Please use this identifier to cite or link to this item:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/101154| Title: | 定義於頂點之模型中的單調性、關聯不等式與相變現象 Monotonicity, Correlation Inequalities, and Phase Transitions in Models on Vertices |
| Authors: | 楊程宇 Cheng Yie Nyeow |
| Advisor: | 李志煌 Jhih-Huang Li |
| Keyword: | 隨機叢集模型,易辛模型玻茨模型點滲流模型 random-cluster model,Ising modelPotts modelsite percolation model |
| Publication Year : | 2025 |
| Degree: | 碩士 |
| Abstract: | 本論文探討定義於頂點之模型的單調性性質、關聯不等式以及相變現象。我們于這些模型上建立了與隨機叢集模型(random-cluster model)相對應的單調性結果,並透過耦合的芒硝動力學(Glauber Dynamics)的方式驗證鐵磁性易辛模型(Ising model)確實滿足此性質。此外,我們亦為玻茨模型(Potts model)證明一個調整後的結果,既我們利用連續時間馬可夫鏈的耦合方法推導出一個與FKG 不等式類似的變形版本。
本論文亦將原先應用於鍵滲流模型(bond percolation)的決策樹(decision-tree)架構改良後應用於點滲流模型(site percolation)。藉由調整后對應的取樣映射,我們得到一個與OSSS 不等式類似的上界。該不等式在點滲流模型中的其中一個銳利相變中扮演關鍵角色。將其應用於連通事件,可以證明在無限頂點可遞圖上的無限開叢集出現的相變行為。 This thesis investigates monotonicity properties, correlation inequalities, and phase transitions in various models on vertices. We establish monotonicity properties analogous to those known for the random-cluster model. We verify this property for the ferromagnetic Ising model via a coupled Glauber dynamics construction and prove an adapted result for the Potts model, where a continuous-time Markov chain coupling yields a correlation inequality that is similar to the FKG inequality. We also adapt the decision-tree framework that has been used for the bond percolation model to the site percolation model. By adapting the associated sampling map, we obtain a bound analogous to the OSSS inequality. This inequality plays a key role in demonstrating a sharp phase transition in the model. In particular, applying it to connectivity events indicate a phase transition in the existence of an infinite open cluster on infinite vertex-transitive graphs. |
| URI: | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/101154 |
| DOI: | 10.6342/NTU202504541 |
| Fulltext Rights: | 未授權 |
| metadata.dc.date.embargo-lift: | N/A |
| Appears in Collections: | 數學系 |
Files in This Item:
| File | Size | Format | |
|---|---|---|---|
| ntu-114-1.pdf Restricted Access | 635.75 kB | Adobe PDF |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.
