請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/101272完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 劉格非 | zh_TW |
| dc.contributor.advisor | Ko-Fei Liu | en |
| dc.contributor.author | 陳麒森 | zh_TW |
| dc.contributor.author | QI-SEN CHEN | en |
| dc.date.accessioned | 2026-01-13T16:10:14Z | - |
| dc.date.available | 2026-01-14 | - |
| dc.date.copyright | 2026-01-13 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2025-12-31 | - |
| dc.identifier.citation | Haralick, R. M., Shanmugam, K., & Dinstein, I. H. (1973). Textural features for image classification. IEEE Transactions on systems, man, and cybernetics(6), 610–621.
Panda, & Rosenfeld. (1978). Image segmentation by pixel classification in (gray level, edge value) space. IEEE transactions on computers, 100(9), 875–879. Lumia, R., Haralick, R. M., Zuniga, O., Shapiro, L., Pong, T.-C., & Wang, F.-P. (1983). Texture analysis of aerial photographs. Pattern Recognition, 16(1), 39–46. Abutaleb, A. S. (1989). Automatic thresholding of gray-level pictures using two-dimensional entropy. Computer vision, graphics, and image processing, 47(1), 22–32. Choo, A. P., Maeder, A. J., & Pham, B. (1990). Image segmentation for complex natural scenes. Image and Vision Computing, 8(2), 155–163. Matas, J., & Kittler, J. (1995). Spatial and feature space clustering: Applications in image analysis. International Conference on Computer Analysis of Images and Patterns. Alon, J., Sclaroff, S., Kollios, G., & Pavlovic, V. (2003). Discovering clusters in motion time-series data. 2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2003. Proceedings. Kisilevich, S., Mansmann, F., Nanni, M., & Rinzivillo, S. (2010). Spatio-temporal clustering. In Data mining and knowledge discovery handbook (pp. 855–874). Springer. Shi, Z., & Pun-Cheng, L. S. (2019). Spatiotemporal data clustering: A survey of methods. ISPRS international journal of geo-information, 8(3), 112. Cordeiro, M. C., Martinez, J.-M., & Peña-Luque, S. (2021). Automatic water detection from multidimensional hierarchical clustering for Sentinel-2 images and a comparison with Level 2A processors. Remote Sensing of Environment. 鄭宇文. (2022). 應用影像辨識於自由水面偵測. 國立臺灣大學土木工程學系學位論文, 1–60. 張正力. (2025). 即時影像萃取土石流表面流速. 國立臺灣大學土木工程學系學位論文, 1–86. Tou, J. T., & Gonzalez, R. C. (1974). Pattern recognition principles. Pattern recognition principles by Tou, 40001. Gonzalez, Rafael C WOODS 3rd, RE. (2008). Digital Image Processing. Upper Saddle River, USA: Prentice Hall. Abutaleb, Ahmed S. (1989). Automatic thresholding of gray-level pictures using two-dimensional entropy. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/101272 | - |
| dc.description.abstract | 近年來,攝影機已廣泛設置於土石流觀測站,但因視角與架設位置受限,河道在影像中經常僅占部分區域,加上植物搖動與暴雨造成的灰階值劇烈變動,易降低土石流相關參數的偵測準確度。為減少背景干擾並提升運算效率,本研究提出一套自動化河道區域(ROI)提取流程,使影像分析專注於實際河道位置。
本研究蒐集不同光照、天氣與地點的影像,分別計算灰階值、平均時變量與空間變異度三種特徵,並以 K-means 進行三值化,形成 27 種特徵組合。接著透過統計分析歸納出代表水體與溪床(含沙岸)的組合,再利用形態學操作,萃取出主要水體及其鄰近岸邊。 ROI 之準確性以兩項客觀標準驗證:無事件期間以五組人工標註結果評估重疊率;事件期間以事件最大覆蓋範圍計算功能性準確率。結果顯示,本文流程生成之 ROI 不僅在事件前能提取合理的河道位置,事件發生時亦能涵蓋土石流的主要流動範圍。 最後透過現地事件水位超出原始 ROI 的情形率定擴張比例,建立統一的 ROI 擴大標準,使後續案例能依該標準自動調整監測範圍。 | zh_TW |
| dc.description.abstract | In recent years, cameras have been widely deployed at debris-flow monitoring stations; however, due to limitations in viewing angles and installation positions, the river channel often occupies only a small portion of the image. In addition, background disturbances—such as vegetation movement or heavy rainfall—cause significant fluctuations in pixel intensities, reducing the accuracy of debris-flow parameter detection. To mitigate these effects and improve computational efficiency, this study proposes an automated river region of interest (ROI) extraction procedure that focuses image analysis on the actual river area.
Images collected under various lighting, weather, and site conditions were used to compute three pixel features: grayscale intensity, temporal variation, and spatial variability. Each feature was classified into three levels using K-means clustering, forming 27 feature combinations. Statistical analysis was then applied to identify combinations most representative of water and rocky areas (including sand and gravel). Morphological operations were further used to extract the main river water region and adjacent riverbanks. The accuracy of the extracted ROI was evaluated using two objective criteria: (1) overlap with five sets of manually annotated river boundaries during non-event periods, and (2) functional accuracy based on the maximum event coverage during debris-flow events. Results show that the proposed method can reliably extract meaningful river regions during normal monitoring conditions and effectively cover the main flow area during debris-flow events. Finally, by analyzing the extent to which actual event water levels exceeded the initial ROI, this study establishes a unified ROI expansion standard. Subsequent cases can automatically adjust their monitoring range according to this calibrated expansion ratio. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2026-01-13T16:10:13Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2026-01-13T16:10:14Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 誌謝 I
摘要 II Abstract III 目次 IV 圖次 VII 1 第一章 緒論 1 1.1 研究背景與目的 1 1.2 文獻回顧 2 1.3 論文架構 4 2 第二章 研究方法 5 2.1 基礎理論 5 2.2 方法概述 6 2.2.1 研究假設 6 2.2.2 影像特徵計算 6 2.2.3 分析流程 10 2.3 特徵分群與河道區域推論 12 2.3.1 統計樣本說明 12 2.3.2 K-means演算法 20 2.3.3 特徵組合與統計分析 25 2.4 主要水體範圍提取 28 2.4.1 形態學前處理 28 2.4.2 形態學後處理 31 2.4.3 最大連通區塊 32 2.5 相鄰溪床區塊擴展 33 2.5.1 溪床分佈區域提取 33 2.5.2 提取與水體相鄰的溪床區塊 34 2.6 河道範圍邊緣偵測與ROI結果 34 2.6.1 邊緣偵測 34 2.6.2 外包線 35 2.6.3 最小外接矩形 37 2.7 小結 39 3 第三章 方法驗證 41 3.1 案例完整流程示範 41 3.1.1 主要水體範圍提取 43 3.1.2 相鄰溪床區塊擴展 44 3.1.3 ROI生成 45 3.2 ROI 評估標準與誤差分析 46 3.2.1 無事件下之ROI準確率 46 3.2.2 有事件下之ROI準確率 48 3.2.3 有無 ROI 對水位偵測的影響 50 3.3 攝影機方向穩定性檢查 52 3.3.1 邊框灰階趨勢建立 52 3.3.2 方向穩定性檢查標準 55 3.3.3 攝影機方向變動之判斷 56 4 第四章 現地影片分析 58 4.1 案例一 : 2012 年 6 月 11 日豪雨事件 58 4.2 案例二 : 2013 年 7 月 13 日蘇力颱風事件 64 4.3 案例三 : 2024 年 7 月 8 日豪雨事件 69 5 第五章 結論與建議 73 參考文獻 75 附錄 77 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 土石流 | - |
| dc.subject | 影像處理 | - |
| dc.subject | 灰階值 | - |
| dc.subject | 即時監測 | - |
| dc.subject | K-means | - |
| dc.subject | debris flow | - |
| dc.subject | image processing | - |
| dc.subject | grayscale intensity | - |
| dc.subject | real-time monitoring | - |
| dc.subject | K-means clustering | - |
| dc.title | 土石流監測區域自動判識 | zh_TW |
| dc.title | Automatic Identification of Debris Flow Monitoring Regions | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 114-1 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 周憲德;魏士超 | zh_TW |
| dc.contributor.oralexamcommittee | SIAN-DE JHOU;SHIH-CHAO WEI | en |
| dc.subject.keyword | 土石流,影像處理灰階值即時監測K-means | zh_TW |
| dc.subject.keyword | debris flow,image processinggrayscale intensityreal-time monitoringK-means clustering | en |
| dc.relation.page | 79 | - |
| dc.identifier.doi | 10.6342/NTU202504876 | - |
| dc.rights.note | 同意授權(限校園內公開) | - |
| dc.date.accepted | 2025-12-31 | - |
| dc.contributor.author-college | 工學院 | - |
| dc.contributor.author-dept | 土木工程學系 | - |
| dc.date.embargo-lift | 2026-01-14 | - |
| 顯示於系所單位: | 土木工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-114-1.pdf 授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務) | 8.89 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
