Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 土木工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/101272
標題: 土石流監測區域自動判識
Automatic Identification of Debris Flow Monitoring Regions
作者: 陳麒森
QI-SEN CHEN
指導教授: 劉格非
Ko-Fei Liu
關鍵字: 土石流,影像處理灰階值即時監測K-means
debris flow,image processinggrayscale intensityreal-time monitoringK-means clustering
出版年 : 2025
學位: 碩士
摘要: 近年來,攝影機已廣泛設置於土石流觀測站,但因視角與架設位置受限,河道在影像中經常僅占部分區域,加上植物搖動與暴雨造成的灰階值劇烈變動,易降低土石流相關參數的偵測準確度。為減少背景干擾並提升運算效率,本研究提出一套自動化河道區域(ROI)提取流程,使影像分析專注於實際河道位置。
本研究蒐集不同光照、天氣與地點的影像,分別計算灰階值、平均時變量與空間變異度三種特徵,並以 K-means 進行三值化,形成 27 種特徵組合。接著透過統計分析歸納出代表水體與溪床(含沙岸)的組合,再利用形態學操作,萃取出主要水體及其鄰近岸邊。
ROI 之準確性以兩項客觀標準驗證:無事件期間以五組人工標註結果評估重疊率;事件期間以事件最大覆蓋範圍計算功能性準確率。結果顯示,本文流程生成之 ROI 不僅在事件前能提取合理的河道位置,事件發生時亦能涵蓋土石流的主要流動範圍。
最後透過現地事件水位超出原始 ROI 的情形率定擴張比例,建立統一的 ROI 擴大標準,使後續案例能依該標準自動調整監測範圍。
In recent years, cameras have been widely deployed at debris-flow monitoring stations; however, due to limitations in viewing angles and installation positions, the river channel often occupies only a small portion of the image. In addition, background disturbances—such as vegetation movement or heavy rainfall—cause significant fluctuations in pixel intensities, reducing the accuracy of debris-flow parameter detection. To mitigate these effects and improve computational efficiency, this study proposes an automated river region of interest (ROI) extraction procedure that focuses image analysis on the actual river area.
Images collected under various lighting, weather, and site conditions were used to compute three pixel features: grayscale intensity, temporal variation, and spatial variability. Each feature was classified into three levels using K-means clustering, forming 27 feature combinations. Statistical analysis was then applied to identify combinations most representative of water and rocky areas (including sand and gravel). Morphological operations were further used to extract the main river water region and adjacent riverbanks.
The accuracy of the extracted ROI was evaluated using two objective criteria: (1) overlap with five sets of manually annotated river boundaries during non-event periods, and (2) functional accuracy based on the maximum event coverage during debris-flow events. Results show that the proposed method can reliably extract meaningful river regions during normal monitoring conditions and effectively cover the main flow area during debris-flow events.
Finally, by analyzing the extent to which actual event water levels exceeded the initial ROI, this study establishes a unified ROI expansion standard. Subsequent cases can automatically adjust their monitoring range according to this calibrated expansion ratio.
URI: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/101272
DOI: 10.6342/NTU202504876
全文授權: 同意授權(限校園內公開)
電子全文公開日期: 2026-01-14
顯示於系所單位:土木工程學系

文件中的檔案:
檔案 大小格式 
ntu-114-1.pdf
授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務)
8.89 MBAdobe PDF
顯示文件完整紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved