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Abstract 

 

Traffic signal coordination in urban road networks or transport corridors can be 

achieved by controlling the green start times (offsets) and green durations at each junction. 

Designing an effective coordinated network can be viewed as an optimization problem, 

with the objective of minimizing disutility. Since a closed-form expression for delay, the 

disutility adopted in this study, is difficult to obtain, a simulation-based optimization 

framework is employed to evaluate the objective function. This framework consists of an 

optimizer, which adjusts the decision variables to improve the objective, and a simulator, 

which provides the function values as feedback to the optimizer. The optimizer is the 

gradient-based Simultaneous Perturbation Stochastic Approximation (SPSA) algorithm, 

which requires only two simulations per iteration regardless of the number of variables, 

in contrast to the steepest descent method that needs at least N+1 simulations for N 

variables. TRANSYT 17 is adopted as the traffic flow simulator to achieve a gradient-

based yet computationally efficient approach. A “variable-type distinguished SPSA” is 

proposed, in which offsets and green times are updated in separate stages, with 

termination rules and stage-switching criteria considered. Additional procedures are 

provided for searching initial green times and handling feasible domains under constraints. 

The algorithm is tested on three networks of different scales, using two, three, and five 

initial points respectively. The small network is drawn from prior literature, enabling 

comparison between prior results and those of this study; the medium network 

demonstrates convergence of the algorithm under different random perturbations; and the 

large network illustrates the practical applicability of SPSA to multi-arterial networks. 

For comparison, the steepest descent method is also applied to the small and medium 

networks. Results show that in the small network, solution time is reduced by 58.5%; in 

the medium network, solution time is not reduced but the best solution improves by at 

least 7.08%; and in the large network, the results are comparable to those produced by the 

TRANSYT 17 optimizer, demonstrating the potential for future practical applications. 
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Δ𝑘,𝜙𝑖,𝑗 ]

 
 
 
 
 
 

 （3.10） 

 𝑐𝑘 perturbation size  𝑎𝑘  𝑐𝑘 3.1.3

min𝐷 

𝐷 = 𝑓(𝐱) 

 

𝑠. 𝑡.  

(3.3)~ 3.8  
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    3.10  𝐷(⋅) 𝐷𝑘
+

𝐷𝑘
−

8 

 

    3.9

2 𝑐𝑘  
𝐷(𝐱𝐤+𝑐𝑘𝚫𝐤)−𝐷(𝐱𝐤−𝑐𝑘𝚫𝐤)

2𝑐𝑘
 

scalar  [Δ𝑘,𝜃1

−1 ⋯ Δ𝑘,𝜃𝑖

−1 Δ𝑘,𝜙1,1
⋯ Δ𝑘,𝜙𝑖,𝑗]

T
 +1 −1

 𝐷  𝐷𝑘
+  𝐷𝑘

− 

 
𝜕𝐷

𝜕𝑥𝑖

̂
  

 

    SPSA KW

FDSA

Kiefer & Wolfowitz, 1952 Spall, 2003 SPSA

 𝐷𝑘
+  𝐷𝑘

−

 

 

    SPSA differentiable

convex function 3.9

‖𝐱𝐤+𝟏 − 𝐱𝐤‖

 𝑎𝑘  𝑐𝑘 

 

 

8  𝐷(𝐱𝐤)  𝐱𝐤 

 𝐷(⋅)  
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SPSA

n k+1

 𝚫𝐤 n

 𝐷𝑘
+  𝐷𝑘

− 

 

 

     𝑓(𝑥, 𝑦) 

3-9 𝚫𝐤 

 

 

 

3-9 SPSA   

 

3.5.2 SPSA  

    SPSA  𝑎𝑘  𝑐𝑘 

Spall 1998  𝑎𝑘  𝑐𝑘  𝑎𝑘 

3.11  
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 𝑎𝑘 =
𝑎

(𝐴 + 𝑘 + 1)𝛼
, ∀𝑘 ∈ 𝕂 （3.11） 

 𝑐𝑘 3.11  

 𝑐𝑘 =
𝑐

(𝑘 + 1)𝛾
, ∀𝑘 ∈ 𝕂 3.12  

 𝑎𝑘  𝑐𝑘  

1. 𝑎𝑘 > 0, 𝑐𝑘 > 0 

2. 𝑎𝑘 → 0, 𝑐𝑘 → 0 

3. ∑ 𝑎𝑘
∞
𝑘=0 = ∞ 

4. ∑ (
𝑎𝑘

𝑐𝑘
)
2

∞
𝑘=0  

 

    

noise

 (
𝑎𝑘

𝑐𝑘
)
2

  

 

    

1  𝑐𝑘 → 0  𝑐𝑘 

 𝑐𝑘 1  

 

3.5.3  

    Kiefer & Wolfowitz, 1952 Spall, 

2003

3.5.4
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3.5.4 SPSA 

    SPSA

3-10 9 

 

 

 

9 TRANSYT Hill Climbing Robertson 1969
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3-10 SPSA  
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    3-10 SPSA

 

 

    

 

 

    

 

 

3.5.5  

    3.3 (3.3)

(3.4)

(3.3) P P−1

P (3.8) (3.8)

(3.6) (3.7) (3.8)
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    5

120 5 110

5 105 5

5 105 105  

 

    

3-11  

 

 

3-11  

    3-11
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    3-4 5

150 5 (3.8)

125  

 

3-4  

 

 

    

 

 

3.5.6  

    

Akçelik 1981

 

 

1 5 4 否 (5-4) = 1 5

2 5 13 (13-5) = 8 13-5*(8/75) = 12.5 ≈ 12

3 5 12 (12-5) = 7 12-5*(7/75) = 11.5 ≈ 12

4 20 80 (80-20) = 60 80-5*(60/75) = 76

5 ( ) 20 16 (20-16) = 4 20

(4+13+12+80+16)

= 125
(1+4) = 5 (8+7+60) = 75

(5+12.5+11.5+76+20)

= 125
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     𝜙 displayed green time Akçelik

effective green time 3.13  

 𝐸𝐺𝑖,𝑗 = 𝜙𝑖,𝑗 + 𝐼𝑖,𝑗 − 𝑙𝑖,𝑗, ∀𝑖 ∈ 𝕀, ∀𝑗 ∈ 𝕁𝑖 （3.13） 

movement flow ratio

3.14  

 𝑦𝑖,𝑗 = max
𝑙

𝑞𝑖,𝑗,𝑙

𝑠𝑖,𝑗,𝑙
, ∀𝑖 ∈ 𝕀, ∀𝑗 ∈ 𝕁𝑖, ∀𝑙 ∈ 𝕃𝑖,𝑗 （3.14） 

arrival flow

saturation flow  𝑦𝑖,𝑗 

 𝑌𝑖 3.15  

 ∑𝑦𝑖,𝑗

𝑗

= 𝑌𝑖, ∀𝑖 ∈ 𝕀, ∀𝑗 ∈ 𝕁𝑖 （3.15） 

 
𝑦𝑖,𝑗

𝑌𝑖
 3.16  

 𝐸𝐺𝑖,𝑗 = (
𝑦𝑖,𝑗

𝑌𝑖
) ⋅ 𝐶𝑖 3.16  

3.13  𝜙𝑖,𝑗 

 

 

  



doi:10.6342/NTU202504785

 

35 

4   

 

    3 SPSA TRANSYT

3

6 9

SPSA 4.1 4.2

4.3 4.4 4.5

4.6  

 

4.1  

    SPSA optimality

4-1

SPSA

Lo 2001 DISCO 3

benchmark

10

6 leg FHWA, 2000

9

TRANSYT 17.0.1 2025

Hill Climbing   

 

 

10 modern roundabout

weaving DMRB 2023  
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4-1  

 

3  6  9  

   

11 16 18 83 

3 6 9 

5 11 26 

2 5 8 

 3 6 18 

 

4.2  

4.2.1  

    

TRANSYT

 

 

    4-1

4-2 4-2 4-3

4-3 4-4

4-12 4-4 4-12

 

 

11 TRANSYT arm 3

4-1 4-3  
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 37 

 

4
-1

 
T

R
A

N
S

Y
T

 1
7
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4-2 TRANSYT 17  
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4-2  

 

 

4-3  

  

 (m)  (PCU/hr)

1 74 6000

2 74.4 2000

3 26 --

4 26 6000

5 26 2000

6 74.4 2000

7 74.4 2000

8 26 --

9 70.8 --

10 26 6000

11 26 2000

12 74.4 2000

13 74.4 2000

14 70.8 --

15 70.8 --

16 36.67 --

 (m)  (PCU/hr)

1 82.63 3600

2 82.35 1800

3 127.4 --

4 86.77 3600

5 102.35 1800

6 132.01 --

7 160.55 3600

8 76.91 1800

9 131.25 --

10 94.36 3600

11 86.18 1800

12 124.33 --

13 91.73 3600

14 90.12 1800

15 132.32 --

16 123.24 3600

17 84.42 1800

18 120.08 --
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 40 

 

4
-3

 
T

R
A

N
S

Y
T

 1
7
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4-4 1 TRANSYT  

 

4-4 1  

 

 

 (m)  (PCU/hr)

1 36.67 --

2 74.4 4000

3 74.4 2000

4 74.4 4000

5 74.4 2000

6 50 1904

7 260 2000

8 70.8 --

9 70.8 --

10 92.23 --

44 260 --
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4-5 2 TRANSYT  

 

4-5 2  

 

 (m)  (PCU/hr)

11 74.4 4000

12 74.4 2000

13 75.3 4000

14 75.3 2000

15 82.03 1800

16 360 1800

17 70.8 --

18 250 --

19 135.42 --

20 96.73 --

21 150 --

78 360 --
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4-6 3 TRANSYT  

 

4-6 3  

 

 (m)  (PCU/hr)

22 75.3 4000

23 75.3 2000

24 70 4000

25 70 2000

26 50 2000

27 250 2000

28 250 --

29 120 --

30 91.05 --

31 170 --
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4-7 4 TRANSYT  

 

4-7 4  

 

 (m)  (PCU/hr)

32 70 4000

33 74.4 4000

34 74.4 2000

35 50 2000

36 120 --

37 105.77 --

38 36.67 --

71 400 --
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4-8 5 TRANSYT  

 

4-8 5  

 

 (m)  (PCU/hr)

7 260 --

39 36.67 --

40 69.43 4000

41 71.6 2000

42 80 4000

43 80 2000

44 260 2000

45 50 2000

46 94.23 --

47 175 --

48 91.47 --
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4-9 6 TRANSYT  

 

4-9 6  

 

 (m)  (PCU/hr)

49 80 4000

50 80 2000

51 80 4000

52 80 2000

53 175 --

54 135 --

55 150 --

56 90.96 --
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4-10 7 TRANSYT  

 

4-10 7  

 

 (m)  (PCU/hr)

57 80 4000

58 80 2000

59 80 4000

60 80 2000

61 100 1800

62 50 2000

63 135 --

64 260 --

65 20 --

66 91.21 --
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4-11 8 TRANSYT  

 

4-11 8  

 

 (m)  (PCU/hr)

67 80 4000

68 80 4000

69 80 2000

70 420 1800

71 400 2000

72 150 1800

73 260 --

74 100 --

75 150 --

76 92.63 --

77 36.67 --

79 420 --
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4-12 9 TRANSYT  

 

4-12 9  

 

 

 (m)  (PCU/hr)

16 360 --

27 250 --

61 100 --

70 420 --

78 360 1800

79 420 1800

80 47.21 1800

81 80 1800

82 100 1800

83 100 1800
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    12

1800 PCU/hr 2000 PCU/hr

6 1 1904 PCU/hr 4-4  

 

    4-13

4-15 TRANSYT

 

 

4-13  

 

  

 

 

12 

saturation flow Allsop, 

1971  

5 6 7

1 194 300 1126 1620

2 48 40 308 396

3 984 10 158 1152

4 -- 114 114 228

1226 464 1706 3396
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4-14  

(a) 1  

 

(b) 2  

 

(c) 3  

 

  

3

1 1620 1620

2 396 396

1

8 9

4 1774 -- 1774

5 -- 242 242

6 -- 984 984

7 168 -- 168

2

14 15

10 1592 -- 1592

11 -- 350 350

12 -- 114 114

13 114 -- 114

3
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4-15  

 

 

4-16  

(a) 1 1  

 

(b) 2 2  

 

(c) 3 3  

 

 

1 2 3 4 5 6

1 0 50 50 50 100 50 300

2 200 0 100 50 50 50 450

3 200 150 0 100 100 100 650

4 300 200 100 0 100 100 800

5 300 200 200 100 0 100 900

6 100 50 200 100 100 0 550

1100 650 650 400 450 400 3650

3 4

2 50 250 300

1 600 800 1400

1

6 7

5 100 350 450

4 550 500 1050

2

9 10

8 100 550 650

7 300 550 850

3
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(d) 4 4  

 

(e) 5 5  

 

(f) 6 6  

12 13

11 100 700 800

10 350 750 1100

4

15 16

14 100 800 900

13 300 1150 1450

5

18 1

17 100 450 550

16 1000 950 1950

6



doi:10.6342/NTU202504785

  

54 

   

4
-1

7
 

 

 

    
 

1
2

3
4

6
7

8
9

1
0

1
1

1
2

1
3

1
4

1
5

1
0

1
2
0

6
0

6
5

5
3
0

9
0

6
5

4
5

5
0

6
0

2
3
9

2
8

3
6

1
1
9
0

2
8
0

0
1

1
1
2
0

4
8

3
9

3
7

5
9

7
0

3
6

5
1

0
4
4

5
8
6

4
6
5

1
1

0
5
8

3
7

6
5

7
1

3
4

4
2

3
9

4
2

0
2
8

4
8
3

5
1
0
3

2
1

1
6
8

5
7

3
9

3
0

2
8

4
2

4
4

3
6

3
2
6

4
8
0

6
6
2
3

9
7

6
4

7
5

0
1

9
2

4
1

3
6

4
9

2
4

4
3

3
2

7
1
1
8
4

7
2
3

1
9

1
3

1
8

0
0

5
0

5
1

1
7

3
0

3
2
4

2
3

1
2

5
0

6
3
0

9
9
4

8
2

2
6

8
8

3
4

6
2

1
0

1
0

7
1

4
9

2
2

3
5
3
3

1
1

4
3

7
1

2
9

3
1

6
5

9
0

5
5

1
0

9
0

5
1

2
1

4
5

5
4
7

1
2

0
2
3

1
8

5
8

5
0

2
9
6

2
9

2
9

2
2

4
8

0
2
7

5
3
6

6
4
1

1
4

1
0

1
0

1
5
2

3
2

4
0

3
9

1
3

1
9

1
1

5
5

0
3
9

3
1
2

1
5

6
7

5
4

3
9

2
9

5
3
0

0
0

3
5

5
1

3
0

1
8

0
3
3
1

1
1
0
8

4
7
0

2
5
2

3
6
7

9
8
2

7
4
3

4
2
5

3
4
8

2
6
4

3
6
5

6
9
2

4
4
6

1
4
1

3
1
4

6
9
1
7



doi:10.6342/NTU202504785

  

55 

 

4
-1

8
 

 

(a
)  

1
 

 

(b
)  

2
 

 

8
9

1
0

4
4

2
--

9
0
5

--
1
6
5

1
0
7
0

3
--

--
1
2
0

--
1
2
0

4
9
2
0

--
2
0
0

--
1
1
2
0

5
--

--
--

1
8
1

1
8
1

6
8
0

3
0
2

--
2
0
4

5
8
6

7
1
0
8

1
7
5

1
5
0

--
4
3
3

1

1
7

1
8

1
9

2
0

2
1

7
8

1
1

--
9
9
8

--
--

9
0

1
3
1

1
2
1
9

1
2

--
--

1
0
8

5
4

--
--

1
6
2

1
3

1
0
5
0

--
5
0

9
0

--
--

1
1
9
0

1
4

--
--

--
--

1
2
1

0
1
2
1

1
5

4
5

1
2
3

--
--

5
5

8
9

3
1
2

1
6

2
0
6

0
3
7

5
4

--
--

2
9
7

2



doi:10.6342/NTU202504785

  

56 

 

 

(c
)  

3
 

 

(d
)  

4
 

 

 
 

2
8

2
9

3
0

3
1

2
2

--
8
2
8

--
1
8
1

1
0
0
9

2
3

--
--

1
1
1

--
1
1
1

2
4

1
0
5
7

--
7
6

--
1
1
3
3

2
5

--
--

--
2
7
4

2
7
4

2
6

1
5
0

1
0
3

--
2
3
1

4
8
4

2
7

1
0
4

9
6

1
8
0

--
3
8
0

3

3
6

3
7

7
1

3
2

--
9
1
4

1
1
4

1
0
2
8

3
3

1
0
9
1

--
--

1
0
9
1

3
4

--
--

9
3

9
3

3
5

3
1
6

6
8

9
6

4
8
0

4



doi:10.6342/NTU202504785

  

57 

 

(e
)  

5
 

 

(f
)  

6
 

 
 

4
6

4
7

7
4
8

4
0

--
4
9
3

--
4
8

5
4
1

4
1

--
--

1
0
0

--
1
0
0

4
2

4
8
8

--
1
2
1

--
6
0
9

4
3

--
--

--
8
6

8
6

4
4

1
1
4

2
0
6

--
2
3
1

5
5
1

4
5

9
0

2
4
5

2
1
2

--
5
4
7

5

5
3

5
4

5
5

5
6

4
9

--
7
2
9

--
1
3
6

8
6
5

5
0

--
--

7
8

--
7
8

5
1

6
9
5

--
1
0
2

--
7
9
7

5
2

--
--

--
1
2
8

1
2
8

6



doi:10.6342/NTU202504785

  

58 

(g
)  

7
 

 

(h
)  

8
 

 

 
 

6
3

6
4

6
5

6
6

5
7

--
5
6
6

--
6
1

6
2
7

5
8

--
--

1
0
2

--
1
0
2

5
9

5
1
6

--
1
3
0

--
6
4
6

6
0

--
--

--
5
1

5
1

6
1

2
0
0

2
6
4

--
2
3
6

7
0
0

6
2

2
0
9

6
6

2
5
8

--
5
3
3

7

7
3

7
4

7
9

7
5

7
6

6
7

--
5
4
2

--
1
8
2

1
7
2

8
9
6

6
8

4
9
0

--
4
0

--
--

5
3
0

6
9

--
--

--
5
0

5
0

1
0
0

7
0

--
7
1

--
8
2

--
1
5
3

7
1

0
1
0
0

--
--

2
0
3

3
0
3

7
2

2
0
7

3
0

9
4

--
--

3
3
1

8



doi:10.6342/NTU202504785

  

59 

 

   

(i
)  

9
 

1
6

7
0

2
7

6
1

7
8

--
5
5

0
1
6
5

2
2
0

7
9

5
4

--
8
0

--
1
3
4

8
0

5
3

--
--

5
3
5

5
8
8

8
1

--
9
8

--
--

9
8

8
2

--
--

3
0
0

--
3
0
0

8
3

1
9
0

--
--

--
1
9
0

9



doi:10.6342/NTU202504785

 

60 

    120

100 start displacement end displacement

13 2 5

 

 

 

 

4-13 4-1  

 

 

 

13 

TRL, 2024 −  
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4-14 4-2  
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4-15 4-3 4-4 4-12  
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4.2.2  

    

Gerencsér 1999

(3.10)  𝐷𝑘
+ = 𝐷𝑘

− = 𝐷(𝐱𝐤) 

1  𝑐𝑘 = 𝑐 = 1  

 

    (3.11)  𝐴 

10%  𝛼 0.6 Spall, 1998

SPSA 3 0.1%

20

2 1%

50 100  

 

    3600 1 1

 

 

4.2.3  

    

2

3 5

3.5.6

4-19 4-20 4-21   
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4-19 2  

 

 

4-20 3  

 

 

1 2

θ2 28 44

θ3 70 107

ϕ1,1 64 64

ϕ2,1 40 40

ϕ3,1 93 93

Akçelik

1 2 3

θ2 55 20 1

θ3 91 30 43

θ4 98 8 2

θ5 77 83 15

θ6 46 93 50

ϕ1,1 25 25 25

ϕ2,1 41 41 41

ϕ3,1 55 55 55

ϕ4,1 54 54 54

ϕ5,1 50 50 50

ϕ6,1 31 31 31

Akçelik
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4-21 5  

 

  

1 2 3 4 5

θ2 36 101 69 45 64

θ3 91 50 88 39 110

θ4 103 0 5 73 9

θ5 49 108 93 9 111

θ6 97 37 73 107 37

θ7 112 83 84 1 70

θ8 25 61 40 50 49

θ9 24 44 110 94 55

ϕ1,1 46 46 46 46 46

ϕ1,2 11 11 11 11 11

ϕ2,1 62 62 62 62 62

ϕ2,2 13 13 13 13 13

ϕ3,1 46 46 46 46 46

ϕ3,2 20 20 20 20 20

ϕ4,1 52 52 52 52 52

ϕ4,2 5 5 5 5 5

ϕ5,1 33 33 33 33 33

ϕ5,2 8 8 8 8 8

ϕ6,1 88 88 88 88 88

ϕ7,1 29 29 29 29 29

ϕ7,2 6 6 6 6 6

ϕ8,1 40 40 40 40 40

ϕ8,2 5 5 5 5 5

ϕ8,3 26 26 26 26 26

ϕ9,1 21 21 21 21 21

ϕ9,2 66 66 66 66 66

Akçelik
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4.3  

    3 5 2  𝜃2  𝜃3 

 𝜙1,1  𝜙2,1  𝜙3,1 SPSA

 𝑎 SPSA

SPSA Steepest Descent 

Method Golden Section Method

14 SPSA  

 

4.3.1 SPSA  

    1 3  𝑎 = 1.44, 1.8, 2.16 

SPSA15 5

SPSA SPSA

50  𝑎 

4-16 4-17 4-18   

 

 

14 A  

15 a SIGMIX PCU-s/hr

PCU-hr/hr a SIGMIX B  
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4-16 SPSA 1  a = 1.44 

 

 

4-17 SPSA 1  a = 1.8 

 

 

4-18 SPSA 1  a = 2.16  
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    3

3 4-22  

 

4-22 3 a  

 a = 1.44 a = 1.8 a = 2.16 

 50 50 50 

 

 PCU-hr/hr  
43.99 41.63 43.92 

 

sec  
63.77 69.06 64.54 

 

    4-22 3 50

100  𝑎 = 1.8 

 𝑎 = 1.8 

 𝑎 = 1.8 16 

 

4.3.2 SPSA 

    4.3.1  𝑎 = 1.8 1 2 SPSA

 𝑎 = 1.8 

4.2.2 4-23

1 2 4-19 4-20  

  

 

 

16  𝑎  
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4-23 SPSA  

  a a 
 

 PCU-hr/hr  
 

 

sec  

1 1 1.8 1.8 40.75 35 43.93 

2 2 1.8 1.8 43.44 43 50.74 

3 1 1.8 2.88 40.32 30 37.13 

 

 

4-19 SPSA 1  

 

 

4-20 SPSA 2  
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    4-19 4-20 SPSA

SPSA

1 4-21 4-22  

 

 

4-21 1  

 

 

4-22 1  
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     𝑎 = 2.88 

1 3 4-23

4-24 4-25  

 

 

4-23 SPSA 3  

 

 

4-24 3  
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4-25 3  

 

    4-24 4-25 (3.3) (3.4)

 [0, 120) 120 120

120 0 1

3 3

3 SPSA

 𝐱𝐨𝐩𝐭 = [𝛉𝐨𝐩𝐭T 𝛟𝐨𝐩𝐭T]
T
, 𝛉𝐨𝐩𝐭 = [0 117]T, 𝛟𝐨𝐩𝐭 = [57 43 78]T  

 

4.3.3  

    

SPSA SPSA TRANSYT Hill Climbing

Net-GA Lo 2001 4-24  

 

    1 2
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A  

 

4-24  

   
 

 PCU-hr/hr  

 

sec  

SPSA 

1  
50 100 41.63 69.06 

SPSA 

1  
30 60 40.32 37.13 

1  9 142 40.43 89.57 

2  15 244 40.44 146.63 

TRANSYT Hill Climbing -- -- 39.33 6.44 

Net-GA 10 min  -- -- 44.94 600 

Net-GA 40 min  -- -- 37.31 2400 

 

    SPSA

TRANSYT Hill Climbing Net-GA

 

 

4.4  

4.4.1  

    SPSA

4.2.2  𝑎 

(2.1)

SPSA



doi:10.6342/NTU202504785

 

74 

1 4  𝑎 

3  𝑎 4  

 

4-25 a  

 a a 
 

 PCU-hr/hr  
 

1 0.5 0.5 209.85 16 

2 1 1 171.15 99 

3 2 1 168.36 40 

4 5 1 178.46 38 

 

    4-25  𝑎 1

 𝐷𝑘
+  𝐷𝑘

− 

3

3  𝑎 = 2  𝑎 = 1  

 

    

4-25

 𝑎  𝑎 

 𝑎 
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4.4.2  

     𝑎 3 SPSA

4-26  

 

4-26  

 a a 
 

 PCU-hr/hr  
 

 

sec  

1 2 1 167.36 44 116.47 

2 2 1 174.34 80 223.26 

3 2 1 159.56 93 284.99 

 

4-26 4-27 4-28  

 

4-26 1  
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4-27 2  

 

 

4-28 3  
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    3  𝐱𝐤 = [𝛉𝐤T
𝛟𝐤T]

T
 𝛉𝐤 = [30 39 6 88 83]T 𝛟𝐤 =

[33 38 61 49 47 29] 4-29

4-30  

 

 

4-29 3  

 

 

4-30 3  
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4.4.3  

    3 TRANSYT Hill Climbing

3 2

A 4-27

 

 

4-27  

sec PCU-hr/hr

SPSA 

1  
44 88 116.47 167.36 

SPSA 

2  
80 160 223.26 174.34 

SPSA 

3  
93 186 284.99 159.36 

1  5 116 144.29 171.50 

2  5 112 157.70 173.87 

3  2 45 69.41 205.23 

TRANSYT Hill Climbing -- -- 126.32 159.38 

 

    4-27 3 3 167.02 

PCU-hr/hr 7.50 PCU-hr/hr SPSA
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4-31  

 

    4-31

SPSA

  

 

    17 3

171.50 PCU-hr/hr

SPSA

SPSA

SPSA 7.08%  

 

4.4.4  

    

 

 

17 

1  
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20

 

 

    4-28  20  20 

 40  10 

 17.11 (PCU-hr/hr) 4-32

4-33  

 

    Kernel Density Estimation, KDE 18

20

4-34   

 

 

18 KDE kernel bandwidth Gaussian Kernel

bandwidth Scott 1992 40

14.21  
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4-28 3  

 
20  

 PCU-hr/hr  

 

 PCU-hr/hr  

1 219.15 159.56 

2 202.94 175.99 

3 224.48 141.48 

4 176.25 173.57 

5 194.77 184.45 

6 219.35 180.05 

7 224.85 145.78 

8 180.84 166.78 

9 171.38 168.25 

10 223.48 178.55 

11 190.33 187.41 

12 175.41 172.80 

13 208.95 186.00 

14 312.61 170.74 

15 238.10 188.65 

16 190.52 182.70 

17 176.65 147.53 

18 196.88 186.49 

19 198.46 176.56 

20 187.33 167.75 
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4-32 3 20  

 

 

4-33 3  
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4-34 3 KDE  

 

    4-34 20

 

 

4-29 3  

 

20 205.64 31.94 15.53% 

172.05 14.09 8.19% 

 

4-30 3  

 
 

(Q1) 
 

 

(Q3) 

 

(Q3 – Q1) 

20 185.71 197.67 220.38 34.67 

167.51 174.78 183.14 15.63 
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    4-29 4-30 31.94 14.09 15.53%

8.19% 34.67 15.63 4-34

20

20

 

 

4.5  

    SPSA

5 SPSA TRANSYT 

Hill Climbing 100

TRANSYT PDM Platoon 

Dispersion Model Robertson, 1969

CTM Cell Transmission Model Daganzo, 1994; 1995

CTM Spillover

 𝐷𝑘
+  𝐷𝑘

− 

PDM CTM  

 

    TRANSYT Hill Climbing PDM 133.58

187.88 PCU-hr/hr CTM 4279.43

273.04 PCU-hr/hr CTM

Hill Climbing PDM 226.89 PCU-hr/hr19

 

 

19 CTM 100.35% PDM

88%  
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CTM PDM  

 

4.5.1  

     𝑎 

 𝑎 

 

 

    1  𝑎 

 𝑎  𝑎 

4-31 1  𝑎 = 25  𝑎 = 0.5

 

 

4-31 a  

 a a 
 

 PCU-hr/hr  
 

1 25 0.5 193.45 59 

2 25 1 196.04 53 

 

4.5.2  

    5  𝑎 4-31 1

1  

 

4-32  

 a a  
sec  PCU-hr/hr  



doi:10.6342/NTU202504785

 

86 

1 25 0.5 59 1538.07 193.45 

2 25 0.5 75 1919.93 193.21 

3 25 0.5 66 1710.20 194.73 

4 25 0.5 100 2620.15 185.49 

5 25 0.5 47 1224.89 211.18 

 

    

5 195.61 PCU-hr/hr 9.43 PCU-

hr/hr 4-35 4-39  

 

 

4-35 1  
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4-36 2  

 

 

4-37 3  
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4-38 4  

 

4-39 5  

 

    5

 𝑎 
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    4 100

4 4 4-33  

 

4-33 4  

 

 

  

( 4)

θ2 98

θ3 60

θ4 58

θ5 18

θ6 107

θ7 102

θ8 66

θ9 108

ϕ1,1 48

ϕ1,2 15

ϕ2,1 62

ϕ2,2 14

ϕ3,1 46

ϕ3,2 22

ϕ4,1 54

ϕ4,2 10

ϕ5,1 31

ϕ5,2 10

ϕ6,1 89

ϕ7,1 28

ϕ7,2 11

ϕ8,1 36

ϕ8,2 10

ϕ8,3 23

ϕ9,1 24

ϕ9,2 64
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4-40 4  

 

 

4-41 4  
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4-42 4  

 

 

4-43 4  

 

    4-40 4-43 4
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4.5.3  

    

TRANSYT Hill Climbing 4-34  

 

4-34  

  
sec  PCU-hr/hr  

SPSA 

/ 4  
100 2620.15 185.49 

TRANSYT Hill Climbing -- 133.58 187.88 

 

    4-34 5 4

100 200 2620.15

SPSA TRANSYT Hill Climbing

SPSA Hill Climbing 20  

 

4.6  

    

SPSA SPSA

SPSA

SPSA 20

SPSA

SPSA
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5   

5.1  

    SPSA

SPSA

 

 

 

non-convex 

function  

 SPSA

TRANSYT Hill Climbing Net-GA  

 SPSA

58.5% 0.272%

7.08%  

SPSA

2 2

 

 

     

 

 

 

 SPSA
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 SPSA

 

SPSA

 

 

5.2  

    SPSA

 

 

 SPSA

SPSA  

  𝑎 

 

 

 

  

TRANSYT deterministic
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A A  

 

    steepest descent, Cauchy, 1847 SPSA

 

 

    

 (forward difference gradient approximation, FDGRAD) 

A.1 Dennis & Schnabel, 1996  

 𝑔̂𝑛
𝑘(𝐱𝐤) =

𝐷(𝐱𝐤 + ℎ𝑛
𝑘𝐞𝐧) − 𝐷(𝐱𝐤)

ℎ𝑛
𝑘   A.1  

 𝑔̂𝑖
𝑘  𝑘 + 1  𝑛  ℎ𝑛

𝑘  

1  𝐞𝐧  𝑛  𝑛 1 0  

 

    Golden Section Method, Kiefer, 1953

line search

 0.618

 (−100,100)  

 

A.1  

    4-19

 𝐱𝟎 = [𝛉𝐨𝐩𝐭T 𝛟𝐨𝐩𝐭T]
T
, 𝛉𝟎 =
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[28 70]T, 𝛟𝟎 = [64 40 93]T 1

6 A-1  

 

A-1 1  

 𝜃2 𝜃3 𝜙1,1 𝜙2,1 𝜙3,1 

 28 70 64 40 93 

+  29 70 64 40 93 

+  28 71 64 40 93 

+  28 70 65 40 93 

+  28 70 64 41 93 

+  28 70 64 40 94 

 

    6

 𝐠̂𝐤(𝐱
𝐤)/‖ 𝐠̂𝐤(𝐱

𝐤)‖

A-1  (a, b) 

λ μ  (λ, b)

λ’ μ  (a, λ) μ’

μ

 

 

 

A-1  
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A.2  

    SPSA

1

A-2 A-3 A-

4  

 

A-2 1  

 

 

A-3 1  

 𝜃2 𝜃3 𝜙1,1 𝜙2,1 𝜙3,1 

𝐷(𝐱𝐤 + ℎ𝑖𝐞𝐢) 359.06 306.57 328.91 331.76 306.41 

 0.61985 -0.55177 -0.053123 0.010491 -0.55534 

iteration θ2 θ3 ϕ1,1 ϕ2,1 ϕ3,1 Delay ak

1 28 70 64 40 93 331.29 45.58382

2 0 95 66 40 104 79.21 20.16474

3 0 95 46 41 102 46.58 19.15818

4 -1 95 46 43 83 41.2 3.12740

5 -4 95 47 42 83 40.78 1.63138

6 -5 95 47 43 83 40.74 1.62199

7 -4 95 48 42 83 40.73 1.63138

8 -5 95 48 43 83 40.58 1.62199

9 -5 95 49 42 83 40.54 0.00290

10 -5 95 49 42 83 40.54

best -5 95 49 43 83 40.43
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A-2  𝜙1,1 105

 104  

 

    

2 A-5 1 2

4-24 9 13  

 

A-5 2  

 

 

    A-6 A-7 A-8

4-27  

iteration θ2 θ3 ϕ1,1 ϕ2,1 ϕ3,1 Delay ak

1 44 107 64 40 93 285.03 15.40772

2 34 107 74 45 93 47.94 3.128705

3 33 107 74 42 93 47.47 10.64162

4 24 108 77 45 93 45.66 2.123576

5 24 108 77 43 93 45.18 5.878934

6 19 110 75 41 93 44.6 2.631653

7 18 110 75 43 92 43.89 13.9652

8 7 110 70 41 86 42.4 2.633709

9 6 110 69 43 86 41.77 1.121711

10 5 110 69 43 85 41.6 3.751894

11 2 110 69 42 84 41.32 3.879014

12 -1 110 68 44 83 40.79 1.432153

13 -1 110 68 43 83 40.76 3.133987

14 -1 110 65 43 83 40.72 1.813957

15 -3 110 65 43 82 40.44 -0.0029

16 -3 110 65 43 82 40.44
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B B SIGMIX  

 

    TRANSYT SIGMIX Chen, 

2016 Lo 2001 DISCO

CTM Daganzo, 1994 Flötteröd & 

Rhode 2011 INMC  

 

    - TRANSYT PCU-hr 3600

SIGMIX SPSA

 𝑎 4.3  𝑎 1

SIGMIX SIGMIX Net-

GA, Lo 2001

10000  

 

B-1 SIGMIX 𝑎 1 SPSA  

𝑎   
 

 veh-s/hr  

3 50 148,993.82 

4 50 127,811.90 

5 50 136,115.70 

6 50 126,484.25 

7 25 317,950.39 

SIGMIX GA  -- 135,714.00 

 

     𝑎 = 7

4.3  𝑎 10000

3600 6 B-1 B-2  
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B-1 B-1  𝑎 = 3, 4, 5  
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B-2 B-1  𝑎 = 6, 7  
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C C  

 

Chen (2023)

 

2023

 

Chen (2023)

 

SPSA

 

41 1904 

PCU/hr  
 

 𝑐 1  𝑐 

 

 𝑐 

1  

82 4-32 4-33

 

4-32 20

 

SPSA Hill climbing

 
 

  

Chen 

(2023)

  

initial solution
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?

 
 

 
 

  

 

 

 

TRANSYT

SPSA

 

Chen (2023)

 
 

SPSA

 SPSA  
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SPSA

 

SPSA Steepest descent

 

SPSA

 
 

( ) SPSA

SPSA

SPSA

TRANSYT

 

SPSA

SPSA

TRANSYT

SPSA

 

82 4-32

4-33  

20

 

 

83 4-34 20

 

 


