen diffusion in poly(dimethyl siloxane) using fluorescence quenching. I. Measurement technique and analysis,” Journal of Polymer Science Part A: Polymer Chemistry, vol. 24, no. 4, pp. 621–636, 1986, doi: 10.1002/pola.1986.080240405. [150] N. Baeyens et al., “Vascular remodeling is governed by a VEGFR3-dependent fluid shear stress set point,” eLife, vol. 4, p. e04645, Feb. 2015, doi: 10.7554/eLife.04645. [151] E. R. Clark, “Studies on the growth of blood-vessels in the tail of the frog larva—by observation and experiment on the living animal,” American Journal of Anatomy, vol. 23, no. 1, pp. 37–88, 1918, doi: 10.1002/aja.1000230103. [152] Z.-D. Shi, X.-Y. Ji, H. Qazi, and J. M. Tarbell, “Interstitial flow promotes vascular fibroblast, myofibroblast, and smooth muscle cell motility in 3-D collagen I via upregulation of MMP-1,” Am J Physiol Heart Circ Physiol, vol. 297, no. 4, pp. H1225–H1234, Oct. 2009, doi: 10.1152/ajpheart.00369.2009. [153] A. Dardik, A. Yamashita, F. Aziz, H. Asada, and B. E. Sumpio, “Shear stress-stimulated endothelial cells induce smooth muscle cell chemotaxis via platelet-derived growth factor-BB and interleukin-1alpha,” J Vasc Surg, vol. 41, no. 2, pp. 321–331, Feb. 2005, doi: 10.1016/j.jvs.2004.11.016. [154] X. Han, N. Sakamoto, N. Tomita, H. Meng, M. Sato, and M. Ohta, “Influence of TGF-β1 expression in endothelial cells on smooth muscle cell phenotypes and MMP production under shear stress in a co-culture model,” Cytotechnology, vol. 71, no. 2, pp. 489–496, Apr. 2019, doi: 10.1007/s10616-018-0268-7. [155] M. Ohno, J. P. Cooke, V. J. Dzau, and G. H. Gibbons, “Fluid shear stress induces endothelial transforming growth factor beta-1 transcription and production. Modulation by potassium channel blockade.,” J Clin Invest, vol. 95, no. 3, pp. 1363–1369, Mar. 1995, doi: 10.1172/JCI117787. [156] T. Inai et al., “Inhibition of vascular endothelial growth factor (VEGF) signaling in cancer causes loss of endothelial fenestrations, regression of tumor vessels, and appearance of basement membrane ghosts,” Am J Pathol, vol. 165, no. 1, pp. 35–52, July 2004, doi: 10.1016/S0002-9440(10)63273-7. [157] L. I. Los, M. J. van Luyn, and P. Nieuwenhuis, “Vascular remnants in the rabbit vitreous body. I. Morphological characteristics and relationship to vitreous embryonic development,” Exp Eye Res, vol. 71, no. 2, pp. 143–151, Aug. 2000, doi: 10.1006/exer.2000.0864. [158] “Wall shear stress revisited - ClinicalKey.” Accessed: Dec. 01, 2025. [Online]. Available: https://www.clinicalkey.com/?adobe_mc=MCMID%3D06442181697255489850066943222557656725%7CMCORGID%3D4D6368F454EC41940A4C98A6%2540AdobeOrg%7CTS%3D1764581837#!/content/journal/1-s2.0-S1872931209000106 [159] C. Aalkjær and H. Nilsson, “Vasomotion: cellular background for the oscillator and for the synchronization of smooth muscle cells,” British Journal of Pharmacology, vol. 144, no. 5, pp. 605–616, 2005, doi: 10.1038/sj.bjp.0706084. [160] M. Lamboley, A. Schuster, J.-L. Bény, and J.-J. Meister, “Recruitment of smooth muscle cells and arterial vasomotion,” American Journal of Physiology-Heart and Circulatory Physiology, vol. 285, no. 2, pp. H562–H569, Aug. 2003, doi: 10.1152/ajpheart.00526.2002. [161] I. Armando, V. A. M. Villar, and P. A. Jose, “Dopamine and Renal Function and Blood Pressure Regulation,” Compr Physiol, vol. 1, no. 3, pp. 1075–1117, July 2011, doi: 10.1002/cphy.c100032. [162] N. K. R. Pandian, R. G. Mannino, W. A. Lam, and A. Jain, “Thrombosis-on-a-chip: Prospective impact of microphysiological models of vascular thrombosis,” Curr Opin Biomed Eng, vol. 5, pp. 29–34, Mar. 2018, doi: 10.1016/j.cobme.2017.12.001. [163] J. Berry, F. J. Peaudecerf, N. A. Masters, K. B. Neeves, R. E. Goldstein, and M. T. Harper, “An ‘occlusive thrombosis-on-a-chip’ microfluidic device for investigating the effect of anti-thrombotic drugs,” Lab Chip, vol. 21, no. 21, pp. 4104–4117, Oct. 2021, doi: 10.1039/D1LC00347J. [164] “In vitro microvessels for the study of angiogenesis and thrombosis | PNAS.” Accessed: Dec. 02, 2025. [Online]. Available: https://www.pnas.org/doi/10.1073/pnas.1201240109 [165] A. Jain et al., “Primary Human Lung Alveolus-on-a-chip Model of Intravascular Thrombosis for Assessment of Therapeutics,” Clin Pharmacol Ther, vol. 103, no. 2, pp. 332–340, Feb. 2018, doi: 10.1002/cpt.742. [166] R. Ross and J. A. Glomset, “Atherosclerosis and the arterial smooth muscle cell: Proliferation of smooth muscle is a key event in the genesis of the lesions of atherosclerosis,” Science, vol. 180, no. 4093, pp. 1332–1339, June 1973, doi: 10.1126/science.180.4093.1332. [167] J. Chen et al., “Recent Progress in in vitro Models for Atherosclerosis Studies,” Front. Cardiovasc. Med., vol. 8, Jan. 2022, doi: 10.3389/fcvm.2021.790529. [168] B. J. Tefft, “A Sophisticated Model of Human Atherosclerosis on a Chip,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 44, no. 12, pp. 2473–2475, Dec. 2024, doi: 10.1161/ATVBAHA.124.321804. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/101376 | - |
| dc.description.abstract | 目前體外血管模型主要基於微壓印、人工血管或自組裝微血管為主。然而因主要技術是使用靜脈內皮細胞或其他多能幹細胞轉化的內皮細胞,所培養出的血管以微血管為主。然而,動脈在調節血管張力和疾病進展中是為主要血管組織,但如何在體外重建其多層細胞結構和血液動力學環境仍然是此領域的重大挑戰。在本研究中,我們開發了一種微流控平台,能夠共培養人類動脈內皮細胞、平滑肌細胞(SMC)和纖維母細胞,誘使其產生自組裝病培養出具有功能性的小動脈組織。本研究藉由在經片中產生低氧條件下,誘導血管生成和並將其發展成穩定且成熟的小動脈組織,並證明週期性血流會使其產生動態重塑機制。本研究透過改變剪應力,我們證實了小動脈的血流依賴性的血管重塑機制,以實驗證明在靜態培養下會喪失血管功能,在低剪應力下會誘導擴張性重塑,而高剪應力則會觸發擴張和退化性重塑,最終形成具有小動脈層狀結構的功能性血管。本研究並以有限元素分析進一步分析出剪應力與初級和次級血管發育之間的關聯。本研究亦驗證平滑肌細胞具有血管收縮及舒張之小動脈功能,並證明此小動脈模型能夠重現早期動脈粥狀硬化的疾病模型。綜合以上所述,本研究所開發的小動脈晶片能夠重現人類小動脈的關鍵組織結構、功能和病理特徵。此平台將可做為研究動脈生成、內皮層及平滑肌細胞相互作用和血管疾病的一項體外工具,並有望應用於未來的藥物測試和個人化醫療 | zh_TW |
| dc.description.abstract | Current in vitro vessel models are primarily based on micro-patterning, artificial vessels, or self-assembled microvascular networks. However, most studies have used venous endothelial cells (ECs) or other pluripotent-derived ECs, resulting in the formation of capillary-like vessels. Arteries play a central role in regulating vascular tone and disease progression; however, recreating their multicellular structure and hemodynamic environment in vitro remains a major challenge. In this study, we developed a microfluidic platform capable of co-culturing primary human arterial endothelial cells, smooth muscle cells (SMC), and fibroblasts to generate self-assembled, perfused, and functional arteriole-like networks. Guided by vasculogenesis and angiogenesis under controlled hypoxia, the vascular structures matured into stable arterioles that responded o oscillatory flow. By varying shear stresses, we demonstrated flow-dependent vascular remodeling: static cultures showed loss of perfusion, low shear induced expansive remodeling, and high shear triggered both expansive and regressive remodeling, resulting in perfused vessels with an arteriole-layered anatomical structure. Finite element analysis further revealed the association between the magnitude and distribution of shear stress and the development of primary and secondary vessel hierarchies. Arteriole functionality was validated by SMC-mediated vasomotion, demonstrating the model’s ability to recapitulate early atherosclerotic events. Together, these results establish a physiologically relevant arteriole model that recapitulates key human arteriole features and enables studies of arteriogenesis, endothelial–SMC interactions, vascular disease, and drug testing. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2026-01-27T16:20:32Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2026-01-27T16:20:32Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | Acknowledgements i
中文摘要 iii Abstract iv Contents v List of Abbreviations viii 1. Introduction 1 1.1 Significance 1 1.2 Research Aims 3 1.2.1 Development of perfusable arteriole-on-a-chip 3 1.2.2 Verifying arteriolar functionality 4 1.2.3 Arterial disease modeling 5 1.3 Dissertation Structure 7 2. Background 9 2.1 Cardiovascular Network 9 2.2 Methods of vessel formation 10 2.2.1 Vasculogenesis 10 2.2.2 Angiogenesis 12 2.2.3 Arteriogenesis 13 2.3 Intravascular flow 14 2.4 Interstitial Flow 16 2.5 In vitro Models for Developing Vessel-on-a-chip 17 2.5.1 Patterned microchannel 18 2.5.2 Sacrificial molds 21 2.5.3 Self-Assembly 24 2.5.4 In vitro arterial models 27 2.5.5 Vascular disease models on a chip 30 2.6 Study of flow and arteriogenesis on a chip 34 3. Design Concept of Microfluidic Devices 39 3.1 Design Principles for developing Arteriole-on-a-chip devices 39 3.1.1 Microfluidic design principle concepts 39 3.1.2 Designing arteriole-on-a-chip device 46 3.1.3 Designing set up for diffusion based mass transfer in the arteriole device 50 3.1.4 Designing set up for convection based mass transfer at high oscillating flow 53 3.1.5 Designing set up for convection based mass transfer at low oscillating flow 55 3.2 Experiment protocol for developing arteriole-on-a-chip 57 3.2.1 Overview of experiment timeline 57 3.2.2 Detailed workflow for developing arteriole-on-a-chip 58 4. Materials and Methods 62 4.1 Fabrication of Devices 62 4.1.1 Soft lithography technique for chip fabrication 62 4.2 Cell Culture and Immunostaining Methodologies 66 4.2.1 Cell culture 66 4.2.2 Cell Fixation 66 4.2.3 Immunohistochemistry Protocol 67 4.3 Whole blood acquisition 68 4.4 Quantification and Analysis 68 4.5 Finite Element Analysis 69 4.5.1 Obtaining 3D surface renderings of the vascular/basement network 69 4.5.2 Obtaining Finite Element Analysis 69 5. Results 71 5.1 Optimizing experimental protocol 71 5.1.1 Optimizing thrombin concentration 71 5.1.2 Optimizing fibronectin coating of side channel 73 5.2 Developing arteriole-on-a-chip 77 5.2.1 Vasculogenesis and angiogenesis for developing primary plexus 77 5.2.2 Arteriogenesis for vascular network remodeling and optimization 80 5.3 Effect of oscillating shear stress on vascular perfusability and dynamic remodeling 82 5.4 Analyzing arteriole network in response to different shear stress condition 87 5.5 Analyzing vascular network remodeling from initial vascular plexus using vessels and basement membrane 94 5.6 Finite element analysis of shear stress inside MVN 96 5.7 Vascular Functionality 100 5.7.1 Vasomotion in response to different dosage of dopamine 100 5.7.2 Nitric Oxide (NO) release in response to high shear stress 105 5.8 Arterial Disease Modeling 107 5.8.1 Thrombosis 107 5.8.2 Atherosclerosis 111 6. Discussion 114 7. Conclusion 122 8. Future Work 123 9. References 124 10. Appendix 147 10.1 Certificate for reproduction of material from Lab on a Chip 147 10.2 Fluorescent Images 148 10.2.1 Fluorescent image for figures 5.12 and 5.15 148 10.2.2 Fluorescent images for figure 5.22 149 10.2.3 Fluorescent images for figure 5.24 and 5.25 149 | - |
| dc.language.iso | en | - |
| dc.subject | 小動脈晶片 | - |
| dc.subject | 微流體晶片 | - |
| dc.subject | 血管重塑 | - |
| dc.subject | 血管舒縮 | - |
| dc.subject | 動脈粥樣硬化 | - |
| dc.subject | 器官晶片 | - |
| dc.subject | 微生理系統 | - |
| dc.subject | Arteriole-chip | - |
| dc.subject | Microfluidics | - |
| dc.subject | Vascular remodeling | - |
| dc.subject | Vasomotion | - |
| dc.subject | Atherosclerosis | - |
| dc.subject | Organ-on-a-Chip | - |
| dc.subject | Micrphysiological system | - |
| dc.title | 自組裝人類小動脈晶片及其在動脈功能檢測及疾病模型之應用 | zh_TW |
| dc.title | Self-assembled Human Arteriole-on-a-Chip for Arterial Functionality Testing and Disease Modelling | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 114-1 | - |
| dc.description.degree | 博士 | - |
| dc.contributor.coadvisor | 許聿翔 | zh_TW |
| dc.contributor.coadvisor | Yu-Hsiang Hsu | en |
| dc.contributor.oralexamcommittee | 黃念祖;楊東霖;董奕鍾;張敬邦 | zh_TW |
| dc.contributor.oralexamcommittee | Nien-Tsu Huang;Tony Yang;Yi-Chung Tung;Ching-Pang Chang | en |
| dc.subject.keyword | 小動脈晶片,微流體晶片血管重塑血管舒縮動脈粥樣硬化器官晶片微生理系統 | zh_TW |
| dc.subject.keyword | Arteriole-chip,MicrofluidicsVascular remodelingVasomotionAtherosclerosisOrgan-on-a-ChipMicrphysiological system | en |
| dc.relation.page | 149 | - |
| dc.identifier.doi | 10.6342/NTU202600103 | - |
| dc.rights.note | 同意授權(全球公開) | - |
| dc.date.accepted | 2026-01-21 | - |
| dc.contributor.author-college | 電機資訊學院 | - |
| dc.contributor.author-dept | 生醫電子與資訊學研究所 | - |
| dc.date.embargo-lift | 2026-01-28 | - |
| 顯示於系所單位: | 生醫電子與資訊學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-114-1.pdf | 10.28 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
