Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
    • Advisor
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 數學系
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/10112
Full metadata record
???org.dspace.app.webui.jsptag.ItemTag.dcfield???ValueLanguage
dc.contributor.advisor劉瓊如(Chiung-Ju Liu)
dc.contributor.authorShou-Cheng Tuanen
dc.contributor.author段守正zh_TW
dc.date.accessioned2021-05-20T21:02:50Z-
dc.date.available2011-07-27
dc.date.available2021-05-20T21:02:50Z-
dc.date.copyright2011-07-27
dc.date.issued2011
dc.date.submitted2011-07-16
dc.identifier.citation[1] Thierry Aubin, Nonlinear analysis on manifolds. Monge-Amp ere equations,
Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of
Mathematical Sciences], vol. 252, Springer-Verlag, New York, 1982. MR681859
(85j:58002)
[2] D. Burns and P. De Bartolomeis, Stability of vector bundles and extremal metrics,
Invent. Math. 92 (1988), no. 2, 403{407. MR936089 (89d:53114)
[3] Wei Yue Ding and Gang Tian, K�ahler-Einstein metrics and the generalized
Futaki invariant, Invent. Math. 110 (1992), no. 2, 315{335. MR1185586
(93m:53039)
[4] S. K. Donaldson, Anti self-dual Yang-Mills connections over complex algebraic
surfaces and stable vector bundles, Proc. London Math. Soc. (3) 50 (1985),
no. 1, 1{26. MR765366 (86h:58038)
[5] , In nite determinants, stable bundles and curvature, Duke Math. J. 54
(1987), no. 1, 231{247. MR885784 (88g:32046)
[6] , Scalar curvature and projective embeddings. I, J. Di erential Geom.
59 (2001), no. 3, 479{522. MR1916953 (2003j:32030)
[7] , Scalar curvature and stability of toric varieties, J. Di erential Geom.
62 (2002), no. 2, 289{349. MR1988506 (2005c:32028)
[8] , Lower bounds on the Calabi functional, J. Di erential Geom. 70
(2005), no. 3, 453{472. MR2192937 (2006k:32045)
[9] , Scalar curvature and projective embeddings. II, Q. J. Math. 56 (2005),
no. 3, 345{356. MR2161248 (2006f:32033)
[10] William Fulton, Intersection theory, Second, Ergebnisse der Mathematik und
ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results
in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys
in Mathematics], vol. 2, Springer-Verlag, Berlin, 1998. MR1644323 (99d:14003)
[11] D. Gieseker, Global moduli for surfaces of general type, Invent. Math. 43
(1977), no. 3, 233{282. MR0498596 (58 #16687)
[12] Henri Gillet and Christophe Soul e, Arithmetic intersection theory, Inst. Hautes
Etudes Sci. Publ. Math. 72 (1990), 93{174 (1991). MR1087394 (92d:14016)
[13] Phillip Gri ths and Joseph Harris, Principles of algebraic geometry, Wiley
Classics Library, John Wiley & Sons Inc. New York, 1994. Reprint of the 1978
original. MR1288523 (95d:14001)
[14] Daniel Guan, On modi ed Mabuchi functional and Mabuchi moduli space of
K�ahler metrics on toric bundles, Math. Res. Lett. 6 (1999), no. 5-6, 547{555.
MR1739213 (2001b:32042)
[15] Ying-Ji Hong, Gauge- xing constant scalar curvature equations on ruled manifolds
and the Futaki invariants, J. Di erential Geom. 60 (2002), no. 3, 389{
453. MR1950172 (2004a:53040)
[16] Shoshichi Kobayashi, Curvature and stability of vector bundles, Proc. Japan
Acad. Ser. A Math. Sci. 58 (1982), no. 4, 158{162. MR664562 (83i:53090)
GEOMETRIC CRITERION FOR GIESEKER-MUMFORD STABILITY 31
[17] J anos Koll ar, Toward moduli of singular varieties, Compositio Math. 56
(1985), no. 3, 369{398. MR814554 (87e:14009)
[18] D. Lieberman and D. Mumford, Matsusaka's big theorem, Algebraic geometry
(Proc. Sympos. Pure Math., Vol. 29, Humboldt State Univ., Arcata, Calif.,
1974), 1975, pp. 513{530. MR0379494 (52 #399)
[19] Martin L�ubke, Stability of Einstein-Hermitian vector bundles, Manuscripta
Math. 42 (1983), no. 2-3, 245{257. MR701206 (85e:53087)
[20] Huazhang Luo, Geometric criterion for Gieseker-Mumford stability of polarized
manifolds, J. Di erential Geom. 49 (1998), no. 3, 577{599. MR1669716
(2001b:32035)
[21] Toshiki Mabuchi, K-energy maps integrating Futaki invariants, Tohoku Math.
J. (2) 38 (1986), no. 4, 575{593. MR867064 (88b:53060)
[22] , Vector eld energies and critical metrics on K�ahler manifolds, Nagoya
Math. J. 162 (2001), 41{63. MR1836132 (2002e:32033)
[23] Antony Maciocia, Gieseker stability and the Fourier-Mukai transform for
abelian surfaces, Quart. J. Math. Oxford Ser. (2) 47 (1996), no. 185, 87{100.
MR1380952 (97g:14007)
[24] T. Matsusaka, Polarized varieties with a given Hilbert polynomial, Amer. J.
Math. 94 (1972), 1027{1077. MR0337960 (49 #2729)
[25] D. Mumford, J. Fogarty, and F. Kirwan, Geometric invariant theory, Third,
Ergebnisse der Mathematik und ihrer Grenzgebiete (2) [Results in Mathematics
and Related Areas (2)], vol. 34, Springer-Verlag, Berlin, 1994. MR1304906
(95m:14012)
[26] David Mumford, Stability of projective varieties, L'Enseignement
Math ematique, Geneva, 1977. Lectures given at the Institut des Hautes
Etudes Scienti ques', Bures-sur-Yvette, March-April 1976, Monographie de
l'Enseignement Math ematique, No. 24. MR0450273 (56 #8569)
[27] Julius Ross and Richard Thomas, An obstruction to the existence of constant
scalar curvature K�ahler metrics, J. Di erential Geom. 72 (2006), no. 3, 429{
466. MR2219940 (2007c:32028)
[28] , A study of the Hilbert-Mumford criterion for the stability of projective
varieties, J. Algebraic Geom. 16 (2007), no. 2, 201{255. MR2274514
(2007k:14091)
[29] R. P. Thomas, Notes on GIT and symplectic reduction for bundles and varieties,
Surveys in di erential geometry. Vol. X, 2006, pp. 221{273. MR2408226
(2010b:14092)
[30] G. Tian, On Calabi's conjecture for complex surfaces with positive rst Chern
class, Invent. Math. 101 (1990), no. 1, 101{172. MR1055713 (91d:32042)
[31] Gang Tian, K�ahler-Einstein metrics with positive scalar curvature, Invent.
Math. 130 (1997), no. 1, 1{37. MR1471884 (99e:53065)
[32] , Canonical metrics in K�ahler geometry, Lectures in Mathematics
ETH Z�urich, Birkh�auser Verlag, Basel, 2000. Notes taken by Meike Akveld.
MR1787650 (2001j:32024)
32 SHOU-CHENG TUAN
[33] K. Uhlenbeck and S.-T. Yau, On the existence of Hermitian-Yang-Mills connections
in stable vector bundles, Comm. Pure Appl. Math. 39 (1986), no. S,
suppl. S257{S293. Frontiers of the mathematical sciences: 1985 (New York,
1985). MR861491 (88i:58154)
[34] Eckart Viehweg, Weak positivity and the stability of certain Hilbert points,
Invent. Math. 96 (1989), no. 3, 639{667. MR996558 (90i:14037)
[35] Xiaowei Wang, Balance point and stability of vector bundles over a projective
manifold, Math. Res. Lett. 9 (2002), no. 2-3, 393{411. MR1909652
(2004f:32034)
[36] , Canonical metrics on stable vector bundles, Comm. Anal. Geom. 13
(2005), no. 2, 253{285. MR2154820 (2006b:32031)
[37] Shing-Tung Yau, Open problems in geometry, Di erential geometry: partial
di erential equations on manifolds (Los Angeles, CA, 1990), 1993, pp. 1{28.
MR1216573 (94k:53001)
[38] Shouwu Zhang, Heights and reductions of semi-stable varieties, Compositio
Math. 104 (1996), no. 1, 77{105. MR1420712 (97m:14027)
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/10112-
dc.description.abstract本篇論文主要是研讀羅華章博士在1997年的論文,對其內容與證明進行詳細的研讀,並且提出四個陳述,對其做出證明。
首先,羅介紹了極化流形以及它的希爾伯特點。藉著幾何不變理論中的對於希爾伯特點的穩定性定義了極化流形在幾何不變理論下的穩定性。藉此他給出穩定性的性質。我們在這邊證明了我們第一個陳述。
再來,使用微分幾何的方法,羅改進了上面的性質。藉由格林流的定義,給出了更廣的Gieseker-Mumford穩定性的性質。在這邊我們證明了兩個陳述。
最後,透過上述的分析,羅證明了他最後一個定理。在這邊我們證明了最後一個陳述以及對於羅的定理我們做了一點修改得到一個關於Gieseker-Mumford穩定性的幾何準則。
zh_TW
dc.description.abstractThis paper is to study Luo’s paper in 1997. We give four statements with their proofs.
Firstly, Luo introduce the polarized manifold and its Hilbert point. By the stability of Hilbert points in the Geometric Invariant Theory, he defined the stability of polarized manifolds in the Geometric Invariant Theory; hence he gave the proposition for the stability. We prove our first statement.
Secondly, Luo use the differential geometric method to reduce the proposition. By the definition of Green current, it gave the extended proposition for the Gieseker-Mumford stability, which is the first main theorem . Here we prove two statements.
Finally, use the above analysis, Luo proved the last theorem. We prove our final statement and do a slight improvement to give the geometric criterion for the Gieseker-Mumford stability.
en
dc.description.provenanceMade available in DSpace on 2021-05-20T21:02:50Z (GMT). No. of bitstreams: 1
ntu-100-R98221029-1.pdf: 926995 bytes, checksum: d7d5d617c8aa0e25dc9dad9ceb1314b8 (MD5)
Previous issue date: 2011
en
dc.description.tableofcontents誌謝 i
中文摘要 ii
英文摘要 iii
Introduction 1
Gieseker-Mumford stability 6
2.1 Moduli space of Polarized Varieties 6
2.2 Gieseker-Mumford stability 8
2.3 Propositions for Stability 8
第三章Singular Riemann-Roch 11
3.1 Some Results from Interseciton Theorem 11
3.2 Green Current and logarithmic Green Current 14
3.3 Secondary Characteristic Classes Type Computations 17
3.4 Analytic Criterion to Check Stability 20
第四章 Heat Kernel and Gieseker-Mumford stability 25
4.1 Criterion for Stability of Subvariety of 〖CP〗^N 25
4.2 Relate Gieseker-Mumford Stability to Heat Kernel 28

參考文獻 30
dc.language.isoen
dc.title極化流形的Gieseker-Mumford穩定性之幾何準則報告zh_TW
dc.titleA survey of the geometric criterion for Gieseker-Mumford stability of polarized manifoldsen
dc.typeThesis
dc.date.schoolyear99-2
dc.description.degree碩士
dc.contributor.oralexamcommittee林惠雯(Hui-Wen Lin),蔡炎龍(Yen-lung Tsai)
dc.subject.keyword穩定性,zh_TW
dc.subject.keywordstability,Hilbert point,en
dc.relation.page32
dc.rights.note同意授權(全球公開)
dc.date.accepted2011-07-16
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept數學研究所zh_TW
Appears in Collections:數學系

Files in This Item:
File SizeFormat 
ntu-100-1.pdf905.27 kBAdobe PDFView/Open
Show simple item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved