Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 土木工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/101143
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳彥向zh_TW
dc.contributor.advisorYen-Hsiang Chenen
dc.contributor.author陳建豪zh_TW
dc.contributor.authorChien-Hao Chenen
dc.date.accessioned2025-12-31T16:06:08Z-
dc.date.available2026-01-01-
dc.date.copyright2025-12-31-
dc.date.issued2025-
dc.date.submitted2025-12-11-
dc.identifier.citationRoess, R. P., Prassas, E. S., & McShane, W. R. (2004). Traffic engineering (3rd ed.). Pearson Prentice Hall.
Transportation Research Board. (2010). Highway capacity manual (5th ed.). Washington, DC: National Research Council.
Fu, M. C. (2002). Optimization for simulation: Theory vs. practice. INFORMS Journal on Computing, 14(3), 192-215.
Ceylan, H., & Bell, M. G. (2004). Traffic signal timing optimisation based on genetic algorithm approach, including drivers’ routing. Transportation Research Part B: Methodological, 38(4), 329-342.
Stevanovic, A., Martin, P. T., & Stevanovic, J. (2007). VisSim-based genetic algorithm optimization of signal timings. Transportation Research Record, 2035(1), 59-68.
Wallace, C. E., Courage, K. G., Reaves, D. P., Schoene, G. W., & Euler, G. W. (1984). TRANSYT-7F user's manual (No. UF-TRC-U32 FP-06/07).
Cauchy, A. (1847). Méthode générale pour la résolution des systemes d’équations simultanées. Comp. Rend. Sci. Paris, 25(1847), 536-538.
Wright, S., & Nocedal, J. (1999). Numerical optimization. Springer Science, 35(67-68), 7.
Spall, J. C. (1987, June). A stochastic approximation technique for generating maximum likelihood parameter estimates. In 1987 American control conference (pp. 1161-1167). IEEE.
TRL Software. (2024). TRANSYT 17 User Guide (Issue A). TRL Software.
Himmelblau, D. M. (1972). Applied Nonlinear Programming. McGraw-Hill.
Zoutendijk, G. (1970). Nonlinear programming, computational methods. Integer and nonlinear programming, 37-86.
Armijo, L. (1966). Minimization of functions having Lipschitz continuous first partial derivatives. Pacific Journal of mathematics, 16(1), 1-3.
Wolfe, P. (1969). Convergence conditions for ascent methods. SIAM review, 11(2), 226-235.
Dennis Jr, J. E., & Schnabel, R. B. (1996). Numerical methods for unconstrained optimization and nonlinear equations. Society for Industrial and Applied Mathematics.
Robbins, H., & Monro, S. (1951). A stochastic approximation method. The annals of mathematical statistics, 400-407.
Kiefer, J., & Wolfowitz, J. (1952). Stochastic estimation of the maximum of a regression function. The Annals of Mathematical Statistics, 462-466.
Spall, J. C. (1992). Multivariate stochastic approximation using a simultaneous perturbation gradient approximation. IEEE transactions on automatic control, 37(3), 332-341.
Spall, J. C. (1998). Implementation of the simultaneous perturbation algorithm for stochastic optimization. IEEE Transactions on aerospace and electronic systems, 34(3), 817-823.
Zhu, X., & Spall, J. C. (2002). A modified second‐order SPSA optimization algorithm for finite samples. International Journal of Adaptive Control and Signal Processing, 16(5), 397-409.
Kushner, H. J., & Yin, G. G. (1997). Stochastic approximation and recursive algorithms and applications. New York, NY: Springer New York.
Gerencsér, L., Hill, S. D., & Vágó, Z. (1999, December). Optimization over discrete sets via SPSA. In Proceedings of the 31st conference on Winter simulation: Simulation---a bridge to the future-Volume 1 (pp. 466-470).
Robertson, D. I. (1969). TRANSYT: a traffic network study tool.
Daganzo, C. F. (1994). The cell transmission model: A dynamic representation of highway traffic consistent with the hydrodynamic theory. Transportation research part B: methodological, 28(4), 269-287.
Daganzo, C. F. (1995). The cell transmission model, part II: network traffic. Transportation Research Part B: Methodological, 29(2), 79-93.
Ben-Akiva, M., Bierlaire, M., Koutsopoulos, H., & Mishalani, R. (1998, February). DynaMIT: a simulation-based system for traffic prediction. In DACCORD short term forecasting workshop (Vol. 12). Delft The Netherlands.
Lo, H. K., Chang, E., & Chan, Y. C. (2001). Dynamic network traffic control. Transportation Research Part A: Policy and Practice, 35(8), 721-744.
Allsop, R. E. (1971). Delay-minimizing settings for fixed-time traffic signals at a single road junction. IMA Journal of Applied Mathematics, 8(2), 164-185.
Webster, F. V. (1958). Traffic signal settings (No. 39).
Chiou, S. W. (1999). Optimization of area traffic control for equilibrium network flows. Transportation Science, 33(3), 279-289.
Wong, S. C. (1995). Derivatives of the performance index for the traffic model from TRANSYT. Transportation Research Part B: Methodological, 29(5), 303-327.
Wong, S. C. (1996). Group-based optimisation of signal timings using the TRANSYT traffic model. Transportation Research Part B: Methodological, 30(3), 217-244.
Lan, C. L., & Chang, G. L. (2016). Optimizing signals for arterials experiencing heavy mixed scooter-vehicle flows. Transportation Research Part C: Emerging Technologies, 72, 182-201.
Spall, J. C., & Chin, D. C. (1997). Traffic-responsive signal timing for system-wide traffic control. Transportation Research Part C: Emerging Technologies, 5(3-4), 153-163.
Chen, Y. H., & Hartono, M. F. (2023, December). Optimizing Arterial Traffic Signal Settings: Shotgun Version for Simultaneous Perturbation Stochastic Approximation Approach. In 2023 Winter Simulation Conference (WSC) (pp. 1735-1746). IEEE.
Spall, J. C. (2003). Introduction to stochastic search and optimization: estimation, simulation, and control. John Wiley & Sons.
Akcelik, R. (1981). Traffic signals: capacity and timing analysis.
FHWA. (2000). Roundabouts: An informational guide (No. FHWA-RD-00-067; Project 2425). United States. Federal Highway Administration.
National Highways. (2023). CD 116: Geometric design of roundabouts (Version 2.1.0). Design Manual for Roads and Bridges.
Scott, D. W. (1992). Multivariate density estimation: Theory, practice, and visualization. Wiley.
Kiefer, J. (1953). Sequential minimax search for a maximum. Proceedings of the American mathematical society, 4(3), 502-506.
Chen, Y. (2016). Sigmix User’s Manual.
Flötteröd, G., & Rohde, J. (2011). Operational macroscopic modeling of complex urban road intersections. Transportation Research Part B: Methodological, 45(6), 903-922.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/101143-
dc.description.abstract市區道路或運輸走廊之號誌連鎖主要藉由控制每個號誌路口的綠燈開始時間(時差)與綠燈長以達成。找出最適號誌連鎖路網可視為一個最佳化問題,目標為最小化負效用。本研究選擇作為目標負效用之延滯的解析式較難取得,因此使用模擬最佳化方法來直接取得目標函數值。本研究使用基於梯度的同步擾動隨機近似演算法(SPSA)作為最佳化器(optimizer),其相比於傳統基於梯度的最陡下降法在N維變數情況下每次迭代至少需N+1次,SPSA在每次迭代只需2次的模擬。本研究使用TRANSYT 17作為模擬器(simulator),希望能得到一個基於梯度的速解法。本研究基於SPSA設計了一個「區別變數型態SPSA」,將決策變數的號誌時差與綠燈長分階段做迭代,考慮了迭代中止條件、階段交替條件,也另外提出綠燈長初始解的搜尋方式與限制式可行域的處理方法。演算法分別在三個不同規模的路網上進行實證,並各選取2、3、5個初始解。小型路網取自既有文獻,故可用來比較先前結果與本研究結果差異;中型路網顯示本研究之演算法在不同隨機擾動下具有收斂性;大型路網中則展示SPSA應於於多幹道路網的實務可行性。同時,小型與中型路網也做了最陡下降法作為比較基準。結果顯示,小型路網可節省58.5%的求解時間;中型路網雖未能改善求解時間,但最佳解可改善7.08%以上;大型路網可在實證下得到與TRANSYT 17 最佳化相似之結果,展現未來應用之潛力。zh_TW
dc.description.abstractTraffic signal coordination in urban road networks or transport corridors can be achieved by controlling the green start times (offsets) and green durations at each junction. Designing an effective coordinated network can be viewed as an optimization problem, with the objective of minimizing disutility. Since a closed-form expression for delay, the disutility adopted in this study, is difficult to obtain, a simulation-based optimization framework is employed to evaluate the objective function. This framework consists of an optimizer, which adjusts the decision variables to improve the objective, and a simulator, which provides the function values as feedback to the optimizer. The optimizer is the gradient-based Simultaneous Perturbation Stochastic Approximation (SPSA) algorithm, which requires only two simulations per iteration regardless of the number of variables, in contrast to the steepest descent method that needs at least N+1 simulations for N variables. TRANSYT 17 is adopted as the traffic flow simulator to achieve a gradient-based yet computationally efficient approach. A “variable-type distinguished SPSA” is proposed, in which offsets and green times are updated in separate stages, with termination rules and stage-switching criteria considered. Additional procedures are provided for searching initial green times and handling feasible domains under constraints. The algorithm is tested on three networks of different scales, using two, three, and five initial points respectively. The small network is drawn from prior literature, enabling comparison between prior results and those of this study; the medium network demonstrates convergence of the algorithm under different random perturbations; and the large network illustrates the practical applicability of SPSA to multi-arterial networks. For comparison, the steepest descent method is also applied to the small and medium networks. Results show that in the small network, solution time is reduced by 58.5%; in the medium network, solution time is not reduced but the best solution improves by at least 7.08%; and in the large network, the results are comparable to those produced by the TRANSYT 17 optimizer, demonstrating the potential for future practical applications.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-12-31T16:06:08Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-12-31T16:06:08Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents誌謝 i
摘要 iii
Abstract v
目次 vii
圖次 xi
表次 xv
第一章 緒論 1
1.1 研究背景與動機 1
1.2 研究目的 4
1.3 章節安排 5
第二章 文獻回顧 7
2.1 最陡下降法(Steepest Descent) 7
2.2 隨機近似(Stochastic Approximation) 9
2.3 號誌最佳化 10
2.4 文獻小結 12
第三章 模型建立 13
3.1 模型架構 14
3.2 變數與參數 16
3.3 目標式與限制式 22
3.4 最佳化問題 23
3.5 最佳解搜尋 24
3.5.1 SPSA方法 24
3.5.2 SPSA方法中的參數 26
3.5.3 迭代終止條件 27
3.5.4 區別變數型態之SPSA 28
3.5.5 限制式處理方法 31
3.5.6 變數初始值選擇 33
第四章 案例分析 35
4.1 案例路網簡介 35
4.2 初始參數設定 36
4.2.1 系統參數設定 36
4.2.2 演算法參數設定 63
4.2.3 初始解搜尋 63
4.3 分析結果─旺角路網 66
4.3.1 結合不同變數型態之SPSA─不同迭代步長參數結果 66
4.3.2 區別變數型態之SPSA 68
4.3.3 不同演算法間的比較 72
4.4 分析結果─現代圓環 73
4.4.1 迭代步長參數搜尋 73
4.4.2 各初始解的迭代過程 75
4.4.3 不同演算法間的比較 78
4.4.4 隨機擾動與演算法的收斂性 79
4.5 分析結果─雙幹道路網 84
4.5.1 迭代步長參數搜尋 85
4.5.2 各初始解的迭代過程 85
4.5.3 不同演算法間的比較 92
4.6 小結 92
第五章 結論與建議 93
5.1 結論 93
5.2 建議 94
參考資料 95
附錄A 最陡下降法 101
A.1 最陡下降法之步驟 101
A.2 最陡下降法結果 103
附錄B SIGMIX迭代步長測試 107
附錄C 口試委員意見回覆表 111
-
dc.language.isozh_TW-
dc.subject號誌最佳化-
dc.subject路網連鎖-
dc.subject模擬最佳化-
dc.subject同步擾動隨機近似-
dc.subjectsignal optimization-
dc.subjectsignal coordination-
dc.subjectsimulation optimization-
dc.subjectSPSA-
dc.title使用同步擾動隨機近似演算法最佳化路網號誌zh_TW
dc.titleOptimizing Traffic Signals in Road Networks Using Simultaneous Perturbation Stochastic Approximationen
dc.typeThesis-
dc.date.schoolyear114-1-
dc.description.degree碩士-
dc.contributor.oralexamcommittee李家岩;陳彥佑zh_TW
dc.contributor.oralexamcommitteeChia-Yen Lee;Yen-Yu Chenen
dc.subject.keyword號誌最佳化,路網連鎖模擬最佳化同步擾動隨機近似zh_TW
dc.subject.keywordsignal optimization,signal coordinationsimulation optimizationSPSAen
dc.relation.page113-
dc.identifier.doi10.6342/NTU202504785-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2025-12-12-
dc.contributor.author-college工學院-
dc.contributor.author-dept土木工程學系-
dc.date.embargo-lift2026-01-01-
顯示於系所單位:土木工程學系

文件中的檔案:
檔案 大小格式 
ntu-114-1.pdf15.54 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved