請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/10112
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 劉瓊如(Chiung-Ju Liu) | |
dc.contributor.author | Shou-Cheng Tuan | en |
dc.contributor.author | 段守正 | zh_TW |
dc.date.accessioned | 2021-05-20T21:02:50Z | - |
dc.date.available | 2011-07-27 | |
dc.date.available | 2021-05-20T21:02:50Z | - |
dc.date.copyright | 2011-07-27 | |
dc.date.issued | 2011 | |
dc.date.submitted | 2011-07-16 | |
dc.identifier.citation | [1] Thierry Aubin, Nonlinear analysis on manifolds. Monge-Amp ere equations,
Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 252, Springer-Verlag, New York, 1982. MR681859 (85j:58002) [2] D. Burns and P. De Bartolomeis, Stability of vector bundles and extremal metrics, Invent. Math. 92 (1988), no. 2, 403{407. MR936089 (89d:53114) [3] Wei Yue Ding and Gang Tian, K�ahler-Einstein metrics and the generalized Futaki invariant, Invent. Math. 110 (1992), no. 2, 315{335. MR1185586 (93m:53039) [4] S. K. Donaldson, Anti self-dual Yang-Mills connections over complex algebraic surfaces and stable vector bundles, Proc. London Math. Soc. (3) 50 (1985), no. 1, 1{26. MR765366 (86h:58038) [5] , In nite determinants, stable bundles and curvature, Duke Math. J. 54 (1987), no. 1, 231{247. MR885784 (88g:32046) [6] , Scalar curvature and projective embeddings. I, J. Di erential Geom. 59 (2001), no. 3, 479{522. MR1916953 (2003j:32030) [7] , Scalar curvature and stability of toric varieties, J. Di erential Geom. 62 (2002), no. 2, 289{349. MR1988506 (2005c:32028) [8] , Lower bounds on the Calabi functional, J. Di erential Geom. 70 (2005), no. 3, 453{472. MR2192937 (2006k:32045) [9] , Scalar curvature and projective embeddings. II, Q. J. Math. 56 (2005), no. 3, 345{356. MR2161248 (2006f:32033) [10] William Fulton, Intersection theory, Second, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics], vol. 2, Springer-Verlag, Berlin, 1998. MR1644323 (99d:14003) [11] D. Gieseker, Global moduli for surfaces of general type, Invent. Math. 43 (1977), no. 3, 233{282. MR0498596 (58 #16687) [12] Henri Gillet and Christophe Soul e, Arithmetic intersection theory, Inst. Hautes Etudes Sci. Publ. Math. 72 (1990), 93{174 (1991). MR1087394 (92d:14016) [13] Phillip Gri ths and Joseph Harris, Principles of algebraic geometry, Wiley Classics Library, John Wiley & Sons Inc. New York, 1994. Reprint of the 1978 original. MR1288523 (95d:14001) [14] Daniel Guan, On modi ed Mabuchi functional and Mabuchi moduli space of K�ahler metrics on toric bundles, Math. Res. Lett. 6 (1999), no. 5-6, 547{555. MR1739213 (2001b:32042) [15] Ying-Ji Hong, Gauge- xing constant scalar curvature equations on ruled manifolds and the Futaki invariants, J. Di erential Geom. 60 (2002), no. 3, 389{ 453. MR1950172 (2004a:53040) [16] Shoshichi Kobayashi, Curvature and stability of vector bundles, Proc. Japan Acad. Ser. A Math. Sci. 58 (1982), no. 4, 158{162. MR664562 (83i:53090) GEOMETRIC CRITERION FOR GIESEKER-MUMFORD STABILITY 31 [17] J anos Koll ar, Toward moduli of singular varieties, Compositio Math. 56 (1985), no. 3, 369{398. MR814554 (87e:14009) [18] D. Lieberman and D. Mumford, Matsusaka's big theorem, Algebraic geometry (Proc. Sympos. Pure Math., Vol. 29, Humboldt State Univ., Arcata, Calif., 1974), 1975, pp. 513{530. MR0379494 (52 #399) [19] Martin L�ubke, Stability of Einstein-Hermitian vector bundles, Manuscripta Math. 42 (1983), no. 2-3, 245{257. MR701206 (85e:53087) [20] Huazhang Luo, Geometric criterion for Gieseker-Mumford stability of polarized manifolds, J. Di erential Geom. 49 (1998), no. 3, 577{599. MR1669716 (2001b:32035) [21] Toshiki Mabuchi, K-energy maps integrating Futaki invariants, Tohoku Math. J. (2) 38 (1986), no. 4, 575{593. MR867064 (88b:53060) [22] , Vector eld energies and critical metrics on K�ahler manifolds, Nagoya Math. J. 162 (2001), 41{63. MR1836132 (2002e:32033) [23] Antony Maciocia, Gieseker stability and the Fourier-Mukai transform for abelian surfaces, Quart. J. Math. Oxford Ser. (2) 47 (1996), no. 185, 87{100. MR1380952 (97g:14007) [24] T. Matsusaka, Polarized varieties with a given Hilbert polynomial, Amer. J. Math. 94 (1972), 1027{1077. MR0337960 (49 #2729) [25] D. Mumford, J. Fogarty, and F. Kirwan, Geometric invariant theory, Third, Ergebnisse der Mathematik und ihrer Grenzgebiete (2) [Results in Mathematics and Related Areas (2)], vol. 34, Springer-Verlag, Berlin, 1994. MR1304906 (95m:14012) [26] David Mumford, Stability of projective varieties, L'Enseignement Math ematique, Geneva, 1977. Lectures given at the Institut des Hautes Etudes Scienti ques', Bures-sur-Yvette, March-April 1976, Monographie de l'Enseignement Math ematique, No. 24. MR0450273 (56 #8569) [27] Julius Ross and Richard Thomas, An obstruction to the existence of constant scalar curvature K�ahler metrics, J. Di erential Geom. 72 (2006), no. 3, 429{ 466. MR2219940 (2007c:32028) [28] , A study of the Hilbert-Mumford criterion for the stability of projective varieties, J. Algebraic Geom. 16 (2007), no. 2, 201{255. MR2274514 (2007k:14091) [29] R. P. Thomas, Notes on GIT and symplectic reduction for bundles and varieties, Surveys in di erential geometry. Vol. X, 2006, pp. 221{273. MR2408226 (2010b:14092) [30] G. Tian, On Calabi's conjecture for complex surfaces with positive rst Chern class, Invent. Math. 101 (1990), no. 1, 101{172. MR1055713 (91d:32042) [31] Gang Tian, K�ahler-Einstein metrics with positive scalar curvature, Invent. Math. 130 (1997), no. 1, 1{37. MR1471884 (99e:53065) [32] , Canonical metrics in K�ahler geometry, Lectures in Mathematics ETH Z�urich, Birkh�auser Verlag, Basel, 2000. Notes taken by Meike Akveld. MR1787650 (2001j:32024) 32 SHOU-CHENG TUAN [33] K. Uhlenbeck and S.-T. Yau, On the existence of Hermitian-Yang-Mills connections in stable vector bundles, Comm. Pure Appl. Math. 39 (1986), no. S, suppl. S257{S293. Frontiers of the mathematical sciences: 1985 (New York, 1985). MR861491 (88i:58154) [34] Eckart Viehweg, Weak positivity and the stability of certain Hilbert points, Invent. Math. 96 (1989), no. 3, 639{667. MR996558 (90i:14037) [35] Xiaowei Wang, Balance point and stability of vector bundles over a projective manifold, Math. Res. Lett. 9 (2002), no. 2-3, 393{411. MR1909652 (2004f:32034) [36] , Canonical metrics on stable vector bundles, Comm. Anal. Geom. 13 (2005), no. 2, 253{285. MR2154820 (2006b:32031) [37] Shing-Tung Yau, Open problems in geometry, Di erential geometry: partial di erential equations on manifolds (Los Angeles, CA, 1990), 1993, pp. 1{28. MR1216573 (94k:53001) [38] Shouwu Zhang, Heights and reductions of semi-stable varieties, Compositio Math. 104 (1996), no. 1, 77{105. MR1420712 (97m:14027) | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/10112 | - |
dc.description.abstract | 本篇論文主要是研讀羅華章博士在1997年的論文,對其內容與證明進行詳細的研讀,並且提出四個陳述,對其做出證明。
首先,羅介紹了極化流形以及它的希爾伯特點。藉著幾何不變理論中的對於希爾伯特點的穩定性定義了極化流形在幾何不變理論下的穩定性。藉此他給出穩定性的性質。我們在這邊證明了我們第一個陳述。 再來,使用微分幾何的方法,羅改進了上面的性質。藉由格林流的定義,給出了更廣的Gieseker-Mumford穩定性的性質。在這邊我們證明了兩個陳述。 最後,透過上述的分析,羅證明了他最後一個定理。在這邊我們證明了最後一個陳述以及對於羅的定理我們做了一點修改得到一個關於Gieseker-Mumford穩定性的幾何準則。 | zh_TW |
dc.description.abstract | This paper is to study Luo’s paper in 1997. We give four statements with their proofs.
Firstly, Luo introduce the polarized manifold and its Hilbert point. By the stability of Hilbert points in the Geometric Invariant Theory, he defined the stability of polarized manifolds in the Geometric Invariant Theory; hence he gave the proposition for the stability. We prove our first statement. Secondly, Luo use the differential geometric method to reduce the proposition. By the definition of Green current, it gave the extended proposition for the Gieseker-Mumford stability, which is the first main theorem . Here we prove two statements. Finally, use the above analysis, Luo proved the last theorem. We prove our final statement and do a slight improvement to give the geometric criterion for the Gieseker-Mumford stability. | en |
dc.description.provenance | Made available in DSpace on 2021-05-20T21:02:50Z (GMT). No. of bitstreams: 1 ntu-100-R98221029-1.pdf: 926995 bytes, checksum: d7d5d617c8aa0e25dc9dad9ceb1314b8 (MD5) Previous issue date: 2011 | en |
dc.description.tableofcontents | 誌謝 i
中文摘要 ii 英文摘要 iii Introduction 1 Gieseker-Mumford stability 6 2.1 Moduli space of Polarized Varieties 6 2.2 Gieseker-Mumford stability 8 2.3 Propositions for Stability 8 第三章Singular Riemann-Roch 11 3.1 Some Results from Interseciton Theorem 11 3.2 Green Current and logarithmic Green Current 14 3.3 Secondary Characteristic Classes Type Computations 17 3.4 Analytic Criterion to Check Stability 20 第四章 Heat Kernel and Gieseker-Mumford stability 25 4.1 Criterion for Stability of Subvariety of 〖CP〗^N 25 4.2 Relate Gieseker-Mumford Stability to Heat Kernel 28 參考文獻 30 | |
dc.language.iso | en | |
dc.title | 極化流形的Gieseker-Mumford穩定性之幾何準則報告 | zh_TW |
dc.title | A survey of the geometric criterion for Gieseker-Mumford stability of polarized manifolds | en |
dc.type | Thesis | |
dc.date.schoolyear | 99-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 林惠雯(Hui-Wen Lin),蔡炎龍(Yen-lung Tsai) | |
dc.subject.keyword | 穩定性, | zh_TW |
dc.subject.keyword | stability,Hilbert point, | en |
dc.relation.page | 32 | |
dc.rights.note | 同意授權(全球公開) | |
dc.date.accepted | 2011-07-16 | |
dc.contributor.author-college | 理學院 | zh_TW |
dc.contributor.author-dept | 數學研究所 | zh_TW |
顯示於系所單位: | 數學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-100-1.pdf | 905.27 kB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。