Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 食品科技研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/101205
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor潘敏雄zh_TW
dc.contributor.advisorMin-Hsiung Panen
dc.contributor.author許豈毓zh_TW
dc.contributor.authorKai-Yu Hsuen
dc.date.accessioned2025-12-31T16:19:03Z-
dc.date.available2026-01-01-
dc.date.copyright2025-12-31-
dc.date.issued2025-
dc.date.submitted2025-12-16-
dc.identifier.citationAbenavoli, L., et al. (2019). Gut microbiota and obesity: a role for probiotics. Nutrients, 11(11), 2690.
Adeyeye, S. A. O. (2020). Heterocyclic amines and polycyclic aromatic hydrocarbons in cooked meat products: a review. Polycyclic Aromatic Compounds, 40(5), 1557-1567.
Aggarwal, B. B., & Harikumar, K. B. (2009). Potential therapeutic effects of curcumin, the anti-inflammatory agent, against neurodegenerative, cardiovascular, pulmonary, metabolic, autoimmune and neoplastic diseases. The international journal of biochemistry & cell biology, 41(1), 40-59.
Aggarwal, B. B., et al. (2007). The molecular targets and therapeutic uses of curcumin in health and disease (Vol. 595). Springer Science & Business Media.
Aggarwal, B. B., et al. (2013). Curcumin‐free turmeric exhibits anti‐inflammatory and anticancer activities: Identification of novel components of turmeric. Molecular Nutrition & Food Research, 57(9), 1529-1542.
Ahluwalia, B., et al. (2018). Immunopathogenesis of inflammatory bowel disease and mechanisms of biological therapies. Scandinavian Journal of Gastroenterology, 53(4), 379-389.
Ajayi, B. O., et al. (2016). Benzo(a)pyrene induces oxidative stress, pro-inflammatory cytokines, expression of nuclear factor-kappa B and deregulation of wnt/beta-catenin signaling in colons of BALB/c mice. Food Chem Toxicol, 95, 42-51.
Ak, T., & Gülçin, İ. (2008). Antioxidant and radical scavenging properties of curcumin. Chemico-Biological Interactions, 174(1), 27-37.
Al-Sadi, R., et al. (2009). Mechanism of cytokine modulation of epithelial tight junction barrier. Frontiers in bioscience: a journal and virtual library, 14, 2765.
Alan, S., et al. (2010). Calcium inhibits paracellular sodium conductance through claudin-2 by competitive binding. Journal of Biological Chemistry, 285(47), 37060-37069.
Alderton, W. K., et al. (2001). Nitric oxide synthases: structure, function and inhibition. Biochemical Journal, 357(3), 593-615.
Amalraj, A., et al. (2017). Biological activities of curcuminoids, other biomolecules from turmeric and their derivatives–A review. Journal of traditional and complementary medicine, 7(2), 205-233.
Anand, P., et al. (2008). Biological activities of curcumin and its analogues (Congeners) made by man and Mother Nature. Biochemical Pharmacology, 76(11), 1590-1611.
Ananthakrishnan, A. N. (2015). Epidemiology and risk factors for IBD. Nature reviews Gastroenterology & hepatology, 12(4), 205-217.
Ashraf, K., et al. (2015). Determination of Curcuminoids in Curcuma longa Linn. by UPLC/Q-TOF–MS: An Application in Turmeric Cultivation. Journal of Chromatographic Science, 53(8), 1346-1352.
Association, A. D. (2021). 2. Classification and diagnosis of diabetes: Standards of Medical Care in Diabetes—2021. Diabetes Care, 44(Supplement 1), S15-S33.
Attene-Ramos, M. S., et al. (2006). Evidence That Hydrogen Sulfide Is a Genotoxic Agent. Molecular Cancer Research, 4(1), 9-14.
Bäck, M., et al. (2012). Cyclooxygenase-2 inhibitors and cardiovascular risk in a nation-wide cohort study after the withdrawal of rofecoxib. European Heart Journal, 33(15), 1928-1933.
Bailey, S. A., et al. (2004). Relationships between organ weight and body/brain weight in the rat: what is the best analytical endpoint? Toxicologic Pathology, 32(4), 448-466.
Balasubramanian, S., & Eckert, R. L. (2007). Curcumin suppresses AP1 transcription factor-dependent differentiation and activates apoptosis in human epidermal keratinocytes. Journal of Biological Chemistry, 282(9), 6707-6715.
Balestrieri, P., et al. (2020). Nutritional aspects in inflammatory bowel diseases. Nutrients, 12(2), 372.
Barone, M., et al. (2018). A versatile new model of chemically induced chronic colitis using an outbred murine strain. Frontiers in Microbiology, 9, 565.
Barros, L., et al. (2007). Total phenols, ascorbic acid, β-carotene and lycopene in Portuguese wild edible mushrooms and their antioxidant activities. Food Chemistry, 103(2), 413-419.
Bauer, J. H., & Helfand, S. L. (2006). New tricks of an old molecule: lifespan regulation by p53. Aging Cell, 5(5), 437-440.
Beaugerie, L., & Itzkowitz, S. H. (2015). Cancers complicating inflammatory bowel disease. New England Journal of Medicine, 372(15), 1441-1452.
Becker, C., et al. (2013). Complex roles of caspases in the pathogenesis of inflammatory bowel disease. Gastroenterology, 144(2), 283-293.
Beurel, E., et al. (2015). Glycogen synthase kinase-3 (GSK3): regulation, actions, and diseases. Pharmacol Ther, 148, 114-131.
Blander, J. M. (2019). A new approach for inflammatory bowel disease therapy. Nature Medicine, 25(4), 545-546.
Borges, L. V., et al. (2018). Fecal occult blood: a comparison of chemical and immunochemical tests. Arquivos de Gastroenterologia, 55(2), 128-132.
Bounaama, A., et al. (2012). Short curcumin treatment modulates oxidative stress, arginase activity, aberrant crypt foci, and TGF-β1 and HES-1 transcripts in 1, 2-dimethylhydrazine-colon carcinogenesis in mice. Toxicology, 302(2-3), 308-317.
Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72(1), 248-254.
Bray, F., et al. (2024). Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: A Cancer Journal for Clinicians, 74(3), 229-263.
Bresser, L. R., et al. (2022). Gut microbiota in nutrition and health with a special focus on specific bacterial clusters. Cells, 11(19), 3091.
Bronte, V., & Pittet, Mikael J. (2013). The Spleen in Local and Systemic Regulation of Immunity. Immunity, 39(5), 806-818.
Buhrmann, C., et al. (2019). Evidence that Calebin A, a component of curcuma longa suppresses NF-κB mediated proliferation, invasion and metastasis of human colorectal cancer induced by TNF-β (Lymphotoxin). Nutrients, 11(12), 2904.
Buret, A. G., et al. (2022). Effects of Hydrogen Sulfide on the Microbiome: From Toxicity to Therapy. Antioxidants & redox signaling, 36(4-6), 211-219.
Cai, Z., et al. (2021). Treatment of inflammatory bowel disease: a comprehensive review. Frontiers in medicine, 8, 765474.
Carrato, A. (2008). Adjuvant treatment of colorectal cancer. Gastrointestinal cancer research: GCR, 2(4 Suppl 2), S42.
Carretta, M. D., et al. (2021). Participation of Short-Chain Fatty Acids and Their Receptors in Gut Inflammation and Colon Cancer. Frontiers in Physiology, 12, 662739.
Carroll, R. E., et al. (2011). Phase IIa clinical trial of curcumin for the prevention of colorectal neoplasia. Cancer prevention research, 4(3), 354-364.
Carroll, R. E., et al. (2011). Phase IIa clinical trial of curcumin for the prevention of colorectal neoplasia. Cancer Prevention Research (Philadelphia, Pa.), 4(3), 354-364.
Caruso, R., et al. (2020). Host–microbiota interactions in inflammatory bowel disease. Nature Reviews Immunology, 20(7), 411-426.
Charlet, R., et al. (2020). Bacteroides thetaiotaomicron and Lactobacillus johnsonii modulate intestinal inflammation and eliminate fungi via enzymatic hydrolysis of the fungal cell wall. Scientific Reports, 10(1), 11510.
Chassaing, B., et al. (2014). Dextran sulfate sodium (DSS)‐induced colitis in mice. Current Protocols in Immunology, 104(1), 15.25. 11-15.25. 14.
Chattopadhyay, I., et al. (2004). Turmeric and curcumin: Biological actions and medicinal applications. Current Science, 44-53.
Chelakkot, C., et al. (2018). Mechanisms regulating intestinal barrier integrity and its pathological implications. Experimental and Molecular Medicine, 50(8), 1-9.
Chen, W., et al. (2012). Human intestinal lumen and mucosa-associated microbiota in patients with colorectal cancer. PloS One, 7(6), e39743.
Chen, Y., et al. (2021). Role and mechanism of gut microbiota in human disease. Frontiers in cellular and infection microbiology, 11, 86.
Chiou, Y.-S., et al. (2012). Peracetylated (−)-epigallocatechin-3-gallate (AcEGCG) potently suppresses dextran sulfate sodium-induced colitis and colon tumorigenesis in mice. Journal of agricultural and food chemistry, 60(13), 3441-3451.
Chou, J.-W., et al. (2019). Epidemiology and clinical outcomes of inflammatory bowel disease: a hospital-based study in central Taiwan. Gastroenterology Research and Practice, 2019.
Chuengsamarn, S., et al. (2012). Curcumin extract for prevention of type 2 diabetes. Diabetes Care, 35(11), 2121-2127.
Chung, H.-T., et al. (2001). Nitric oxide as a bioregulator of apoptosis. Biochemical and Biophysical Research Communications, 282(5), 1075-1079.
Ciolino, H. P., et al. (1998). Effect of Curcumin on the Aryl Hydrocarbon Receptor and Cytochrome P450 1A1 in MCF-7 Human Breast Carcinoma Cells. Biochemical Pharmacology, 56(2), 197-206.
Cooper, H. S., et al. (1993). Clinicopathologic study of dextran sulfate sodium experimental murine colitis. Laboratory Investigation, 69(2), 238-249.
Cosnes, J., et al. (2011). Epidemiology and natural history of inflammatory bowel diseases. Gastroenterology, 140(6), 1785-1794. e1784.
Cox-Georgian, D., et al. (2019). Therapeutic and medicinal uses of terpenes. Medicinal plants: from farm to pharmacy, 333-359.
Cruz-Correa, M., et al. (2018). Efficacy and safety of curcumin in treatment of intestinal adenomas in patients with familial adenomatous polyposis. Gastroenterology, 155(3), 668-673.
Cruz–Correa, M., et al. (2006). Combination treatment with curcumin and quercetin of adenomas in familial adenomatous polyposis. Clinical Gastroenterology and Hepatology, 4(8), 1035-1038.
Cui, X., et al. (2010). Resveratrol suppresses colitis and colon cancer associated with colitis. Cancer Prevention Research (Philadelphia, Pa.), 3(4), 549-559.
Dai, P., et al. (2017). Attenuation of oxidative stress-induced osteoblast apoptosis by curcumin is associated with preservation of mitochondrial functions and increased Akt-GSK3β signaling. Cellular Physiology and Biochemistry, 41(2), 661-677.
Danese, S., et al. (2013). the role of anti‐TNF in the management of ulcerative colitis–past, present and future. Alimentary Pharmacology and Therapeutics, 37(9), 855-866.
De Fazio, L., et al. (2014). Longitudinal analysis of inflammation and microbiota dynamics in a model of mild chronic dextran sulfate sodium-induced colitis in mice. World journal of gastroenterology: WJG, 20(8), 2051.
De, R., et al. (2009). Antimicrobial activity of curcumin against Helicobacter pylori isolates from India and during infections in mice. Antimicrobial Agents and Chemotherapy, 53(4), 1592-1597.
De Robertis, M., et al. (2011). The AOM/DSS murine model for the study of colon carcinogenesis: From pathways to diagnosis and therapy studies. Journal of Carcinogenesis, 10, 9.
Deguchi, Y., et al. (2007). Curcumin prevents the development of dextran sulfate sodium (DSS)-induced experimental colitis. Digestive Diseases and Sciences, 52, 2993-2998.
Delgado, M. E., et al. (2016). Cell death at the intestinal epithelial front line. The FEBS journal, 283(14), 2701-2719.
Den Besten, G., et al. (2013). The role of short-chain fatty acids in the interplay between diet, gut microbiota, and host energy metabolism. Journal of Lipid Research, 54(9), 2325-2340.
Devasena, T., et al. (2002). Bis-1, 7-(2-hydroxyphenyl)-hepta-1, 6-diene-3, 5-dione (a curcumin analog) ameliorates DMH-induced hepatic oxidative stress during colon carcinogenesis. Pharmacological Research, 46(1), 39-45.
Dhawan, P., et al. (2011). Claudin-2 expression increases tumorigenicity of colon cancer cells: role of epidermal growth factor receptor activation. Oncogene, 30(29), 3234-3247.
Divya, C. S., & Pillai, M. R. (2006). Antitumor action of curcumin in human papillomavirus associated cells involves downregulation of viral oncogenes, prevention of NFkB and AP‐1 translocation, and modulation of apoptosis. Molecular Carcinogenesis: Published in cooperation with the University of Texas MD Anderson Cancer Center, 45(5), 320-332.
Dorai, T., et al. (2001). Therapeutic potential of curcumin in human prostate cancer. III. Curcumin inhibits proliferation, induces apoptosis, and inhibits angiogenesis of LNCaP prostate cancer cells in vivo. The prostate, 47(4), 293-303.
Du, M., et al. (2023). Associations between polymorphisms in leptin and leptin receptor genes and colorectal cancer survival. Cancer Biol Med, 20(6), 438-451.
Edwards, R. L., et al. (2020). Mechanistic differences in the inhibition of NF-κB by turmeric and its curcuminoid constituents. Journal of Agricultural and Food Chemistry, 68(22), 6154-6160.
Edwards, R. L., et al. (2017). The anti-inflammatory activity of curcumin is mediated by its oxidative metabolites. Journal of Biological Chemistry, 292(52), 21243-21252.
Eichele, D. D., & Kharbanda, K. K. (2017). Dextran sodium sulfate colitis murine model: An indispensable tool for advancing our understanding of inflammatory bowel diseases pathogenesis. World Journal of Gastroenterology, 23(33), 6016.
Eisenreich, A., et al. (2023). 3-MCPD as contaminant in processed foods: State of knowledge and remaining challenges. Food Chemistry, 403, 134332.
Erben, U., et al. (2014). A guide to histomorphological evaluation of intestinal inflammation in mouse models. International Journal of Clinical and Experimental Pathology, 7(8), 4557.
Erpina, E., et al. (2017). Simultaneous quantification of curcuminoids and xanthorrhizol in Curcuma xanthorrhiza by high-performance liquid chromatography. Journal of Liquid Chromatography & Related Technologies, 40(12), 635-639.
Escaffit, F., et al. (2005). Differential expression of claudin‐2 along the human intestine: Implication of GATA‐4 in the maintenance of claudin‐2 in differentiating cells. Journal of Cellular Physiology, 203(1), 15-26.
Fan-Jiang, P. Y., et al. (2021). Pterostilbene attenuates high-fat diet and dextran sulfate sodium-induced colitis via suppressing inflammation and intestinal fibrosis in mice. Journal of Agricultural and Food Chemistry, 69(25), 7093-7103.
Fatma Aygün, S., & Kabadayi, F. (2005). Determination of benzo [a] pyrene in charcoal grilled meat samples by HPLC with fluorescence detection. International Journal of Food Sciences and Nutrition, 56(8), 581-585.
Feng, P., et al. (2022). Crocetin prolongs recovery period of DSS-induced colitis via altering intestinal microbiome and increasing intestinal permeability. International Journal of Molecular Sciences, 23(7), 3832.
Fike, L. T., et al. (2022). Dietary polyphenols and the risk of colorectal cancer in the prospective Southern Community Cohort Study. The American Journal of Clinical Nutrition, 115(4), 1155-1165.
Fujiwara, H., et al. (2008). Curcumin inhibits glucose production in isolated mice hepatocytes. Diabetes Research and Clinical Practice, 80(2), 185-191.
Gan, L., et al. (2016). Curcumin modulates the effect of histone modification on the expression of chemokines by type II alveolar epithelial cells in a rat COPD model. International Journal of Chronic Obstructive Pulmonary Disease, 2765-2773.
Garcea, G., et al. (2005). Consumption of the putative chemopreventive agent curcumin by cancer patients: assessment of curcumin levels in the colorectum and their pharmacodynamic consequences. Cancer Epidemiology and Prevention Biomarkers, 14(1), 120-125.
Garg, R., et al. (2008). Dietary curcumin modulates transcriptional regulators of phase I and phase II enzymes in benzo[a]pyrene-treated mice: mechanism of its anti-initiating action. Carcinogenesis, 29(5), 1022-1032.
Garg, R., & Maru, G. (2009). Dietary curcumin enhances benzo (a) pyrene-induced apoptosis resulting in a decrease in BPDE-DNA adducts in mice. Journal of Environmental Pathology, Toxicology and Oncology, 28(2).
Gasaly, N., et al. (2021). Butyrate and the Fine-Tuning of Colonic Homeostasis: Implication for Inflammatory Bowel Diseases. International Journal of Molecular Sciences, 22(6), 3061.
Genua, F., et al. (2021). The role of gut barrier dysfunction and microbiome dysbiosis in colorectal cancer development. Frontiers in Oncology, 11, 626349.
Gieryńska, M., et al. (2022). Integrity of the intestinal barrier: The involvement of epithelial cells and microbiota—A mutual relationship. Animals, 12(2), 145.
Glišić, S., et al. (2015). Spectroscopic study of copper (II) complexes with carboxymethyl dextran and dextran sulfate. Russian Journal of Physical Chemistry A, 89, 1254-1262.
Gong, Z., et al. (2018). Curcumin alleviates DSS-induced colitis via inhibiting NLRP3 inflammsome activation and IL-1β production. Molecular Immunology, 104, 11-19.
Gordon, O. N., et al. (2015). Oxidative transformation of demethoxy-and bisdemethoxycurcumin: products, mechanism of formation, and poisoning of human topoisomerase IIα. Chemical Research in Toxicology, 28(5), 989-996.
Grant, D. (1991). Detoxification pathways in the liver. Journal of Inherited Metabolic Disease, 14, 421-430.
Grivennikov, S., et al. (2009). IL-6 and Stat3 are required for survival of intestinal epithelial cells and development of colitis-associated cancer. Cancer Cell, 15(2), 103-113.
Gülçin, İ. (2006). Antioxidant and antiradical activities of L-carnitine. Life Sciences, 78(8), 803-811.
Günther, C., et al. (2011). Caspase-8 regulates TNF-α-induced epithelial necroptosis and terminal ileitis. Nature, 477(7364), 335-339.
Guo, X., et al. (2022). Curcumin Alleviates Dextran Sulfate Sodium‐Induced Colitis in Mice Through Regulating Gut Microbiota. Molecular Nutrition & Food Research, 66(8), 2100943.
Gupta, S. C., et al. (2012). Discovery of curcumin, a component of golden spice, and its miraculous biological activities. Clinical and Experimental Pharmacology and Physiology, 39(3), 283-299.
H Lajis, N., et al. (2020). Mechanism of anti-cancer activity of curcumin on androgen-dependent and androgen-independent prostate cancer. Nutrients, 12(3), 679.
Haas, K. N., & Blanchard, J. L. (2017). Kineothrix alysoides, gen. nov., sp. nov., a saccharolytic butyrate-producer within the family Lachnospiraceae. International Journal of Systematic and Evolutionary Microbiology, 67(2), 402-410.
Haggar, F. A., & Boushey, R. P. (2009). Colorectal cancer epidemiology: incidence, mortality, survival, and risk factors. Clinics in Colon and Rectal Surgery, 22(04), 191-197.
Hakura, A., et al. (2011). Rapid induction of colonic adenocarcinoma in mice exposed to benzo[a]pyrene and dextran sulfate sodium. Food Chem Toxicol, 49(11), 2997-3001.
Halliwell, B., & Gutteridge, J. M. (1990). [1] Role of free radicals and catalytic metal ions in human disease: an overview. Methods in Enzymology, 186, 1-85.
Hamer, H. M., et al. (2008). The role of butyrate on colonic function. Alimentary Pharmacology and Therapeutics, 27(2), 104-119.
Harris, K. L., et al. (2024). Acceleration of benzo(a)pyrene-induced colon carcinogenesis by Western diet in a rat model of colon cancer. Current Research in Toxicology, 6, 100162.
Hasnan, J., et al. (2010). Relationship between apoptotic markers (Bax and Bcl-2) and biochemical markers in type 2 diabetes mellitus. Singapore Medical Journal, 51(1), 50.
He, Y., et al. (2019). The Functional Role of Fecal Microbiota Transplantation on Dextran Sulfate Sodium-Induced Colitis in Mice. Frontiers in Cellular and Infection Microbiology, 9, 393.
Heller, F., et al. (2005). Interleukin-13 is the key effector Th2 cytokine in ulcerative colitis that affects epithelial tight junctions, apoptosis, and cell restitution. Gastroenterology, 129(2), 550-564.
Hernández-Chirlaque, C., et al. (2016). Germ-free and antibiotic-treated mice are highly susceptible to epithelial injury in DSS colitis. Journal of Crohn's and Colitis, 10(11), 1324-1335.
Hossen, I., et al. (2022). Phytochemicals and inflammatory bowel disease: a review. Critical Reviews in Food Science and Nutrition, 60(8), 1321-1345.
Hsu, K.-Y., & Chen, B.-H. (2020). Analysis and reduction of heterocyclic amines and cholesterol oxidation products in chicken by controlling flavorings and roasting condition. Food Research International, 131, 109004.
Hsu, K.-Y., et al. (2023). The therapeutic potential of curcumin and its related substances in turmeric: From raw material selection to application strategies. journal of food and drug analysis, 31(2), 194.
Hsu, K.-Y., et al. (2025). Bisdemethoxycurcumin and Curcumin Alleviate Inflammatory Bowel Disease by Maintaining Intestinal Epithelial Integrity and Regulating Gut Microbiota in Mice. Journal of Agricultural and Food Chemistry, 73(6), 3494-3506.
Hu, J.-C. E., et al. (2021). Expression of tricellular tight junction proteins and the paracellular macromolecule barrier are recovered in remission of ulcerative colitis. BMC Gastroenterology, 21(1), 1-11.
Hu, N., et al. (2017). Effects of dextran sulfate sodium induced experimental colitis on cytochrome P450 activities in rat liver, kidney and intestine. Chemico-Biological Interactions, 271, 48-58.
Huang, T. Y., et al. (2020). Combinational treatment of all‐trans retinoic acid (ATRA) and bisdemethoxycurcumin (BDMC)‐induced apoptosis in liver cancer Hep3B cells. Journal of Food Biochemistry, 44(2), e13122.
Ichim, G., & Tait, S. W. (2016). A fate worse than death: apoptosis as an oncogenic process. Nature Reviews Cancer, 16(8), 539-548.
Ireson, C., et al. (2001). Characterization of metabolites of the chemopreventive agent curcumin in human and rat hepatocytes and in the rat in vivo, and evaluation of their ability to inhibit phorbol ester-induced prostaglandin E2 production. Cancer Research, 61(3), 1058-1064.
Ishida, T., et al. (2022). Oyster (Crassostrea gigas) extract attenuates dextran sulfate sodium-induced acute experimental colitis by improving gut microbiota and short-chain fatty acids compositions in mice. Foods, 11(3), 373.
Jankun, J., et al. (2016). Determining whether curcumin degradation/condensation is actually bioactivation. International Journal of Molecular Medicine, 37(5), 1151-1158.
Jayaprakasha, G. K., et al. (2002). Evaluation of antioxidant activities and antimutagenicity of turmeric oil: a byproduct from curcumin production. Zeitschrift für Naturforschung C, 57(9-10), 828-835.
JECFA. (2004). Sixty‐first report of the Joint FAO/WHO Expert Committee on Food Additives.
Jiang, T., et al. (2021). Extraction, purification and applications of curcumin from plant materials-A comprehensive review. Trends in Food Science & Technology, 112, 419-430.
Jiang, X.-T., et al. (2013). Illumina sequencing of 16S rRNA tag revealed spatial variations of bacterial communities in a mangrove wetland. Microbial Ecology, 66, 96-104.
Jin, J. (2014). Inflammatory bowel disease. Jama, 311(19), 2034-2034.
Johnson, J. J., & Mukhtar, H. (2007). Curcumin for chemoprevention of colon cancer. Cancer Letters, 255(2), 170-181.
Jung, B., et al. (2017). Transforming Growth Factor beta Superfamily Signaling in Development of Colorectal Cancer. Gastroenterology, 152(1), 36-52.
Jung, E. M., et al. (2005). Curcumin sensitizes tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-induced apoptosis through reactive oxygen species-mediated upregulation of death receptor 5 (DR5). Carcinogenesis, 26(11), 1905-1913.
Jung, K. K., et al. (2006). Inhibitory effect of curcumin on nitric oxide production from lipopolysaccharide-activated primary microglia. Life Sciences, 79(21), 2022-2031.
Kameyama, K., & Itoh, K. (2014). Intestinal colonization by a Lachnospiraceae bacterium contributes to the development of diabetes in obese mice. Microbes and Environments, 29(4), 427-430.
Kantari, C., & Walczak, H. (2011). Caspase-8 and bid: caught in the act between death receptors and mitochondria. Biochimica et Biophysica Acta (BBA)-Molecular Cell Research, 1813(4), 558-563.
Kaplan, G. G. (2015). The global burden of IBD: from 2015 to 2025. Nature reviews Gastroenterology & hepatology, 12(12), 720-727.
Kaplan, G. G., & Windsor, J. W. (2021). The four epidemiological stages in the global evolution of inflammatory bowel disease. Nature reviews Gastroenterology & hepatology, 18(1), 56-66.
Khan, I., et al. (2019). Alteration of Gut Microbiota in Inflammatory Bowel Disease (IBD): Cause or Consequence? IBD Treatment Targeting the Gut Microbiome. Pathogens, 8(3), 126.
Kim, K. M., et al. (2008). Involvement of anti-inflammatory heme oxygenase-1 in the inhibitory effect of curcumin on the expression of pro-inflammatory inducible nitric oxide synthase in RAW264. 7 macrophages. Biomedicine and Pharmacotherapy, 62(9), 630-636.
Kim, K. S., et al. (2019). Curcumin ameliorates benzo [a] pyrene-induced DNA damages in stomach tissues of Sprague-Dawley rats. International Journal of Molecular Sciences, 20(22), 5533.
Kim, S. H., et al. (2020). Metabolomic Analysis of the Liver of a Dextran Sodium Sulfate-Induced Acute Colitis Mouse Model: Implications of the Gut–Liver Connection. Cells, 9(2), 341.
Kocael, A., et al. (2016). Evaluation of matrix metalloproteinase, myeloperoxidase, and oxidative damage in mesenteric ischemia–reperfusion injury. Human and Experimental Toxicology, 35(8), 851-860.
Kong, R., et al. (2018). Portulaca extract attenuates development of dextran sulfate sodium induced colitis in mice through activation of PPARγ. PPAR research, 2018.
Kuipers, E. J., et al. (2015). Colorectal cancer. Nature reviews Disease primers, 1.
Kulsoom, B., et al. (2018). Bax, Bcl-2, and Bax/Bcl-2 as prognostic markers in acute myeloid leukemia: are we ready for Bcl-2-directed therapy? Cancer Management and Research, 403-416.
Kumar, M., et al. (2019). Integrating omics for a better understanding of Inflammatory Bowel Disease: a step towards personalized medicine. Journal of Translational Medicine, 17, 1-13.
Kunati, S. R., et al. (2018). An LC–MS/MS method for simultaneous determination of curcumin, curcumin glucuronide and curcumin sulfate in a phase II clinical trial. Journal of Pharmaceutical and Biomedical Analysis, 156, 189-198.
Kunnumakkara, A. B., et al. (2008). Curcumin sensitizes human colorectal cancer xenografts in nude mice to γ-radiation by targeting nuclear factor-κB–regulated gene products. Clinical Cancer Research, 14(7), 2128-2136.
Kurup, V. P., & Barrios, C. S. (2008). Immunomodulatory effects of curcumin in allergy. Molecular Nutrition & Food Research, 52(9), 1031-1039.
Kwong, L. N., & Dove, W. F. (2009). APC and its modifiers in colon cancer. Adv Exp Med Biol, 656, 85-106.
Labianca, R., et al. (2004). Colon cancer. Critical Reviews in Oncology/Hematology, 51(2), 145-170.
Lai, C.-S., et al. (2016). Bisdemethoxycurcumin inhibits adipogenesis in 3T3-L1 preadipocytes and suppresses obesity in high-fat diet-fed C57BL/6 mice. Journal of Agricultural and Food Chemistry, 64(4), 821-830.
Lamb, C. A., et al. (2019). British Society of Gastroenterology consensus guidelines on the management of inflammatory bowel disease in adults. Gut, 68(Suppl 3), s1-s106.
Lampe, V., & Milobedzka, J. (1913). Studien über curcumin. Berichte der deutschen chemischen Gesellschaft, 46(2), 2235-2240.
Lantz, R., et al. (2005). The effect of turmeric extracts on inflammatory mediator production. Phytomedicine, 12(6-7), 445-452.
Larrosa, M., et al. (2009). Effect of a low dose of dietary resveratrol on colon microbiota, inflammation and tissue damage in a DSS-induced colitis rat model. Journal of Agricultural and Food Chemistry, 57(6), 2211-2220.
Latruffe, N. (2017). Natural products and inflammation. In: Multidisciplinary Digital Publishing Institute.
Lee, B., et al. (2018). Tight junction in the intestinal epithelium: its association with diseases and regulation by phytochemicals. Journal of immunology research, 2018.
Lee, P. S., et al. (2020). 3'-hydroxypterostilbene potently alleviates obesity exacerbated colitis in mice. Journal of Agricultural and Food Chemistry, 68(19), 5365-5374.
Lévesque, L. E., et al. (2005). The risk for myocardial infarction with cyclooxygenase-2 inhibitors: a population study of elderly adults. Annals of Internal Medicine, 142(7), 481-489.
Li-duan, Z., et al. (2006). Growth inhibition and apoptosis inducing mechanisms of curcumin on human ovarian cancer cell line A2780. Chinese Journal of Integrative Medicine, 12(2), 126-131.
Li, B. R., et al. (2018). In Vitro and In Vivo Approaches to Determine Intestinal Epithelial Cell Permeability. J Vis Exp(140), 57032.
Li, D., et al. (2022). Differential diagnosis of acute and chronic colitis in mice by optical coherence tomography. Quantitative Imaging in Medicine and Surgery, 12(6), 3193.
Li, H.-X., et al. (2014). Isolation of three curcuminoids for stability and simultaneous determination of only using one single standard substance in turmeric colour principles by HPLC with ternary gradient system. LWT-Food Science and Technology, 57(1), 446-451.
Li, M., et al. (2018). Turmeric extract, with absorbable curcumin, has potent anti-metastatic effect in vitro and in vivo. Phytomedicine, 46, 131-141.
Li, R., et al. (2011). Qualitative and quantitative analysis of curcuminoids in herbal medicines derived from Curcuma species. Food Chemistry, 126(4), 1890-1895.
Li, Y.-B., et al. (2013). Bisdemethoxycurcumin suppresses MCF-7 cells proliferation by inducing ROS accumulation and modulating senescence-related pathways. Pharmacological Reports, 65(3), 700-709.
Li, Z.-f., et al. (2008). Morphological changes of blood spleen barrier in portal hypertensive spleen. Chinese Medical Journal, 121(06), 561-565.
Liddicoat, C., et al. (2020). Naturally-diverse airborne environmental microbial exposures modulate the gut microbiome and may provide anxiolytic benefits in mice. Science of the Total Environment, 701, 134684.
Lim, G. P., et al. (2001). The curry spice curcumin reduces oxidative damage and amyloid pathology in an Alzheimer transgenic mouse. Journal of Neuroscience, 21(21), 8370-8377.
Lima, C. F., et al. (2011). Curcumin induces heme oxygenase‐1 in normal human skin fibroblasts through redox signaling: Relevance for anti‐aging intervention. Molecular Nutrition & Food Research, 55(3), 430-442.
Link, A., et al. (2010). Cancer chemoprevention by dietary polyphenols: promising role for epigenetics. Biochemical Pharmacology, 80(12), 1771-1792.
Liu, C., et al. (2022). Natural Products Modulate Cell Apoptosis: A Promising Way for the Treatment of Ulcerative Colitis. Frontiers in Pharmacology, 13, 806148.
Liu, H., et al. (2021). Sodium butyrate inhibits colitis-associated colorectal cancer through preventing the gut microbiota dysbiosis and reducing the expression of NLRP3 and IL-1β. Journal of Functional Foods, 87, 104862.
Liu, L., et al. (2015). Curcumin ameliorates asthmatic airway inflammation by activating nuclear factor‐E2‐related factor 2/haem oxygenase (HO)‐1 signalling pathway. Clinical and Experimental Pharmacology and Physiology, 42(5), 520-529.
Liu, Q., et al. (2009). Curcumin inhibits cell proliferation of MDA-MB-231 and BT-483 breast cancer cells mediated by down-regulation of NFκB, cyclinD and MMP-1 transcription. Phytomedicine, 16(10), 916-922.
Liu, T., et al. (2017). NF-κB signaling in inflammation. Signal transduction and targeted therapy, 2(1), 1-9.
López‐Lázaro, M. (2008). Anticancer and carcinogenic properties of curcumin: considerations for its clinical development as a cancer chemopreventive and chemotherapeutic agent. Molecular Nutrition & Food Research, 52(S1), S103-S127.
Louis, P., & Flint, H. J. (2009). Diversity, metabolism and microbial ecology of butyrate-producing bacteria from the human large intestine. FEMS Microbiology Letters, 294(1), 1-8.
Lovshin, J. A., & Drucker, D. J. (2009). Incretin-based therapies for type 2 diabetes mellitus. Nature Reviews Endocrinology, 5(5), 262-269.
Lu, P. S., et al. (2018). Determination of oral bioavailability of curcuminoid dispersions and nanoemulsions prepared from Curcuma longa Linnaeus. Journal of the Science of Food and Agriculture, 98(1), 51-63.
Ma, T. Y., et al. (2005). Mechanism of TNF-α modulation of Caco-2 intestinal epithelial tight junction barrier: role of myosin light-chain kinase protein expression. American Journal of Physiology-Gastrointestinal and Liver Physiology, 288(3), G422-G430.
Maguire, M., & Maguire, G. (2019). Gut dysbiosis, leaky gut, and intestinal epithelial proliferation in neurological disorders: towards the development of a new therapeutic using amino acids, prebiotics, probiotics, and postbiotics. Reviews in the Neurosciences, 30(2), 179-201.
Mahattanadul, S., et al. (2009). Comparative antiulcer effect of bisdemethoxycurcumin and curcumin in a gastric ulcer model system. Phytomedicine, 16(4), 342-351.
Maier, M. L. V., et al. (2022). Benzo [a] pyrene (BaP) metabolites predominant in human plasma following escalating oral micro-dosing with [14C]-BaP. Environment International, 159, 107045.
Manikandan, R., et al. (2011). Ameliorative effects of curcumin against renal injuries mediated by inducible nitric oxide synthase and nuclear factor kappa B during gentamicin-induced toxicity in Wistar rats. European Journal of Pharmacology, 670(2-3), 578-585.
Maradana, M. R., et al. (2013). Targeted delivery of curcumin for treating type 2 diabetes. Molecular Nutrition & Food Research, 57(9), 1550-1556.
Marchiando, A. M., et al. (2011). The epithelial barrier is maintained by in vivo tight junction expansion during pathologic intestinal epithelial shedding. Gastroenterology, 140(4), 1208-1218. e1202.
Marquez-Ortiz, R. A., et al. (2023). Colonoscopy aspiration lavages for mucosal metataxonomic profiling of spondylarthritis-associated gastrointestinal tract alterations. Scientific Reports, 13(1), 7015.
Martín, R., et al. (2017). Using murine colitis models to analyze probiotics–host interactions. FEMS Microbiology Reviews, 41(Supp_1), S49-S70.
Mashayekhi-Sardoo, H., et al. (2021). Impact of Curcumin on Microsomal Enzyme Activities: Drug Interaction and Chemopreventive Studies. Current Medicinal Chemistry, 28(34), 7122-7140.
Matsuda, T., et al. (2025). Colorectal cancer: epidemiology, risk factors, and public health strategies. Digestion, 106(2), 91-99.
McFadden, R.-M. T., et al. (2015). The role of curcumin in modulating colonic microbiota during colitis and colon cancer prevention. Inflammatory Bowel Diseases, 21(11), 2483-2494.
Meehan, C. J., & Beiko, R. G. (2014). A phylogenomic view of ecological specialization in the Lachnospiraceae, a family of digestive tract-associated bacteria. Genome Biology and Evolution, 6(3), 703-713.
Melgar, S., et al. (2008). Validation of murine dextran sulfate sodium-induced colitis using four therapeutic agents for human inflammatory bowel disease. International Immunopharmacology, 8(6), 836-844.
Miao, F., et al. (2021). Walnut oil alleviates DSS–induced colitis in mice by inhibiting NLRP3 inflammasome activation and regulating gut microbiota. Microbial Pathogenesis, 154, 104866.
Michael, B., et al. (2007). Evaluation of organ weights for rodent and non-rodent toxicity studies: a review of regulatory guidelines and a survey of current practices. Toxicologic Pathology, 35(5), 742-750.
Mima, K., et al. (2016). Fusobacterium nucleatum in colorectal carcinoma tissue and patient prognosis. Gut, 65(12), 1973-1980.
Mohammad, S., & Thiemermann, C. (2021). Role of Metabolic Endotoxemia in Systemic Inflammation and Potential Interventions. Frontiers in Immunology, 11, 594150.
Moorthy, B., et al. (2015). Polycyclic aromatic hydrocarbons: from metabolism to lung cancer. Toxicological Sciences, 145(1), 5-15.
Moorthy, B., et al. (2015). Polycyclic aromatic hydrocarbons: from metabolism to lung cancer. Toxicological Sciences, 145(1), 5-15.
Morales, N. P., et al. (2015). Electron paramagnetic resonance study of the free radical scavenging capacity of curcumin and its demethoxy and hydrogenated derivatives. Biological and Pharmaceutical Bulletin, 38(10), 1478-1483.
Morgan, E., et al. (2023). Global burden of colorectal cancer in 2020 and 2040: incidence and mortality estimates from GLOBOCAN. Gut, 72(2), 338-344.
Morgan, E., et al. (2023). Global burden of colorectal cancer in 2020 and 2040: incidence and mortality estimates from GLOBOCAN. Gut, 72(2), 338-344.
Mosieniak, G., et al. (2012). Curcumin induces permanent growth arrest of human colon cancer cells: link between senescence and autophagy. Mechanisms of Ageing and Development, 133(6), 444-455.
Mu, Q., et al. (2017). Leaky gut as a danger signal for autoimmune diseases. Frontiers in Immunology, 8, 598.
Mudduluru, G., et al. (2011). Curcumin regulates miR-21 expression and inhibits invasion and metastasis in colorectal cancer. Bioscience Reports, 31(3), 185-197.
Mukhopadhyay, A., et al. (2001). Curcumin downregulates cell survival mechanisms in human prostate cancer cell lines. Oncogene, 20(52), 7597-7609.
Müller, M., et al. (2020). Distal colonic transit is linked to gut microbiota diversity and microbial fermentation in humans with slow colonic transit. American Journal of Physiology-Gastrointestinal and Liver Physiology, 318(2), G361-G369.
Natividad, J. M., et al. (2015). Ecobiotherapy rich in firmicutes decreases susceptibility to colitis in a humanized gnotobiotic mouse model. Inflammatory Bowel Diseases, 21(8), 1883-1893.
Naz, S., et al. (2010). Antibacterial activity of Curcuma longa varieties against different strains of bacteria. Pak J Bot, 42(1), 455-462.
Neurath, M. (2014). New targets for mucosal healing and therapy in inflammatory bowel diseases. Mucosal Immunology, 7(1), 6-19.
Neurath, M. F. (2014). Cytokines in inflammatory bowel disease. Nature Reviews Immunology, 14(5), 329-342.
Neurath, M. F. (2017). Current and emerging therapeutic targets for IBD. Nature Reviews Gastroenterology & Hepatology, 14(5), 269-278.
Ng, S. C., et al. (2017). Worldwide incidence and prevalence of inflammatory bowel disease in the 21st century: a systematic review of population-based studies. The Lancet, 390(10114), 2769-2778.
Nishida, A., et al. (2018). Gut microbiota in the pathogenesis of inflammatory bowel disease. Clinical Journal of Gastroenterology, 11(1), 1-10.
O'keefe, S. J. (2016). Diet, microorganisms and their metabolites, and colon cancer. Nature Reviews Gastroenterology & Hepatology, 13(12), 691-706.
Oh, G.-S., et al. (2004). 3-Hydroxyanthranilic acid, one of metabolites of tryptophan via indoleamine 2, 3-dioxygenase pathway, suppresses inducible nitric oxide synthase expression by enhancing heme oxygenase-1 expression. Biochemical and Biophysical Research Communications, 320(4), 1156-1162.
Oh, G.-S., et al. (2006). Hydrogen sulfide inhibits nitric oxide production and nuclear factor-κB via heme oxygenase-1 expression in RAW264. 7 macrophages stimulated with lipopolysaccharide. Free Radical Biology and Medicine, 41(1), 106-119.
Oh, S. Y., et al. (2014). Comparison of experimental mouse models of inflammatory bowel disease. International Journal of Molecular Medicine, 33(2), 333-340.
Okada, K., et al. (2001). Curcumin and especially tetrahydrocurcumin ameliorate oxidative stress-induced renal injury in mice. The Journal of nutrition, 131(8), 2090-2095.
Okayasu, I., et al. (1990). A novel method in the induction of reliable experimental acute and chronic ulcerative colitis in mice. Gastroenterology, 98(3), 694-702.
Osorio-Tobón, J. F., et al. (2016). Fast analysis of curcuminoids from turmeric (Curcuma longa L.) by high-performance liquid chromatography using a fused-core column. Food Chemistry, 200, 167-174.
Pabon, H. (1964). A synthesis of curcumin and related compounds. Recueil des Travaux Chimiques des Pays‐Bas, 83(4), 379-386.
Parada Venegas, D., et al. (2019). Short chain fatty acids (SCFAs)-mediated gut epithelial and immune regulation and its relevance for inflammatory bowel diseases. Frontiers in Immunology, 277.
Paradis, T., et al. (2021). Tight junctions as a key for pathogens invasion in intestinal epithelial cells. International Journal of Molecular Sciences, 22(5), 2506.
Parker, T. W., & Neufeld, K. L. (2020). APC controls Wnt-induced beta-catenin destruction complex recruitment in human colonocytes. Scientific Reports, 10(1), 2957.
Parte, A. C. (2018). LPSN–List of Prokaryotic names with Standing in Nomenclature (bacterio. net), 20 years on. International Journal of Systematic and Evolutionary Microbiology, 68(6), 1825-1829.
Pascal, V., et al. (2017). A microbial signature for Crohn's disease. Gut, 66(5), 813-822.
Pereira, F. C., et al. (2020). Rational design of a microbial consortium of mucosal sugar utilizers reduces Clostridiodes difficile colonization. Nature Communications, 11(1), 5104.
Perrone, D., et al. (2015). Biological and therapeutic activities, and anticancer properties of curcumin. Experimental and Therapeutic Medicine, 10(5), 1615-1623.
Perše, M., & Cerar, A. (2012). Dextran sodium sulphate colitis mouse model: traps and tricks. BioMed research international, 2012.
Phang-Lyn, S., & Llerena, V. (2023). Biochemistry, Biotransformation.[Updated 2023 Aug 14]. StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing.
Phillips, D. H. (1999). Polycyclic aromatic hydrocarbons in the diet. Mutation research/genetic toxicology and environmental mutagenesis, 443(1-2), 139-147.
Polat, F. R., & Karaboğa, İ. (2019). Immunohistochemical examination of anti-inflammatory and anti-apoptotic effects of hesperetin on trinitrobenzene sulfonic acid induced colitis in rats. Biotechnic and Histochemistry, 94(3), 151-158.
Politis, D. S., et al. (2017). Pseudopolyps in inflammatory bowel diseases: Have we learned enough? World Journal of Gastroenterology, 23(9), 1541.
Poritz, L. S., et al. (2007). Loss of the tight junction protein ZO-1 in dextran sulfate sodium induced colitis. Journal of Surgical Research, 140(1), 12-19.
Poudel, A., et al. (2019). Geographical discrimination in curcuminoids content of turmeric assessed by rapid UPLC-DAD validated analytical method. Molecules, 24(9), 1805.
Preedy, M. K., et al. (2024). Cellular heterogeneity in TNF/TNFR1 signalling: live cell imaging of cell fate decisions in single cells. Cell Death & Disease, 15(3), 202.
Priyadarsini, K. I. (2014). The chemistry of curcumin: from extraction to therapeutic agent. Molecules, 19(12), 20091-20112.
Probert, C. (2013). Steroids and 5-aminosalicylic acids in moderate ulcerative colitis: addressing the dilemma. Therapeutic Advances in Gastroenterology, 6(1), 33-38.
Prossomariti, A., et al. (2020). Are Wnt/beta-Catenin and PI3K/AKT/mTORC1 Distinct Pathways in Colorectal Cancer? Cellular and Molecular Gastroenterology and Hepatology, 10(3), 491-506.
Qiu, W., et al. (2011). PUMA-mediated intestinal epithelial apoptosis contributes to ulcerative colitis in humans and mice. The Journal of clinical investigation, 121(5), 1722-1732.
Ramachandran, A., et al. (2000). Apoptosis in the intestinal epithelium: its relevance in normal and pathophysiological conditions. Journal of Gastroenterology and Hepatology, 15(2), 109-120.
Ramachandran, C., et al. (2002). Curcumin inhibits telomerase activity through human telomerase reverse transcritpase in MCF-7 breast cancer cell line. Cancer Letters, 184(1), 1-6.
Ramasamy, T. S., et al. (2015). Targeting colorectal cancer stem cells using curcumin and curcumin analogues: insights into the mechanism of the therapeutic efficacy. Cancer Cell International, 15(1), 96.
Ramos, G. P., & Papadakis, K. A. (2019). Mechanisms of disease: inflammatory bowel diseases. Mayo Clinic Proceedings,
Ramsewak, R., et al. (2000). Cytotoxicity, antioxidant and anti-inflammatory activities of curcumins I–III from Curcuma longa. Phytomedicine, 7(4), 303-308.
Rao, E. V., & Sudheer, P. (2011). Revisiting curcumin chemistry part I: A new strategy for the synthesis of curcuminoids. Indian Journal of Pharmaceutical Sciences, 73(3), 262.
Ravindran, J., et al. (2009). Curcumin and cancer cells: how many ways can curry kill tumor cells selectively? The AAPS journal, 11(3), 495-510.
Rawla, P. (2019). Epidemiology of prostate cancer. World Journal of Oncology, 10(2), 63.
Rieder, F., et al. (2017). Mechanisms, management, and treatment of fibrosis in patients with inflammatory bowel diseases. Gastroenterology, 152(2), 340-350. e346.
Rocha, F. A. C., & de Assis, M. R. (2020). Curcumin as a potential treatment for COVID‐19. Phytotherapy Research.
Rodrigues, B. L., et al. (2020). Assessment of disease activity in inflammatory bowel diseases: Non-invasive biomarkers and endoscopic scores. World Journal of Gastrointestinal Endoscopy, 12(12), 504.
Rogler, G., et al. (2021). Extraintestinal manifestations of inflammatory bowel disease: current concepts, treatment, and implications for disease management. Gastroenterology, 161(4), 1118-1132.
Roshandel, G., et al. (2024). Colorectal cancer: epidemiology, risk factors, and prevention. Cancers, 16(8), 1530.
Saad El Din, K., et al. (2020). Trends in the epidemiology of young-onset colorectal cancer: a worldwide systematic review. BMC Cancer, 20(1), 288.
Sairenji, T., et al. (2017). An update on inflammatory bowel disease. Primary Care: Clinics in Office Practice, 44(4), 673-692.
Salazar, J. H. (2014). Overview of urea and creatinine. Laboratory Medicine, 45(1), e19-e20.
Samak, G., et al. (2015). Calcium/Ask1/MKK7/JNK2/c-Src signalling cascade mediates disruption of intestinal epithelial tight junctions by dextran sulfate sodium. Biochemical Journal, 465(3), 503-515.
Sandur, S. K., et al. (2009). Curcumin modulates the radiosensitivity of colorectal cancer cells by suppressing constitutive and inducible NF-κB activity. International Journal of Radiation Oncology* Biology* Physics, 75(2), 534-542.
Sellers, R. S., et al. (2007). Society of Toxicologic Pathology position paper: organ weight recommendations for toxicology studies. Toxicologic Pathology, 35(5), 751-755.
Selvam, C., et al. (2019). Molecular mechanisms of curcumin and its analogs in colon cancer prevention and treatment. Life Sciences, 239, 117032.
Shakibaei, M., et al. (2014). Curcumin chemosensitizes 5-fluorouracil resistant MMR-deficient human colon cancer cells in high density cultures. PloS One, 9(1), e85397.
Shakibaei, M., et al. (2013). Curcumin enhances the effect of chemotherapy against colorectal cancer cells by inhibition of NF-κB and Src protein kinase signaling pathways. PloS One, 8(2), e57218.
Sharma, B. R., & Kanneganti, T.-D. (2023). Inflammasome signaling in colorectal cancer. Translational Research, 252, 45-52.
Sharma, L., & Riva, A. (2020). Intestinal barrier function in health and disease—Any role of sars-cov-2? Microorganisms, 8(11), 1744.
Sharma, R. A., et al. (2001). Effects of Dietary Curcumin on Glutathione S-Transferase and Malondialdehyde-DNA Adducts in Rat Liver and Colon Mucosa: Relationship with Drug Levels1. Clinical Cancer Research, 7(5), 1452-1458.
Sharma, S., et al. (2006). Curcumin, the active principle of turmeric (Curcuma longa), ameliorates diabetic nephropathy in rats. Clinical and Experimental Pharmacology and Physiology, 33(10), 940-945.
Shehzad, A., et al. (2012). Curcumin molecular targets in obesity and obesity-related cancers. Future Oncology, 8(2), 179-190.
Shen, G., & Kong, A. N. (2009). Nrf2 plays an important role in coordinated regulation of Phase II drug metabolism enzymes and Phase III drug transporters. Biopharm Drug Dispos, 30(7), 345-355.
Shen, Z.-H., et al. (2018). Relationship between intestinal microbiota and ulcerative colitis: Mechanisms and clinical application of probiotics and fecal microbiota transplantation. World Journal of Gastroenterology, 24(1), 5.
Shiizaki, K., et al. (2017). Modulation of benzo [a] pyrene–DNA adduct formation by CYP1 inducer and inhibitor. Genes and Environment, 39(1), 14.
Shouval, D. S., & Rufo, P. A. (2017). The role of environmental factors in the pathogenesis of inflammatory bowel diseases: a review. JAMA pediatrics, 171(10), 999-1005.
Sica, G. S., & Biancone, L. (2013). Surgery for inflammatory bowel disease in the era of laparoscopy. World journal of gastroenterology: WJG, 19(16), 2445.
Silva‐Santana, G., et al. (2020). Clinical hematological and biochemical parameters in Swiss, BALB/c, C57BL/6 and B6D2F1 Mus musculus. Animal models and experimental medicine, 3(4), 304-315.
Singh, S. V., et al. (1998). Mechanism of inhibition of benzo [a] pyrene-induced forestomach cancer in mice by dietary curcumin. Carcinogenesis, 19(8), 1357-1360.
Singh, V., et al. (2023). Butyrate producers, “The Sentinel of Gut”: Their intestinal significance with and beyond butyrate, and prospective use as microbial therapeutics. Frontiers in Microbiology, 13, 1103836.
Somparn, P., et al. (2007). Comparative antioxidant activities of curcumin and its demethoxy and hydrogenated derivatives. Biological and Pharmaceutical Bulletin, 30(1), 74-78.
Sonoda, J., et al. (2015). Time course of the incidence/multiplicity and histopathological features of murine colonic dysplasia, adenoma and adenocarcinoma induced by benzo [a] pyrene and dextran sulfate sodium. Journal of Toxicologic Pathology, 28(2), 109-120.
Sonoda, J., et al. (2015). Time course of the incidence/multiplicity and histopathological features of murine colonic dysplasia, adenoma and adenocarcinoma induced by benzo[a]pyrene and dextran sulfate sodium. Journal of Toxicologic Pathology, 28(2), 109-120.
Steeland, S., et al. (2018). A new venue of TNF targeting. International Journal of Molecular Sciences, 19(5), 1442.
Stevens, J. F., & Maier, C. S. (2016). The chemistry of gut microbial metabolism of polyphenols. Phytochemistry Reviews, 15(3), 425-444.
Stojanov, S., et al. (2020). The influence of probiotics on the firmicutes/bacteroidetes ratio in the treatment of obesity and inflammatory bowel disease. Microorganisms, 8(11), 1715.
Su, L., et al. (2013). TNFR2 activates MLCK-dependent tight junction dysregulation to cause apoptosis-mediated barrier loss and experimental colitis. Gastroenterology, 145(2), 407-415.
Süren, D., et al. (2014). Loss of tight junction proteins (Claudin 1, 4, and 7) correlates with aggressive behavior in colorectal carcinoma. Medical science monitor: international medical journal of experimental and clinical research, 20, 1255.
Suzuki, T. (2013). Regulation of intestinal epithelial permeability by tight junctions. Cellular and Molecular Life Sciences, 70, 631-659.
Syu, W.-J., et al. (1998). Cytotoxicity of curcuminoids and some novel compounds from Curcuma zedoaria. Journal of Natural Products, 61(12), 1531-1534.
Takikawa, M., et al. (2013). Curcumin stimulates glucagon-like peptide-1 secretion in GLUTag cells via Ca2+/calmodulin-dependent kinase II activation. Biochemical and Biophysical Research Communications, 435(2), 165-170.
Telesco, S. E., et al. (2020). Serum Biomarkers Identify Patients Who Will Develop Inflammatory Bowel Diseases Up to 5 Years Before Diagnosis Joana Torres, Francesca Petralia, Takahiro Sato, Pei Wang. Gastroenterology, 159(1), 96-104.
Thoo, L., et al. (2019). Keep calm: the intestinal barrier at the interface of peace and war. Cell Death & Disease, 10(11), 849.
Tilak, J. C., et al. (2004). Antioxidant availability of turmeric in relation to its medicinal and culinary uses. Phytotherapy Research: An International Journal Devoted to Pharmacological and Toxicological Evaluation of Natural Product Derivatives, 18(10), 798-804.
Tomeh, M. A., et al. (2019). A review of curcumin and its derivatives as anticancer agents. International Journal of Molecular Sciences, 20(5), 1033.
Tsuda, T. (2018). Curcumin as a functional food-derived factor: degradation products, metabolites, bioactivity, and future perspectives. Food & Function, 9(2), 705-714.
Turner, M. D., et al. (2014). Cytokines and chemokines: At the crossroads of cell signalling and inflammatory disease. Biochimica et Biophysica Acta (BBA)-Molecular Cell Research, 1843(11), 2563-2582.
Tzounis, X., et al. (2011). Prebiotic evaluation of cocoa-derived flavanols in healthy humans by using a randomized, controlled, double-blind, crossover intervention study. The American journal of clinical nutrition, 93(1), 62-72.
Uno, S., et al. (2004). Oral exposure to benzo[a]pyrene in the mouse: detoxication by inducible cytochrome P450 is more important than metabolic activation. Molecular Pharmacology, 65(5), 1225-1237.
Uppstad, H., et al. (2010). Importance of CYP1A1 and CYP1B1 in bioactivation of benzo[a]pyrene in human lung cell lines. Toxicology Letters, 192(2), 221-228.
Václavíková, R., et al. (2015). Microsomal epoxide hydrolase 1 (EPHX1): Gene, structure, function, and role in human disease. Gene, 571(1), 1-8.
Valatas, V., et al. (2013). The value of experimental models of colitis in predicting efficacy of biological therapies for inflammatory bowel diseases. American Journal of Physiology-Gastrointestinal and Liver Physiology, 305(11), G763-G785.
Valdes, A. M., et al. (2018). Role of the gut microbiota in nutrition and health. BMJ, 361.
Van Itallie, C. M., & Anderson, J. M. (2006). Claudins and epithelial paracellular transport. Annual Review of Physiology, 68, 403-429.
Vanamee, É. S., & Faustman, D. L. (2018). Structural principles of tumor necrosis factor superfamily signaling. Science signaling, 11(511), eaao4910.
Venkateswarlu, S., et al. (2005). Synthesis and biological evaluation of polyhydroxycurcuminoids. Bioorganic and Medicinal Chemistry, 13(23), 6374-6380.
Vogelstein, B., et al. (2013). Cancer genome landscapes. Science, 339(6127), 1546-1558.
Waldner, M. J., & Neurath, M. F. (2009). Chemically induced mouse models of colitis. Current Protocols in Pharmacology, 46(1), 5.55. 51-55.55. 15.
Wallace, H., et al. (2016). Risks for human health related to the presence of 3-and 2-monochloropropanediol (MCPD), and their fatty acid esters, and glycidyl fatty acid esters in food. EFSA Journal, 14(5), 1-159.
Wang, D., et al. (2008). Liposome-encapsulated curcumin suppresses growth of head and neck squamous cell carcinoma in vitro and in xenografts through the inhibition of nuclear factor κB by an AKT-independent pathway. Clinical Cancer Research, 14(19), 6228-6236.
Wang, S., et al. (2021). Bisdemethoxycurcumin Reduces Methicillin-Resistant Staphylococcus aureus Expression of Virulence-Related Exoproteins and Inhibits the Biofilm Formation. Toxins, 13(11), 804.
Wilken, R., et al. (2011). Curcumin: A review of anti-cancer properties and therapeutic activity in head and neck squamous cell carcinoma. Molecular Cancer, 10(1), 1-19.
Willemze, R. A., et al. (2019). Acetylcholine-producing T cells augment innate immune-driven colitis but are redundant in T cell-driven colitis. American Journal of Physiology-Gastrointestinal and Liver Physiology, 317(5), G557-G568.
Willoughby, D., et al. (2000). Resolution of inflammation. International Journal of Immunopharmacology, 22(12), 1131-1135.
Wong, J., et al. (2020). RIPK1 mediates TNF-induced intestinal crypt apoptosis during chronic NF-κB activation. Cellular and Molecular Gastroenterology and Hepatology, 9(2), 295-312.
Wong, R. S. (2011). Apoptosis in cancer: from pathogenesis to treatment. Journal of Experimental and Clinical Cancer Research, 30(1), 1-14.
Woting, A., & Blaut, M. (2018). Small intestinal permeability and gut-transit time determined with low and high molecular weight fluorescein isothiocyanate-dextrans in C3H Mice. Nutrients, 10(6).
Wright, J. S. (2002). Predicting the antioxidant activity of curcumin and curcuminoids. Journal of molecular structure: theochem, 591(1-3), 207-217.
Wu, N., et al. (2021). Inflammatory bowel disease and the gut microbiota. Proceedings of the Nutrition Society, 80(4), 424-434.
Xavier, M. J., et al. (2021). Dietary curcumin promotes gilthead seabream larvae digestive capacity and modulates oxidative status. Animals, 11(6), 1667.
Xiong, Y., et al. (2017). Myosin Light Chain Kinase: A Potential Target for Treatment of Inflammatory Diseases. Frontiers in Pharmacology, 8, 292.
Xu, H.-M., et al. (2021). Selection strategy of dextran sulfate sodium-induced acute or chronic colitis mouse models based on gut microbial profile. BMC Microbiology, 21(1), 1-14.
Xu, X.-Y., et al. (2018). Bioactivity, health benefits, and related molecular mechanisms of curcumin: Current progress, challenges, and perspectives. Nutrients, 10(10), 1553.
Yang, C., et al. (2021). Gut microbiota-dependent catabolites of tryptophan play a predominant role in the protective effects of turmeric polysaccharides against DSS-induced ulcerative colitis. Food & Function, 12(20), 9793-9807.
Yang, C., & Merlin, D. (2024). Unveiling Colitis: A Journey through the Dextran Sodium Sulfate-induced Model. Inflammatory Bowel Diseases, 30(5), 844-853.
Yao, Y., et al. (2020). Myosin light chain kinase regulates intestinal permeability of mucosal homeostasis in Crohn’s disease. Expert Review of Clinical Immunology, 16(12), 1127-1141.
Yen, H.-H., et al. (2019). Epidemiological trend in inflammatory bowel disease in Taiwan from 2001 to 2015: a nationwide populationbased study. Intestinal Research, 17(1), 54-62.
Yu, X., et al. (2019). CXCL12/CXCR4 promotes inflammation-driven colorectal cancer progression through activation of RhoA signaling by sponging miR-133a-3p. Journal of Experimental and Clinical Cancer Research, 38(1), 32.
Yunos, N. M., et al. (2011). Synergism from sequenced combinations of curcumin and epigallocatechin-3-gallate with cisplatin in the killing of human ovarian cancer cells. Anticancer Research, 31(4), 1131-1140.
Zahedipour, F., et al. (2020). Potential effects of curcumin in the treatment of COVID‐19 infection. Phytotherapy Research, 34(11), 2911-2920.
Zeissig, S., et al. (2007). Changes in expression and distribution of claudin 2, 5 and 8 lead to discontinuous tight junctions and barrier dysfunction in active Crohn’s disease. Gut, 56(1), 61-72.
Zeng, M. Y., et al. (2017). Mechanisms of inflammation-driven bacterial dysbiosis in the gut. Mucosal Immunology, 10(1), 18-26.
Zhang, F., et al. (2019). The impact of Lactobacillus plantarum on the gut microbiota of mice with DSS-induced colitis. BioMed research international, 2019.
Zheng, Z., et al. (2022). The Risk of Gastrointestinal Cancer on Daily Intake of Low-Dose BaP in C57BL/6 for 60 Days. Journal of Korean Medical Science, 37(30), e235.
Zhong, J., et al. (2021). Naringenin prevents TNF-α-induced gut-vascular barrier disruption associated with inhibiting the NF-κB-mediated MLCK/p-MLC and NLRP3 pathways. Food & Function, 12(6), 2715-2725.
Zhou, M., et al. (2014). Supplementation of the diet with Salecan attenuates the symptoms of colitis induced by dextran sulphate sodium in mice. British Journal of Nutrition, 111(10), 1822-1829.
Zhu, J., et al. (2017). Potential roles of chemical degradation in the biological activities of curcumin. Food & Function, 8(3), 907-914.
Zhu, L., et al. (2019). Claudin Family Participates in the Pathogenesis of Inflammatory Bowel Diseases and Colitis-Associated Colorectal Cancer. Frontiers in Immunology, 10, 1441.
Zong, S., et al. (2020). Protective effect of Lachnum polysaccharide on dextran sulfate sodium-induced colitis in mice. Food & Function, 11(1), 846-859.
Zuo, L., et al. (2020). Tight junctions as targets and effectors of mucosal immune homeostasis. Cellular and Molecular Gastroenterology and Hepatology, 10(2), 327-340.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/101205-
dc.description.abstract類薑黃素 (curcuminoids) 為源自薑黃 (Curcuma longa L.) 之線性二苯基庚烯類化合物,包括薑黃素 (curcumin, CUR)、去甲氧基薑黃素 (demethoxycurcumin) 與去雙甲氧基薑黃素 (bisdemethoxycurcumin, BDMC)。相較於CUR,BDMC 具較佳之抑制 NF-κB 能力與口服生物可利用率。本論文先於 DSS 誘導之發炎性腸病 (inflammatory bowel disease, IBD) 模式,評估 CUR 與 BDMC 的保健潛力,隨後於食物來源致癌物苯駢芘 (Benzo(a)pyrene, B[a]P) 合併 DSS 的結腸炎相關結直腸癌 (colorectal cancer, CRC) 模式中,檢驗 BDMC 的化學預防效果,最後以短期藥理試驗,探討 CUR 和 BDMC 如何影響 B[a]P 代謝為致癌物 Benzo(a)pyrene-7,8-diol 9,10-Epoxide (BPDE)。結果顯示,CUR 與 BDMC 皆可緩解 DSS 腸炎、強化緊密連結蛋白並降低發炎,且重塑腸道菌相並促進丁酸生成菌的豐富度;且證實模式中 BDMC 的吸收優於 CUR。在 B[a]P/DSS 模式下,等劑量 (0.1%) BDMC 的表現優於 CUR:顯著降低疾病活動指數 (disease activity index)、腹瀉與出血、維持屏障功能、減少腸縮短與腸壁增厚,並降低腫瘤負荷;組織學顯示腺瘤及異型增生與發炎浸潤明顯減少。細胞激素方面,BDMC 使 IL-1β 回復至對照水準並選擇性降低 IL-6;訊息傳遞方面,BDMC 維持 APC、抑制 β-catenin 與 p-AKT 並提高 BAX/BCL-2 的蛋白表現。轉錄體分析顯示,BDMC 廣泛下調趨化/細胞激素/補體與基質-血管新生路徑,同時恢復上皮運輸與恆定;菌相與短鏈脂肪酸結果則是支持 BDMC 可營造一個富含短鏈脂肪酸、且發炎程度較低的腸道生態。在預防機制上,短期試驗證實 BDMC 可抑制早期 AHR 活化、並降低攝入 B[a]P 4 小時後的 CYP1A1 活性,並降低體內 B[a]P 暴露與最終致癌物 BPDE 的生成。綜合上述,BDMC 兼具減少 B[a]P 活化與緩解發炎、調節腸道菌相、維持腸道屏障、抑制 Wnt/AKT 並維持 APC 的雙重作用,能有效改善 IBD 並抑制 B[a]P/DSS 促進的 CRC,為極具前景的腸炎及腸癌化學預防植化素。zh_TW
dc.description.abstractCurcuminoids—linear diarylheptanoids from turmeric (Curcuma longa L.)—comprise curcumin (CUR), demethoxycurcumin, and bisdemethoxycurcumin (BDMC). Compared with CUR, BDMC shows stronger NF-κB inhibition and higher oral bioavailability. This dissertation first evaluated the health benefits of CUR and BDMC in a dextran sulfate sodium (DSS)–induced inflammatory bowel disease (IBD) model, then tested the chemopreventive efficacy of BDMC in a colitis-associated colorectal cancer (CRC) model initiated by the food-borne carcinogen benzo[a]pyrene (B[a]P) and promoted by DSS, and finally used a short-term pharmacology study to examine how CUR and BDMC influence metabolic activation of B[a]P to the ultimate carcinogen benzo[a]pyrene-7,8-diol-9,10-epoxide (BPDE). Both CUR and BDMC alleviated DSS colitis, strengthened tight-junction proteins, reduced inflammation, and remodeled the gut microbiota with enrichment of butyrate-producing taxa; BDMC also displayed superior absorption to CUR in our models. In the B[a]P/DSS CRC model, dietary BDMC at the same dose (0.1%) outperformed CUR by significantly lowering the disease activity index, diarrhea and bleeding, preserving barrier function, limiting colon shortening and wall thickening, and reducing tumor burden; histology showed fewer adenomas, reduced dysplasia, and diminished inflammatory infiltrates. At the cytokine level, BDMC normalized IL-1β and selectively decreased IL-6. At the signaling level, BDMC preserved APC, suppressed β-catenin and phosphorylated AKT, and increased the BAX/BCL-2 ratio. Transcriptomics indicated broad down-regulation of chemotaxis/cytokine/complement and matrix–angiogenic pathways with restoration of epithelial transport and homeostasis; microbiome and short-chain fatty acid (SCFA) profiles supported a SCFA-rich, less inflammatory intestinal ecosystem under BDMC. Mechanistically, the short-term study demonstrated that BDMC dampened early aryl hydrocarbon receptor (AHR) activation, reduced CYP1A1 activity at 4 h after B[a]P gavage, and lowered systemic B[a]P exposure and BPDE formation. Collectively, BDMC exerts dual actions—attenuating upstream B[a]P bioactivation and downstream inflammation, microbiota dysbiosis, and Wnt/AKT signaling while preserving APC and barrier integrity—thereby improving IBD and suppressing B[a]P/DSS-driven CRC, and emerges as a promising phytochemical for chemoprevention of colitis and colorectal cancer.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-12-31T16:19:03Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-12-31T16:19:03Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents摘要 i
Abstract iii
目次 v
附圖次 viii
附表次 ix
圖次 x
表次 xii
縮寫表 xiii
第一章、 文獻回顧 1
第一節、 薑黃 (turmeric) 及其有效成分 1
(一)、 類薑黃素 (curcuminoids) 1
(二)、 薑黃中類薑黃素的含量 2
(三)、 類薑黃素的生物活性 8
第二節、 發炎性腸道疾病 19
(一)、 流行病學 22
(二)、 致病原因 23
(三)、 腸道發炎反應 23
(四)、 腸道屏障 27
(五)、 腸道上皮細胞凋亡對於發炎性腸道疾病之影響 32
(六)、 腸道菌相與 IBD 之關聯 34
(七)、 IBD 的治療方式 35
第三節、 誘導結腸炎之動物模式 36
(一)、 DSS 之特性與作用機制 36
(二)、 DSS 給予形式 37
第四節、 類薑黃素緩解 IBD 的可能性 39
第五節、 潛藏於飲食之中的危害因子 40
(一)、 多環芳香烴 (PAHs) 41
(二)、 B[a]P 與其致癌機轉 42
第六節、 結直腸癌 44
(一)、 流行病學 44
(二)、 致病原因 46
(三)、 B[a]P/DSS誘導腸癌 48
第七節、 類薑黃素類作為 CRC 化學預防的可能性 49
第二章、 實驗目的與架構 51
第一節、 實驗目的 51
第二節、 實驗架構 52
第三章、 材料與方法 56
第一節、 實驗材料 56
(一)、 實驗樣品與誘導劑 56
(二)、 藥品及試劑 56
(三)、 分析套組 57
(四)、 實驗耗材 57
(五)、 儀器設備 58
(六)、 抗體 59
第二節、 實驗方法 60
(一)、 動物品系與飼養環境 60
(二)、 動物實驗組別設計 60
(三)、 疾病活動指數 (Disease activity index, DAI) 62
(四)、 動物犧牲 63
(五)、 血液生化數值分析 64
(六)、 腸道通透性試驗 64
(七)、 組織切片 65
(八)、 蘇木精-伊紅染色 (Hematoxylin and eosin stain, H&E stain) 66
(九)、 免疫螢光染色 (Immunofluorescence, IF) 68
(十)、 組織均質及蛋白質萃取 70
(十一)、 蛋白質定量 70
(十二)、 西方墨點法 71
(十三)、 細胞激素測定 73
(十四)、 蛋白質微陣列 (protein array) 75
(十五)、 微生物體全長 16S 定序分析 77
(十六)、 短鏈脂肪酸含量分析 77
(十七)、 類薑黃素含量分析 80
(十八)、 核糖核酸定序 83
(十九)、 B[a]P 及其代謝物 BPDE 含量測定 84
第三節、 統計分析 85
第四章、 結果與討論 86
以 DSS 誘導腸炎模式評估薑黃素及 BDMC 的改善效果: 86
第一節、 薑黃素與 BDMC 對 DSS 誘導之 ICR 小鼠體重、攝食量及飲水量之影響 86
第二節、 薑黃素與 BDMC 對 DSS 誘導之 ICR 小鼠結腸炎疾病活動指數及受損程度之影響 88
第三節、 薑黃素與 BDMC對 DSS 誘導之 ICR 小鼠臟器重量之影響 93
第四節、 薑黃素與 BDMC對 DSS 誘導之 ICR 小鼠血清生化值之影響 96
第五節、 薑黃素與 BDMC對 DSS 誘導之 ICR 小鼠腸道通透性和緊密連接蛋白之影響 98
第六節、 薑黃素與 BDMC對 DSS 誘導之 ICR 小鼠腸道發炎之影響 101
第七節、 薑黃素與 BDMC對 DSS 誘導之 ICR 小鼠腸道上皮細胞凋亡之影響 105
第八節、 薑黃素與 BDMC對DSS誘導之 ICR小鼠腸道菌相組成之影響 107
第九節、 薑黃素與 BDMC對 DSS 誘導之 ICR 小鼠結腸糞便短鏈脂肪酸含量之影響 114
第十節、 薑黃素與 BDMC 在小鼠體內的分佈情形 116
第十一節、 以 DSS 誘導腸炎模式評估薑黃素及 BDMC 的改善效果 118
以 B[a]P/DSS 誘導腸癌模式評估薑黃素及 BDMC 的化學預防效果: 121
第十二節、 薑黃素與 BDMC 對 B[a]P/DSS 誘導之結直腸癌小鼠體重變化與疾病活動指數之影響 121
第十三節、 薑黃素與 BDMC 對 B[a]P/DSS 誘導之結腸癌小鼠腫瘤數目、腸道通透性、結腸縮短與單位重量之影響 123
第十四節、 薑黃素與 BDMC 對 B[a]P/DSS 誘導之結直腸癌小鼠組織形態學表現之影響 125
第十五節、 薑黃素與 BDMC在 B[a]P/DSS 誘導之結腸癌小鼠中轉錄反應與功能性路徑變化之比較 128
第十六節、 薑黃素與 BDMC 對 B[a]P/DSS 誘導之結腸癌小鼠中細胞激素反應、Wnt 訊息傳遞與凋亡相關蛋白表現之影響 138
第十七節、 薑黃素與 BDMC 對 B[a]P/DSS 誘導之結腸癌小鼠腸道菌相組成之影響 143
以 B[a]P 暴露實驗評估薑黃素及 BDMC 影響其代謝情形: 152
第十八節、 薑黃素與 BDMC 對暴露於 B[a]P 不同時間之小鼠肝臟 CYP1A1 活性、AHR 表現量及血液中 BPDE/B[a]P 濃度之影響 152
第十九節、 薑黃素與 BDMC 作為 B[a]P 誘導致癌化學預防的潛能 157
第五章、 結論 159
第一節、本研究主要發現總結 159
第二節、本研究之學術創新 160
第三節、本研究之限制與未來展望 161
第六章、 參考文獻 163
-
dc.language.isozh_TW-
dc.subject薑黃素-
dc.subject去雙甲氧基薑黃素-
dc.subject發炎性腸疾病-
dc.subject苯駢芘-
dc.subject結直腸癌-
dc.subjectcurcumin-
dc.subjectbisdemethoxycurcumin-
dc.subjectinflammatory bowel disease-
dc.subjectbenzo[a]pyrene-
dc.subjectcolecteral cancer-
dc.title雙去甲氧基薑黃素改善小鼠發炎性腸道疾病及 B[a]P/DSS 誘導之結直腸癌zh_TW
dc.titleImproving Therapeutic Efficacy on Inflammatory Bowel Disease and B[a]P/DSS-Induced Colorectal Cancer in Mice Treated with Bisdemethoxycurcuminen
dc.typeThesis-
dc.date.schoolyear114-1-
dc.description.degree博士-
dc.contributor.oralexamcommittee陳炳輝;張榮善;黃步敏;王應然;蘇純立;張嘉哲;郭靜娟;魏宗德zh_TW
dc.contributor.oralexamcommitteeBing-Huei Chen;Jung-Shan Chang;Bu-Miin Huang;Ying-Jan Wang;Chun-Li Su;Chia-Che Chang;Ching-Chuan Kuo;Tzong-Der Wayen
dc.subject.keyword薑黃素,去雙甲氧基薑黃素發炎性腸疾病苯駢芘結直腸癌zh_TW
dc.subject.keywordcurcumin,bisdemethoxycurcumininflammatory bowel diseasebenzo[a]pyrenecolecteral canceren
dc.relation.page184-
dc.identifier.doi10.6342/NTU202504799-
dc.rights.note同意授權(限校園內公開)-
dc.date.accepted2025-12-16-
dc.contributor.author-college生物資源暨農學院-
dc.contributor.author-dept食品科技研究所-
dc.date.embargo-lift2030-11-20-
顯示於系所單位:食品科技研究所

文件中的檔案:
檔案 大小格式 
ntu-114-1.pdf
  未授權公開取用
10.58 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved