請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/101262完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 王暉 | zh_TW |
| dc.contributor.advisor | Huei Wang | en |
| dc.contributor.author | 黃信豪 | zh_TW |
| dc.contributor.author | Xin-Hao Huang | en |
| dc.date.accessioned | 2026-01-13T16:08:08Z | - |
| dc.date.available | 2026-01-14 | - |
| dc.date.copyright | 2026-01-13 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2026-01-05 | - |
| dc.identifier.citation | [1] T. S. Rappaport et al., "Millimeter Wave Mobile Communications for 5G Cellular: It Will Work!," in IEEE Access, vol. 1, pp. 335-349, 2013, doi:10.1109/ACCESS.2013.2260813.
[2] “Q-band and EHF-band: Application and prospects of high-frequency technology" https://www.apextech-mw.com/news/q-band-and-ehf-bandapplication-and-prospects-of-high-frequency-technology/?utm_source (accessed. [3] T. Nitsche, C. Cordeiro, A. B. Flores, E. W. Knightly, E. Perahia, and J. Widmer,“IEEE 802.11ad: Directional 60 GHz communication for multi-Gigabit-persecond Wi-Fi,” IEEE Communications Magazine, vol. 52, no. 12, pp. 132–141, Dec. 2014. doi: 10.1109/MCOM.2014.6979964 [4] “E-Band Wireless Radio Links Deliver High Capacity Backhaul Solutions for 5G Networks—Part 1 “ https://www.analog.com/en/resources/technicalarticles/e-band-wireless-radio-links.html?utm_source [5] J. Pang et al., "A Power-Efficient 24-to-71 GHz CMOS Phased-Array Receiver Utilizing Harmonic-Selection Technique Supporting 36dB Inter-Band Blocker Rejection for 5G NR," 2022 IEEE International Solid-State Circuits Conference (ISSCC), San Francisco, CA, USA, 2022, pp. 434-436, doi: 10.1109/ISSCC42614.2022.9731619. [6] J. H. Tsai, “Design of 40-108-GHz low-power and high-speed CMOS up-/downconversion ring mixers for multistandard MMW radio applications,” IEEE Trans. Microw. Theory Tech., vol. 60, no. 3, pp. 670–678, Mar. 2012. [7] Z. Qu, G. Zhang, H. Cao and J. Xie, "LEO Satellite Constellation for Internet of Things," in IEEE Access, vol. 5, pp. 18391-18401, 2017, doi: 10.1109/ACCESS.2017.2735988. [8] G. Amendola et al., "Low-Earth Orbit User Segment in the Ku and Ka-Band: An Overview of Antennas and RF Front-End Technologies," in IEEE Microwave Magazine, vol. 24, no. 2, pp. 32-48, Feb. 2023, doi: 10.1109/MMM.2022.3217961. [9] Y. Wang, J. Chou and W. Lin, "A 1024-Element Ku-Band SATCOM Phased- Array Transmitter With 39.2-dBW EIRP and ± 53° Beam Scanning," 2022 IEEE/MTT-S International Microwave Symposium - IMS 2022, Denver, CO, USA, 2022, pp. 943-946, doi: 10.1109/IMS37962.2022.9865359. [10] F. Wang and H. Wang, "A Broadband Linear Ultra-Compact mm-Wave Power Amplifier With Distributed-Balun Output Network: Analysis and Design," in IEEE Journal of Solid-State Circuits, vol. 56, no. 8, pp. 2308-2323, Aug. 2021, doi: 10.1109/JSSC.2021.3078485. [11] F. Zhu et al., "A Broadband Low-Power Millimeter-Wave CMOS Downconversion Mixer With Improved Linearity," in IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 61, no. 3, pp. 138-142, March 2014, doi: 10.1109/TCSII.2013.2296196. [12] Y. -T. Chang, H. -Y. Chen and H. -C. Lu, "A V-band high linearity sub-harmonic I/Q demodulator using transformer coupling," 2017 IEEE International Symposium on Radio-Frequency Integration Technology (RFIT), Seoul, Korea (South), 2017, pp. 196-198, doi: 10.1109/RFIT.2017.8048247. [13] F. Chen, Y. Wang, J. -L. Lin, Z. -M. Tsai and H. Wang, "A 24-GHz High Linearity Down-conversion Mixer in 90-nm CMOS," 2018 IEEE International Symposium on Radio-Frequency Integration Technology (RFIT), Melbourne, VIC, Australia, 2018, pp. 1-3, doi: 10.1109/RFIT.2018.8524128. [14] W. -C. Ma, C. -C. Chiong, Y. -S. Wang and H. Wang, "A High LO-to-RF Isolation E-band Mixer with 30 GHz Instantaneous IF Bandwidth in 90nm CMOS," 2023 IEEE/MTT-S International Microwave Symposium - IMS 2023, San Diego, CA, USA, 2023, pp. 139-142, doi: 10.1109/IMS37964.2023.10188008. [15] C. -Y. Lu, Y. Wang and H. Wang, "A V-Band High Linearity Down-Conversion Mixer Using Distributed Derivative Superposition Technique in 90-nm CMOS Process," 2024 IEEE International Symposium on Radio-Frequency Integration Technology (RFIT), Chengdu, China, 2024, pp. 1-3, doi: 10.1109/RFIT60557.2024.10812450. [16] B. Bae and J. Han, "24–40 GHz Gain-Boosted Wideband CMOS Down- Conversion Mixer Employing Body-Effect Control for 5G NR Applications," in IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 69, no. 3, pp. 1034-1038, March 2022, doi: 10.1109/TCSII.2021.3119995. [17] C. -H. Lin et al., "A Compact 6.5-W PHEMT MMIC Power Amplifier for Ku- Band Applications," in IEEE Microwave and Wireless Components Letters, vol. 17, no. 2, pp. 154-156, Feb. 2007, doi: 10.1109/LMWC.2006.890347. [18] M. Liu, Z. Ma, K. Ma and H. Fu, "A High-Power GaAs Amplifier With Coupled Bonding-Wires-Based Harmonic Control Output Matching Network," in IEEE Microwave and Wireless Technology Letters, vol. 33, no. 9, pp. 1305-1308, Sept. 2023, doi: 10.1109/LMWT.2023.3288753. [19] P. Asbeck, S. Alluri, J. -H. Li and J. -T. Chung, "A Monolithic X-Band 32 dBm GaAs HBT Power Amplifier with Efficient Operation Over a Wide Range of Power Supply Voltages," 2024 IEEE/MTT-S International Microwave Symposium - IMS 2024, Washington, DC, USA, 2024, pp. 768-771, doi: 10.1109/IMS40175.2024.10600207. [20] S. Chen et al., "A 0.8-to-18 GHz Nonuniform Distributed PA Using Reconfigurable Bias Choke in 0.15 μm GaAs pHEMT," in IEEE Microwave and Wireless Technology Letters, vol. 33, no. 9, pp. 1309-1312, Sept. 2023, doi: 10.1109/LMWT.2023.3295820. [21] C. Yi et al., "Design of a 17–24-GHz High-Efficiency Power Amplifier for Satellite Communications," in IEEE Microwave and Wireless Technology Letters, vol. 33, no. 2, pp. 188-191, Feb. 2023, doi: 10.1109/LMWC.2022.3206269. [22] J. Zhang, T. Wu, L. Nie, D. Wei, S. Ma and J. Ren, "A 20-30 GHz Compact PHEMT Power Amplifier Using Coupled-Line Based MCCR Matching Technique," 2020 IEEE/MTT-S International Microwave Symposium (IMS), Los Angeles, CA, USA, 2020, pp. 956-959, doi: 10.1109/IMS30576.2020.9223797. [23] S. -J. Fe, S. -H. Lai and H. -Y. Chang, "A 0.5-W 26-31 GHz Power Amplifier Using Pre-matching Technique in 0.15-μm pHEMT Process," 2021 IEEE International Symposium on Radio-Frequency Integration Technology (RFIT), Hualien, Taiwan, 2021, pp. 1-2, doi: 10.1109/RFIT52905.2021.9565271. [24] J. -H. Tsai, G. -S. Wei and Y. -Z. Lin, "A 1-Watt 38 GHz Power Amplifier Using 0.1-μm GaAs p-HEMT Technology," 2021 IEEE International Symposium on Radio-Frequency Integration Technology (RFIT), Hualien, Taiwan, 2021, pp. 1- 3, doi: 10.1109/RFIT52905.2021.9565248. [25] P. Feuerschütz, C. Friesicke, R. Quay and A. F. Jacob, "A Q-band power amplifier MMIC using 100 nm AlGaN/GaN HEMT," 2016 11th European Microwave Integrated Circuits Conference (EuMIC), London, UK, 2016, pp. 305-308, doi: 10.1109/EuMIC.2016.7777551. [26] F. Costanzo et al., "A Derating-Rules Compliant Ka-Band GaN-on-Si Power Amplifier Designed for Highly Reliable Satellite Applications," 2021 16th European Microwave Integrated Circuits Conference (EuMIC), London, United Kingdom, 2022, pp. 253-256, doi: 10.23919/EuMIC50153.2022.9783911. [27] R. Giofrè, F. Costanzo and E. Limiti, "Q-Band MMIC High Power Amplifiers for High Throughput Satellites in GaN-on-Si Technology," 2019 IEEE Asia- Pacific Microwave Conference (APMC), Singapore, 2019, pp. 1044-1046, doi: 10.1109/APMC46564.2019.9038504. [28] M. Ayad, K. Vivien, H. Debergé, Z. Ouarch and P. Auxemery, "A High Efficiency Q-band MMIC GaN Power Amplifier for Space Applications," 2023 IEEE/MTT-S International Microwave Symposium - IMS 2023, San Diego, CA, USA, 2023, pp. 1144-1147, doi: 10.1109/IMS37964.2023.10188129. [29] K. Nakatani, Y. Yamaguchi, K. Kanaya and S. Shinjo, "A Ka-band 15 W Output Power and >30% PAE GaN MMIC Power Amplifier with Low IMD3 Over 600 MHz Tone Spacing for SATCOM," 2023 18th European Microwave Integrated Circuits Conference (EuMIC), Berlin, Germany, 2023, pp. 1-4, doi: 10.23919/EuMIC58042.2023.10288948. [30] P. Chen et al., "Harmonic Suppression of a Three-Stage 25–31-GHz GaN MMIC Power Amplifier Using Elliptic Low-Pass Filtering Matching Network," in IEEE Microwave and Wireless Components Letters, vol. 32, no. 6, pp. 551-554, June 2022, doi: 10.1109/LMWC.2022.3148793. [31] S. Fakhfakh et al., "A 47-50 GHz 3 W MMIC Power Amplifier Using 100 nm Gallium Nitride Technology," 2021 16th European Microwave Integrated Circuits Conference (EuMIC), London, United Kingdom, 2022, pp. 233-236, doi: 10.23919/EuMIC50153.2022.9783965. [32] R. Liu, H. Jia, L. Qi and A. Zhu, "A 24-to-30-GHz GaN MMIC Doherty Power Amplifier Using Reduced Peaking Intrinsic Output Impedance for Bandwidth Extension," in IEEE Microwave and Wireless Technology Letters, vol. 35, no. 3, pp. 362-365, March 2025, doi: 10.1109/LMWT.2025.3528628. [33] Xin-Hao Huang, Yunshan Wang and Huei Wang, " A Broadband Downconversion Mixer with Linearity-Improved Active IF Balun in 90-nm CMOS Process," 2025 IEEE International Symposium on Radio-Frequency Integration Technology (RFIT), Kagoshima, Japan, 2025 [34] W. -T. Li, H. -Y. Yang, Y. -C. Chiang, J. -H. Tsai, M. -H. Wu and T. -W. Huang, "A 453-/spl mu/W 53 - 70-GHz Ultra-Low-Power Double-Balanced Source- Driven Mixer Using 90-nm CMOS Technology," in IEEE Transactions on Microwave Theory and Techniques, vol. 61, no. 5, pp. 1903-1912, May 2013, doi: 10.1109/TMTT.2013.2253790. [35] J. -H. Tsai, P. -S. Wu, C. -S. Lin, T. -W. Huang, J. G. J. Chern and W. -C. Huang, "A 25–75 GHz Broadband Gilbert-Cell Mixer Using 90-nm CMOS Technology," in IEEE Microwave and Wireless Components Letters, vol. 17, no. 4, pp. 247-249, April 2007, doi: 10.1109/LMWC.2007.892934. [36] J. -H. Tsai, "Design of 1.2-V Broadband High Data-Rate MMW CMOS I/Q Modulator and Demodulator Using Modified Gilbert-Cell Mixer," in IEEE Transactions on Microwave Theory and Techniques, vol. 59, no. 5, pp. 1350- 1360, May 2011, doi: 10.1109/TMTT.2011.2116035. [37] J. -H. Tsai, H. -Y. Yang, T. -W. Huang and H. Wang, "A 30–100 GHz Wideband Sub-Harmonic Active Mixer in 90 nm CMOS Technology," in IEEE Microwave and Wireless Components Letters, vol. 18, no. 8, pp. 554-556, Aug. 2008, doi: 10.1109/LMWC.2008.2001021. [38] M. -H. Li, Y. -S. Wang and H. Wang, "A 16-53-GHz CMOS Down-Conversion Mixer With Linearized Active Balun," 2021 IEEE International Symposium on Radio-Frequency Integration Technology (RFIT), Hualien, Taiwan, 2021, pp. 1- 4, doi: 10.1109/RFIT52905.2021.9565310.. [39] 呂仲堯, "應用於V 頻段低相位變異之可變增益低雜訊放大器、高線性度降頻器及D 頻段次諧波正交升頻器之設計," 碩士, 電信工程學研究所, 國立臺灣大學, 台北市, 2024. [Online]. Available: https://hdl.handle.net/11296/k98754 [40] B. Razavi, Design of analog CMOS integrated circuits. New York : McGraw- Hill, 2001. [41] G. R. Guruprasad and C. R. Chetan, “Comparative analysis of PMOS and NMOS based linear regulators with similar power profiles,” Journal of Electrical Systems, vol. 20, no. 3, pp. 1500–1510, 2024. [42] H. -Y. Yang, J. -H. Tsai, T. -W. Huang and H. Wang, "Analysis of a New 33– 58-GHz Doubly Balanced Drain Mixer in 90-nm CMOS Technology," in IEEE Transactions on Microwave Theory and Techniques, vol. 60, no. 4, pp. 1057- 1068, April 2012, doi: 10.1109/TMTT.2012.2183609. [43] 錢俊嘉, "應用於D 頻段之倍頻器、5G 通訊之低雜訊放大器及應用於次世代相控陣列雙向放大器之設計," 碩士, 電信工程學研究所, 國立臺灣大學, 台北市, 2023. [Online]. Available: https://hdl.handle.net/11296/a8cn6g [44] C. Choi, J. H. Son, O. Lee and I. Nam, "A +12-dBm OIP3 60-GHz RF Downconversion Mixer With an Output-Matching, Noise- and Distortion- Canceling Active Balun for 5G Applications," in IEEE Microwave and Wireless Components Letters, vol. 27, no. 3, pp. 284-286, March 2017, doi: 10.1109/LMWC.2017.2661964. [45] M. -G. Kim and T. -Y. Yun, "Analysis and Design of Feedforward Linearity- Improved Mixer Using Inductive Source Degeneration," in IEEE Transactions on Microwave Theory and Techniques, vol. 62, no. 2, pp. 323-331, Feb. 2014, doi: 10.1109/TMTT.2013.2295767. [46] V. Aparin and L. E. Larson, "Modified derivative superposition method for linearizing FET low-noise amplifiers," in IEEE Transactions on Microwave Theory and Techniques, vol. 53, no. 2, pp. 571-581, Feb. 2005, doi: 10.1109/TMTT.2004.840635. [47] F. H. Raab et al., "Power amplifiers and transmitters for RF and microwave," in IEEE Transactions on Microwave Theory and Techniques, vol. 50, no. 3, pp. 814-826, March 2002, doi: 10.1109/22.989965. [48] B. Yoon, I. S. Han, J. Kim and I. Ju, "A Compact, Highly Linear Ku-Band SiGe HBT Power Amplifier Using Shared Single Center-Tap Four-Way Output Transformer Balun for Emerging Low Earth Orbit SATCOM Phased-Array Transmitter," 2024 IEEE Radio Frequency Integrated Circuits Symposium (RFIC), Washington, DC, USA, 2024, pp. 295-298, doi: 10.1109/RFIC61187.2024.10600029. [49] 黃宏源 "應用於第五代行動通訊系統之毫米波功率放大器與微波高功率放大器模組之研究," 碩士, 電信工程學研究所, 國立臺灣大學, 台北市, 2022. [Online]. Available: https://hdl.handle.net/11296/48295e [50] WIN Semiconductors Corp., TS1901002 WIN PIH1-10 Technology Summary (Rev. 3), proprietary internal report, Taoyuan, Taiwan, 2020. (Access restricted by NDA agreement.) [51] S. C. Cripps, RF Power Amplifiers for Wireless Communications, 2nd ed., Artech House, 2006. [52] 閻荷青, "應用於5G 之Ka-band 砷化鎵功率放大器穩定度分析與 28 奈米 CMOS 寬頻功率放大器之線性化研究," 碩士, 電信工程學研究所, 國立臺灣大學, 台北市, 2021. [53] S. Oh et al., "A Ku-Band 2-Stage Differential Doherty Power Amplifier with Compact Asymmetric Doherty Combiner Based on Virtual Stub in 0.15-μm GaAs pHEMT," 2025 IEEE Radio Frequency Integrated Circuits Symposium (RFIC), San Francisco, CA, USA, 2025, pp. 59-62, doi: 10.1109/RFIC61188.2025.11082829. [54] 張洋, "毫米波高功率及高效率功率放大器之設計," 碩士, 電信工程學研究所, 國立臺灣大學, 台北市, 2019. [Online]. Available: https://hdl.handle.net/11296/3v685v [55] “5G NR band" https://zh.wikipedia.org/zhtw/ 5G_NR%E9%A2%91%E6%AE%B5(accessed. [56] Gallium Nitride (GaN) versus Silicon Carbide (SiC) In The High Frequency (RF) and Power Switching Applications [Online]. Available: https://www.richardsonrfpd.com/docs/rfpd/Microsemi-AComparison- of-Gallium-Nitride-Versus-Silicon-Carbide.pdf [57] U. K. Mishra, L. Shen, T. E. Kazior and Y. -F. Wu, "GaN-Based RF Power Devices and Amplifiers," in Proceedings of the IEEE, vol. 96, no. 2, pp. 287- 305, Feb. 2008, doi: 10.1109/JPROC.2007.911060. [58] M. S. Mugisho, C. Friesicke, M. Ayad, T. Maier and R. Quay, "A Ka-Band GaN Doherty Power Amplifier with High Efficiency Over a Fractional Bandwidth of 20.4%," 2025 IEEE/MTT-S International Microwave Symposium - IMS 2025, San Francisco, CA, USA, 2025, pp. 651-654, doi: 10.1109/IMS40360.2025.11103807. [59] QPF4005_PK020_Datasheet https://www.qorvo.com/products/p/QPF4005#documents [60] WIN Semiconductors Corp., GaN12_Technology_Introduction.pdf, proprietary internal report, Taoyuan, Taiwan, 2023. (Access restricted by NDA agreement.) [61] WIN Semiconductors Corp., NP12-01 0.12um GaN HEMT Model Handbook_Rev.1.0.0.pdf, proprietary internal report, Taoyuan, Taiwan, 2023. (Access restricted by NDA agreement.) [62] 蕭元鴻, "互補式金氧半場效電晶體毫米波頻段功率放大器研製與效率改善之研究," 碩士, 電信工程學研究所, 國立臺灣大學, 台北市, 2012. [Online]. Available: https://hdl.handle.net/11296/bnh4pn [63] 周正峯, "微波低雜訊放大器及使用寬頻變壓器對稱放射狀功率結合技術之毫米波功率放大器研究," 碩士, 電信工程學研究所, 國立臺灣大學, 台北市, 2016. [Online]. Available: https://hdl.handle.net/11296/c3u7e5 [64] 呂柏澤, "天文接收機之放大器和第五代行動通訊之功率放大器的研究," 碩士, 電信工程學研究所, 國立臺灣大學, 台北市, 2020. [Online]. Available: https://hdl.handle.net/11296/caa4qz [65] "MICRWAVES101." https://www.microwaves101.com/ (accessed. [66] B. Razavi, RF Microelectronics, 2nd ed. Upper Saddle River, NJ, USA: Prentice Hall, 2012. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/101262 | - |
| dc.description.abstract | 本論文內容主要分為三個部分。第一部分為使用 90 奈米互補式金氧半導體製程所實現之具線性化架構的主動式巴倫寬頻降頻混頻器之設計與量測結果。第二部分為應用於低軌道衛星發射機的 Ku 頻段功率放大器,採用 0.18 微米砷化鎵偽晶高電子遷移率電晶體製程進行設計與實作。第三部分則為應用於 5G 通訊系統之38 GHz 高功率放大器,採用 0.12 微米氮化鎵高電子遷移率電晶體製程進行設計與量測。
在第一部分中,所提出的混頻器利用馬向巴倫提供寬頻差動射頻輸入訊號,並採用 NMOS 主動式負載以提升電路的線性度與輸出壓縮點。此外,於輸出端配置主動式巴倫以將低頻差動訊號轉換為單端輸出,並引入一組線性化輔助電路以進一步改善三階互調失真。量測結果顯示,該混頻器之最大轉換增益為 −4.6 dB,射頻頻寬範圍涵蓋36 至 88 GHz。當線性化輔助電路啟用時,IM3 可降低約 7 dB,證實其具有效的線性化效果。整體晶片含 pad 的面積為 0.38 mm²。 第二部分中,提出一個三級共源極架構之 Ku 頻段功率放大器,偏壓於 class AB 區域以兼顧增益、輸出功率與功率附加效率(PAE),並於訊號路徑串接小阻值電阻以提升穩定性。量測結果顯示,該功率放大器最大的小訊號增益為 25.8 dB, 3 dB 頻寬涵蓋 9.3 至 14.9 GHz;大訊號操作下輸出功率達 27.1 dBm,功率附加效率超過 30 %,晶片總面積為 2.28 mm²。 最後,第三部分提出一個兩級共源極架構之 38 GHz 高功率放大器,並將兩路放大器做功率合成以提升輸出功率。電路中驅動級偏壓於 class AB 以維持效率,功率級則偏壓於class A 以確保線性度與輸出功率。量測結果顯示,此功率放大器具有 20.7 dB 小訊號增益,於 38 GHz 輸出功率達 36.2 dBm,功率附加效率為 31.3 %,晶片面積為 5 mm²。 | zh_TW |
| dc.description.abstract | This thesis consists of three parts. The first part presents the design and measurement results of a broadband down-conversion mixer with linearity-improved active IF balun, implemented in a 90-nm CMOS process. The second part describes a Ku-band power amplifier designed and fabricated in a 0.18-µm GaAs pseudomorphic high electron mobility transistor (pHEMT) process for low-Earth-orbit (LEO) satellite transmitters. The third part introduces a 38-GHz high-power amplifier implemented in a 0.12-µm GaN high electron mobility transistor (HEMT) process for 5G communication systems.
In the first part, the proposed down-conversion mixer employs a Marchand balun to generate a wideband differential RF signal, while an NMOS active load is utilized to improve linearity and the input 1-dB compression point (IP1dB). An active balun at the output converts the low-frequency differential signal into a single-ended output, and an auxiliary linearization circuit is introduced to further suppress third-order intermodulation (IM3). Measurement results show that the proposed mixer achieves a maximum conversion gain of −4.6 dB with an RF bandwidth extending from 36 to 88 GHz. With the auxiliary circuit enabled, IM3 is reduced by approximately 7 dB, demonstrating effective linearity enhancement. The total chip area, including pads, is 0.38 mm². In the second part, a three-stage common-source Ku-band power amplifier is presented. The amplifier operates in class-AB bias to achieve a good balance among gain, output power, and power-added efficiency (PAE), with small series resistors inserted along the signal path for stability improvement. Measurement results indicate a maximum small-signal gain of 25.8 dB, a 3-dB bandwidth from 9.3 GHz to 14.9 GHz, a saturated output power of approximately 27.1 dBm, and a PAE exceeding 30 %. The total chip area is 2.28 mm². The third part presents a 38-GHz high-power amplifier employing a two-stage common-source configuration with 2-ways power combining. The driver stage is biased in class-AB to maintain high efficiency, while the power stage operates in class-A to ensure high output power and linearity. Measurement results demonstrate a small-signal gain of 20.7 dB, a saturated output power of 36.2 dBm at 38 GHz, and a power-added efficiency of 31.3 %. The overall chip area is 5 mm². | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2026-01-13T16:08:08Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2026-01-13T16:08:08Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 口試委員審定書 ............................................................................................................... i
致謝.................................................................................................................................. ii 中文摘要......................................................................................................................... iii ABSTRACT .................................................................................................................... iv CONTENTS .................................................................................................................... vi LIST OF FIGURES ......................................................................................................... ix LIST OF TABLES ........................................................................................................ xvii Chapter 1 Introduction ..............................................................................................1 1.1 Background and Motivation ...........................................................................1 1.1.1 Wideband and High Linearity Mixer in CMOS Process.......................1 1.1.2 Low Earth Orbit Satellite Communication System...............................2 1.1.3 5G Communication System ..................................................................3 1.2 Literature Surveys...........................................................................................4 1.2.1 Down-Conversion Mixers in CMOS Process .......................................4 1.2.2 Power Amplifier in GaAs pHEMT Process ..........................................7 1.2.3 Power Amplifier in GaN HEMT Process ............................................10 1.3 Contributions ................................................................................................13 1.3.1 Broadband down conversion mixer in CMOS process .......................13 1.3.2 Ku-band PA in GaAs pHEMT Process................................................14 1.3.3 Ka-band PA in GaN HEMT Process ...................................................14 1.4 Thesis Organization ...................................................................................... 15 Chapter 2 Design of A Broadband Down-Conversion Mixer with Linearity-Improved Active IF Balun in 90-nm CMOS Process ..........................17 2.1 Introduction...................................................................................................17 2.2 Design Procedure of the Mixer.....................................................................18 2.2.1 Switching Stage Design ......................................................................18 2.2.2 Marchand Balun Design......................................................................27 2.2.3 Linearity-Improvement Active IF Balun Design ................................31 2.2.4 Output Buffer Design ..........................................................................37 2.3 Circuit Schematic and Simulation ................................................................39 2.4 Measurement Results....................................................................................47 2.5 Summary.......................................................................................................52 Chapter 3 Design of A 10.5–14.7 GHz Power Amplifier in 0.18 μm GaAs pHEMT Process for Low Earth Orbit Satellite Communication Systems ......54 3.1 Introduction...................................................................................................54 3.2 Design Procedure of the Power Amplifier ....................................................57 3.2.1 Process Characteristics ........................................................................57 3.2.2 Power Stage Design ............................................................................57 3.2.3 Power Budget and Lossy Matching ....................................................72 3.2.4 Driver Stage and Matching Networks Design ....................................75 3.3 Circuit Schematic and Simulation ................................................................81 3.4 Measurement Results....................................................................................95 3.5 Summary.....................................................................................................100 Chapter 4 A 38 GHz Power Amplifier in 0.12 μm GaN HEMT Process for 5G Communication Systems .....................................................................102 4.1 Introduction.................................................................................................102 4.2 Design Procedure of the Power Amplifier ..................................................105 4.2.1 Process Characteristic .......................................................................105 4.2.2 Power Stage Design ..........................................................................110 4.2.3 Power & Gain Budget Plan ...............................................................118 4.2.3 Driver Stage and Matching Networks Design ..................................121 4.3 Circuit Schematic and Simulation ..............................................................125 4.4 Measurement Results..................................................................................132 4.5 Discussion...................................................................................................138 4.6 Summary.....................................................................................................139 Chapter 5 Conclusion ............................................................................................142 REFERENCES ..............................................................................................................144 | - |
| dc.language.iso | en | - |
| dc.subject | 互補式金氧半導體 | - |
| dc.subject | 砷化鎵偽晶高電子遷移率電晶體 | - |
| dc.subject | 氮化鎵高電子遷移率電晶體 | - |
| dc.subject | 降頻混頻器 | - |
| dc.subject | 功率放大器 | - |
| dc.subject | 線性度 | - |
| dc.subject | 寬頻 | - |
| dc.subject | Ku 頻段 | - |
| dc.subject | 低軌道衛星 | - |
| dc.subject | 5G 通訊系統 | - |
| dc.subject | CMOS | - |
| dc.subject | GaAs pHEMT | - |
| dc.subject | GaN HEMT | - |
| dc.subject | down-conversion mixer | - |
| dc.subject | power amplifier | - |
| dc.subject | linearity | - |
| dc.subject | broadband | - |
| dc.subject | Ku-band | - |
| dc.subject | low-Earth-orbit satellite | - |
| dc.subject | 5G communication systems | - |
| dc.title | 寬頻線性化降頻混頻器、應用於低軌道衛星通訊系統之功率放大器及 Ka 頻段氮化鎵功率放大器之研究 | zh_TW |
| dc.title | Research of Broadband Linearized Down Conversion Mixer, Power Amplifier for LEO Satellite Communication System, and Ka-band GaN Power Amplifier | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 114-1 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 黃天偉;蔡政翰;張鴻埜;王雲杉 | zh_TW |
| dc.contributor.oralexamcommittee | Tian-Wei Huang;Jeng-Han Tsai;Hong-Yeh Chang;Yun-Shan Wang | en |
| dc.subject.keyword | 互補式金氧半導體,砷化鎵偽晶高電子遷移率電晶體氮化鎵高電子遷移率電晶體降頻混頻器功率放大器線性度寬頻Ku 頻段低軌道衛星5G 通訊系統 | zh_TW |
| dc.subject.keyword | CMOS,GaAs pHEMTGaN HEMTdown-conversion mixerpower amplifierlinearitybroadbandKu-bandlow-Earth-orbit satellite5G communication systems | en |
| dc.relation.page | 149 | - |
| dc.identifier.doi | 10.6342/NTU202600010 | - |
| dc.rights.note | 同意授權(全球公開) | - |
| dc.date.accepted | 2026-01-05 | - |
| dc.contributor.author-college | 電機資訊學院 | - |
| dc.contributor.author-dept | 電信工程學研究所 | - |
| dc.date.embargo-lift | 2026-01-14 | - |
| 顯示於系所單位: | 電信工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-114-1.pdf | 6.42 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
