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Abstract

This paper is to study Luo’s paper in 1997. We give four statements
with their proofs.

Firstly, Luo introduce the polarized manifold and its Hilbert point.
By the stability of Hilbert points in the Geometric Invariant Theory, he
defined the stability of polarized manifolds in the Geometric Invariant
Theory; hence he gave the proposition for the stability. We prove our first
statement.

Secondly, Luo use the differential geometric method to reduce the
proposition. By the definition of Green current, it gave the extended
proposition for the Gieseker-Mumford stability, which is the first main
theorem . Here we prove two statements.

Finally, use the above.analysis, Luo proved the last theorem. We
prove our final statement and«do a slight improvement to give the
geometric criterion for:ithe Gieseker-Mumford stability.
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This survey paper is to study the paper of Luo [20] and to prove four
statements (cf. Statements 2.1, 3.1, 3.2 and 4.1) and two theorems (cf.
Theorem 4.1 and 4.4). In 1965, Mumford developed the Geometric
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2 SHOU-CHENG TUAN

Invariant Theory [25], which introduces a method to construct quo-
tients by group actions in algebraic geometry. For example, suppose
that there is a group action G — SL(n + 1,C) on a projective vari-
ety X C CP"; then we hope the quotient X/G to be still in the same
category of projective variety. In GIT, we define the quotient X/G
to be Proj @, H°(X,0(r))%, where H°(X,O(r))¢ denotes the set of
G-invariant sections of O(r) on X. Here we have a simple example to
see the GIT quotient.

Example 1.1 (P" from GIT). Let C"™! x C be the trivial line bundle
over C"* and let G = C* be the action on C**1. Set the lifted action
i on the trivial line bundle C*™* x C to be defined by

(tay) = (£ 280y,

where the first entry4s the group action on C"*L. If k <0, then there
is no invariant sections ooerlC" andWthat-the quotient is empty. If
k = 0, the invariant, sectrons are constantipolynomials, so that the
quotient is a single point. For > O. thp G-invariant sections of the
k-th power are-the homogene usﬁaéyncbmmls on C" aof degree kp. If
k =1, there is the quotient "l'-"-F

I
€7 Ol 1; o7 o @ 0:f

0jClao, | Jodl <

The points in this quotiént are analyzedyln some sense of stability
[20]. In the sense of topologicalchatacterisation of (semi)stability [25],
we have

Definition 1.1. If a reductive group G acts linearly on a vector space
V', then a non-zero point x of V s called

(1) unstable if 0 is in the closure of its orbit,

(2) semi-stable if 0 is not in the closure of its orbit,

(3) stable if its orbit is closed in V', and its stabilizer is finite.

This definition can be rewrote by the Hilbert-Mumford criterion.

Definition 1.2. A 1-parameter subgroup of a group G is a homomor-
phism X : C* — G. We denote it by 1-PS of G.

The well-known tautological line bundle over P™ is O(—1). That is,
the fiber O,(—1) over the point x € P" represents the corresponding
line of z in C™*! and let zy = limy_,o A - 2, which is a fixed point of the
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C* action. Set p(x) € Z to be the weight of this action, that is, A € C*
acts on O,,(—1) as A, The Hilbert-Mumford criterion is

Theorem 1.1. (1) If p(x) < O for all 1-PS, then x is stable.
(2) If p(x) > 0 for all 1-PS, then x is semistable.
(3) If p(x) > 0 for some 1-PS, then x is unstable.

Notice that forming a moduli space of algebraic varieties is a GIT
problem. In general, problem of stability for any polarized projective
varieties is difficult to check. In 1977, Mumford [26] proved that the
necessary condition of smooth algebraic curves to be the Chow stable
and he used the asymptotic stability to construct the moduli space of
these curves.

In the same year, Gisesker [11] proved thatithe necessary condition of
algebraic surfaces to be stable, ift-the semse of Hilbert-Mumford. Later,
Viehweg proved that points.of the redueed'-‘Hilbert scheme of canon-
ically polarized manifoldgiare stable in the'sense-of Hilbert-Mumford
under the usual group ‘actiony Wlth respec’c to somezample sheaf [34, 1.7].

In 1982, Kobayashi/[16] sh Wedrthatlany holomorphic bundle over
compact Kahler manifolds 1c}nsﬁfsﬁq the Einstein condition (also
called Hermitian-Yang-Mill etrﬂ;) is $1*1able as-in/[5]). Separately,
Liibke [19] also gave the proof ofthe theorem posed in [16]. Here we
briefly give the definition oflt@le stability; ﬁsed [ 16]:

Definition 1.3. Let B.— X&be a hol-gmorphzc vector bundle (E,h)
with its Hermitian structuresh over a compact Kdhler manifold (X, g)
together with the Kdhler metric g. Let § be the coherent subsheaf of
O(E) with rank(§) > rank(FE). Let ® be the Kdhler form of g,

deg(§) == /Xcl(g) St

and

(@) = 45

which is defined to be the slope of §. We say that E is slope stable
(resp. slope semistable) if u(§F) < w(O(E)) (resp. u(F) > p(O(F)) )

Notice that in [16] he posed that

Conjecture 1.1. Let E be an indecomposable holomorphic vector bun-
dle on a compact Kahler manifold W with Kdhler metric g. Then E
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admits an Hermitian- Yang-Mills metric if and only if E is slope stable
with respect to g.

Donaldson [4] proved that a bundle over an algebraic surface is slope
stable with respect to the projective embedding if and only if it admits
an unique irreducible Hermitian-Yang-Mills metric. More generally,
Uhlenbeck and Yau [33] demonstrated the existence of a Hermitian-
Yang-Mills metric in slope stable holomorphic bundles over any com-
pact Kéhler manifolds. In 1987, Donaldson [5] gave an alternative proof
for bundles over the projective manifolds X C CPY. He showed that
if a holomorphic bundle E over a compact Kéhler manifold (X, w) is
slope stable, then there exists a Hermitian-Yang-Mills metric on F.

This conjecture has a similar form for the case of variety. Yau [37]
suggested that a compact Kahler Ei‘r’qétein metric if and only if the
manifold is stable in the'senseof geotetric.invariant theory. Tian [30]
proved this in case of complex surfaces and"'in’qroduced his notion of
K-stability. P ) !

\ / \
o~ '. ﬂ

Definition 1.4 (Tian). We s yt zls K -stable (resp. K -semistable),
if M has no nontrivial hol c vector fields, and for any spe-
cial degeneration W of M , t e Fu kz mi(amant Fiv,(vw) has positive
(resp. nmonnegative) real’p ri We say!ﬁhat M s weakly K-stable if
Refw, (vw) > 0 for-any spect i degenemt%on W and the equality holds
if and only of W is trivial:

In 1992, Ding and Tian [3] proved that if a cubic surface in CP?
has a Kahler-Einstein orbifold metric if it is semistable in the sense of
Mumford. Tian [31] showed that if M admits a Kéhler-Einstein metric
with positive scalar curvature, then M is weakly K-stable (in fact, he
showed that the K-energy is proper if and only if a Kahler-Einstein
metric exists on a compact Kéhler manifold with positive Chern class
and without any nontrivial holomorphic field). In particular, if M has
no nonzero holomorphic vector field, M is K-stable.

For the case of the polarized varieties and the special metric, Yau [37],
Tian [31] and Donaldson [7] conjectured that

Conjecture 1.2. (X, L) is K-polystable if and only if (X, L) admits a
Kdhler metric with constant scalar curvature in the class c1(L). This
is unique up to the holomorphic automorphisms of (X, L).
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Donaldson [7] proved the ”if condition” in Conjecture 1.2 on toric
surfaces. Donaldson defined K-stability in algebraic geometry sense.

Definition 1.5 (Donaldson). The pair (M, L) is K-stable if for each
test configuration for (M, L) the Futaki invariant of the induced action
on (Mo, L|pg,) is less than or equal to zero, with equality if and only if
the configuration is a product configuration.

He [7] proved that a toric variety (M, L) has bounded Mabuchi en-
ergy from below on the invariant metrics and any minimizing sequence
has a K-convergent subseqence is K-stable with respect to toric degen-
erations. He also showed the converse on toric surfaces. In 1988, Burns,
D. and De Bartolomeis, P. proved that the projective bundles does not
admit a Kéhler metric with-eonstant sealar curvature (cf. [2], [15], [28]).

In 2005, Donaldson {8] proved: that the Kahler, metric with constant
scalar curvature implies K -semistability. O the other hands, Donald-
son [9] proved that the Kéhler metric withiconstant scalar curvature
minimizes the Mabuchi funct'ronal . N

In [27] and [28], Ross and Th,emaﬂs roved that the K- stability of
the polarized varieties implief tmp? stability.* They proved that
if the polarized variety (X I @howl(beml)stable then it is slope
(semi)stable. If X/is a CuIi , then' the i;slope stability of X implies
K-stability, which glves thelcEnverse dlreé]tlon

Note that Donaldson (A4 151 Uhlenbeck and Yau ( [33]) proved the
Mumford stability of vector bundles isequivalent to the existence of
Hermitian-Yang-Mills metrie which gives that the meaning of stability
of a vector bundle is described by its geometry. By the method of [31],
Luo [20] gave a geometric criterion for the polarized line bundle of
a polarized smooth projective variety to check the Gieseker-Mumford
stability.

With a slight of revision, we prove two theorems:

Theorem 1.2. Let M C CPY be a smooth projective subvariety, and
its Hilbert point [M| € Hilby, has only finite stabilizer with respect to
the action of SL(N +1,C). Then [M] € Hilb, is (GIT) stable if there
exists 0 € SL(N + 1,C) such that

i1 VOZ(M) o (M) |Zl|2—|—"'—|— |ZN|2 rs = L

where tr(c;;) = N + 1.
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Theorem 1.3. Let (M, L) € 3,,(C) be a polarized manifold, and pg
be a large number given by (2). For any k > o, if there exists a
Hermitian metric g (depends on k) on L over M such that there ezists
a basis {so, -+ sn} of H*(M, L*) such that

<Si,8]‘> k
Oij :/ 4 wh
i o ||50H§k+"'+HSN”3k FS»

then the k-th Hilbert point of (M, L) is (GIT) stable with respect to
G, and £ = det(g.(m50(v))) for all large enough v as long as the
stabilizer of the Hilbert point is finite. And consequently, (M, L) is
Gieseker-Mumford stable.

2. GIESEKER—MUMFQRD STABILITY

2.1. Moduli space of Polarized varletles We need some defini-
tions. ; i

r;'—'r,

Definition 2.1. Let T' be a p’o;ee-tzxt'/e ’rjarzety over C and let H be a
line bundle over I'. s -r"';' '

(1) If H is an ample lin und@ ower FP that s,
I e PRI I’H“ foﬁI some’ “.'>> 1,

then H is called the polarizationof I'.

(2) If (1) holds, then theparing (I, H) is called the polarized vari-
ety.

(3) Suppose that (1) holds and the polynomial h(T) € Q[T is de-
fined by W' (uT), where h' comes from the Euler-Poincaré char-
acteristic X (I', H*) = h/(n). Then we define h to be the Hilbert
polynomial of (I',H).

(4) If (1) holds and T is smooth, then (I',H) is called the polarized
manifold.

(5) A family {(Ta, Ho)|law € A, for some index set A} of polarized
variety with the same Hilbert polynomial h is called bounded if
there exists some g > 1 such that H" is very ample for > .

Consider the moduli problem of polarized varieties

J: Schemes/C — Sets.
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Definition 2.2. Let h'(T') € Q[T] be a polynomial defined as in Defi-
nition 2.1 of degree n so that we have

3(C) = {(T,H)|(T,H) € 3(C), X (T, H™) = K(m) VYm >1}.

Two polarized varieties (I'o, Ha) and (I'g, Hp) are identified if there is
an isomorphism 7 : Ty — T such that 75 (Hg) = Ha

By the Matsusaka’s big theorem ( [24], [18]) and the results of Kollar
[17], the functor J,/(C) is bounded and the higher dimensional coho-
mology groups H'(I', H") = 0, that is,

‘H" is very ample, for all u > py,
, 2
HY (T, H") =0, for all i > 1, u > pp. 2)

Let N = h/(u) — 1. HXI,H") has dimension »'(x). Notice that this
embedding depends on the clipice of abasis of HO(T, H").

According to the resulfs ofi@rothendieek-(or cf. [29] and [28]), there
is a scheme Hilby, (called the Hilbert scheme) parameterizing all the
subschemes of CP" ‘with fixed Hilbert ponnomlal h: By the results [17],
there exists the universal famify:g Un[wh — Hilb, together with an
embedding Univ, < Hilby, r CMa‘cils

Um'vhl L C Sy G 0y

ng £ gl TE

Hilbj,

Definition 2.3. For any projective subvariety X C CPYN with Hilbert
polynomial h € Q[T], the Hilbert point of X is the corresponding point
[X] € Hilb,. For any polarized variety (X, L) € J,/(C), let u > pg and
consider an embedding e, : X — CPY by L*. Then the Hilbert point
of e,(X) C CP" s called (one of) the u-th Hilbert point of (X, L).

The universal family Univ, consists of pairs ([X], X), where X is
the projective variety X C CP" and [X] denotes its Hilbert point, so
that the action of group G = SL(N + 1,C) on Univy, is

o ([X],X) = (0-[X],0-X)
= ([o-X],o0-X) for all o € G,

which is the lifted action of G on Hilb;. Therefore the action of G on
H1lby, and the lifting of this action to Univ, are equivalent.
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Grothendieck proved that on Hilb, there is an ample line bundle
£ = det(g.m50(v)) v > v, (3)

where 1 : Uinv, — CP¥ is the projection. Note that the action
on Hilby is lifted to the ample line bundle £ which means that £ is
G-linearized.

2.2. Gieseker-Mumford stability. Here we define the stability of
polarized varieties in the Mumford sense.

Definition 2.4. A point v € H = Hilby, is called (GIT) stable with
respect to G, the ample line bundle £ on the Hilbert scheme Hilby, and
the given linearisation, if x has finite stabilizer and for some m > 1,
there exists a section t € U (Hilbyy £™)% such that:

(1) H, = H —V (t)dis affine; where Vi(t) detiotes the zero locus of t,

(2) € Hy, or in othertepms, t(ZWF0,./ ¢

(3) the induced actiondof G on Hy is eloséd.

Moreover, (T, H)“is"called G“egekerﬂ]\/fumford stable if when p is very
large, there exists vy = 1 such that forlany v > vy, the p-the Hilbert
points of (I',H) i Hilby, 15 (GJQ'T‘-@%&())@ with réspect to G and the
ample line bundle £ of Hilby,. ﬂ

- i ;
Note that the Hilbext scheme Hilby, aﬁq} the umversal family Univy,
are usually singular. We neéd some reduc’élons to use some differential

geometric method.

2.3. Propositions for Stability. Assume that £™ is very ample for
some m > 1. This gives an embedding from H = Hilb, to a projective
space CPM such that €™ = Ogpn (1)|g, where M = h°(H, £™). Since
£ is G-linearized, the action of G on CPM is represented rationally.
That is, G — SL(M + 1,C), and the embedding of H is G equivalent.
Let 6 : CM+1\ {0} — CP be the projection, and H be the affine cone
over H, that is, the closure of §~'(H) in CM*1,
Now we can give some propositions for the stability.

Proposition 2.1 (Luo). x € H(L)® if and only if for all points & €
6= (z), the orbit of & in H is closed and the stabilizer of x is finite.

Fix a point x in H, define the function
F,(0) = —log(||o(2)]|?), for o € G, (4)
where 7 is a fixed lifting of x to the fiber of Ogpn (1) at x.
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Proposition 2.2 (Luo). The point x of the Hilbert scheme is (GIT)
stable defined as before if and only if F, is a proper function on G, i.e.,
for any c1,co € R the set

{o€G |y < Fulo) <}
1s a compact subset of G with respect to Hausdorff topology.
This proposition is proved by the first statement.
Statement 2.1. Proposition 2.1 is equivalent to Proposition 2.2.

Proof. Suppose that for every & € §~!(z) the orbit # in the 6~ (Hilby,)
is closed and the stabilizer of x is finite. Let

Aler,c) =10 € G | e, <" Fi(a) < o}

for any ¢; and ¢, in R with ¢; <.es: Aslsilmqthat the sequence {0, }°
is contained in the set A(gfyez). It sufficesto prove that this sequence
has a convergent Sub'sequencpx—l}l ote that the se'(jugnce satisfies

dalomlidm | _a
e 2 [ |[opfx) @ 7,
s
Clearly, it has a convergent F bseqtiéncg, say 0., (7)}, such that
M 1t
1}1”[ iR iﬁy’
= N1 1 ;
which implies that there is:a convergentlsu}g_sequence {on, } such that
limy 00 On,, = 0o With g€ SL(M +15C)." This proves the compact-
ness of the set A(cy, ca).

Conversely, suppose that the function F) is proper. Let y be a limit
point of the orbit of Z. Suppose that there is a sequence {0,(Z)} con-
verging to y as n — 00. Set by = inf, ey F,(0,) and by = sup, ey Fi(0n),
so that A(by,by) is a set containing {o,}. Since F, is proper, then
A(by, bg) is compact and {o,} has a convergent subsequence {o,, }.
Setting limg o0 05, = 000 and clearly limg o0 0, () = 000(Z) = y by
the uniqueness of the limit. On the other hand, let 7 be a stabilizer
of z. F,(:) is constant for all stabilizers of . Let F,(7) = L be a
constant and let Ay, = A(L, L). Let A, = Uy{7.} (by the discreteness
of Ap). Thus Ay is compact due to the properness of F,. Since Ay is
compactness, the stabilizer of x is finite.

]

The Proposition 2.2 gives the following;:
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Proposition 2.3 (Luo). Let (M, L) € 3,,(C) be a polarized manifold,
and o be giwven as in above. Then for any p > o, the p-th Hilbert
point x € Hilb, of (M, L) is (GIT) stable with respect to G and £ =
det(g.(m5(OV)))) (v > wy), if and only if Fy is a proper function on
G, where Fy : G — R is defined by

Fy (o) = —log(|lo(@)]*), (5)
and || - || is any Hermitian metric on £ = det(f.(i*730(v))) over G.

Remark 2.1. By Proposition 2.1 and Statement 2.1, it suffices to prove
Proposition 2.3 is the reduction of the Proposition 2.2.

Proof. Note that x is the correspon’dmg u—th Hilbert point of (M, L)
in Hilb,. There is a morgha!;m . A {

7';1c \_G ;—> Hﬂl‘b"'
defined by 7,(0) A a(x)

By the complé‘tege;si of tﬁfm.@gm‘ exists a smooth
h

"?Or any{x E H

. . S~ ) 1 ey
compactification G of G, su e an extension of 7,
L] ]

By 7, we have

G +7—->;H?ilbk

where ¥ is the pull-back of Univ,. Let i : & — G x CPY be the
inclusion, 7, and 7 be the projections of G x CPY to G and CP",
respectively. That is,

)Y

G

By the boundedness of Univy, if 1 is very large, then for all fibers I"
of g : Univ, — Hilby, it gives

HY(T',0r(v)) =0 for i > 1,v > w,.

‘—>G><(C]P’N
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Therefore, it gives that for all v > vy,

7(£) = 7" (det(g. (13O (v))) = det(f.(i* T30 (v)))-
0

Remark 2.2. By the definition of F,., it depends on the line bundle £
which comes from the universal family over the Hilbert scheme. Note
that the Hilbert scheme and its universal family are usually singular.
Although there are still singularities on X, all of the singularities are

contained in f~Y(G \ G). Fy depends only on the family f: % — G.

3. SINGULAR RIEMANN-ROCH

3.1. Some Results from. Intersection.theorem. In Luo’s paper,
he used some intersection theory [10]: to deal with the singular fibers
which come from the pull backs.ef the Hilbert scheme H = H 1lb, and
the universal famlly Uniygover H. We only descrlbe breifly the key
theorem and results — —~

Theorem 3.1 (Fulton) For evg:_%/ 'aslgpbmzc scheme X over a given
field K, there is a homomoT zsm"';"’ p

XSL+ Al ﬁ w o
such that ‘ I ! | Fea

(1) (Covariance). ]ff X S ¥uspropérya € Ko(X) (Grothendieck
group of coheremt sheaves), then'f, mx(a) = 1y f.(a).

(2) (Module). If a € Ko(X);u89€ K%X) (Grothendieck group of
locally free sheaves), then Tx (8 ® a) = ch(B) N 7(a).

(3) (Top Term) If V is a closed subvariety of X, with dim(V') = n,
then

x(Oy) = [V] + (terms of dimension < n).
Use Theorem 3.1 Luo [20] gave the following lemma:

Lemma 3.1 (Luo). There are cycles [Dy] (1 < k < s) on CPY, and
(r — 1)-dimensional cycles [Cy] (1 <k < s) on G, such that

T+ m(eh(2) 0 3G x (D) 6
i = 6

— (L) + %cl(G),
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cznd we may choose Ci(1 < k < ) to be divisors of G supported in
G—-G.
Proof. The Todd class for a general variety X can be defined by
Td(X) =7x(0x) € A X)g,
and for any 8 € K°(X), 7x(3) can be written as
7x(B) = ch(B) NTd(X).
By the covariance of Riemann-Roch, f : ¥ — G gives that
fers((L7)) = 1a(fud" (L")).

By the other properties, the leguham§gde of the above equality gives
that e

f*TX_J( ))

ot |
1,_

Note that there is

[X] = m[X].
Since i*(L") is a line bundle over ¥, by the Projection Formula for
Chow group it gives that

T (ch(s*(LY)) N [X]) = ch(i*(LY)) N, [2)].
By the above equalities, there is
forss(i*(LY)) = gu(ch(s* (L)) N ([Z] + terms of lower dimension)
= g.(ch(s*(L")) N [Z]) + 71 (ch(L¥) N [Z]),



GEOMETRIC CRITERION FOR GIESEKER-MUMFORD STABILITY 13

where [Z] is a cycle of G x CPY supported in %, and
dim(Z) <n+r—1, r = dim(Q).

Here n = dim(X) — dim(G) is the dimension of generic fiber. There is a
filtration CPY > CPY~! 5 ... 5 CP! of CPV, and each CP* —CP* ! =
C* is affine. Thus CP" has a cellular decomposition and there is a
surjective morphism of Chow groups

P A4(G) @ A4(CPY) = A, (G x CPY),
k+l=m

which implies that

2] =[] x X Py {[ v] X [Dy],
where [C;]’s are cycles on e ami’{D |'s e?ﬁe CycLes on CPY. Assume that
among [C], - } {[C’] are in Z,_1(G), r

dim(G). From th-e above g the-parts in A, 1(G)
gives that ‘- .;_f:::_., ; T ~
1 "‘h: .I\ ' | _'
mg*’('cl(ﬁ* ‘V)nﬂ L ([Gk]? [Di]))r—1
a r-.“F
(det(fa& ( TN
‘---;,,..

= c1(Lo) + q(GS.g;,, @ 6
:..r ¥ }' >

Assume that [Dy] is bk dimﬁn81onal cy_cle of @P’ For all 0 < i <
N, A;(CPY ) is a free abelian groﬁp generated by i-dimensional linear

subspace CP' of CPY. Therefore, assume that by, is different from each
other, and b; < --- < b,. Note that

3 (ch(L") N Z[Ck] X [Di])r—1

= Zm* (ch(L¥) N [Dy])o[Ch]
_ Z 1 (@) )lC

= Z )\kl/bk [Ok] N
k=1
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where A, are some constants. Thus we have

1
(n+1)!

1

201(G>

'g*(cl(s L™ + Z)\kl/ [Ck] = 1 (Lo) +
k=1

Note that the restrictions of £y and Kz on G are trivial line bundles

because of the G action. By the exact sequence A,(G—G) — A.(G) —

A.(G) = 0, it implies that there exist divisors Y and Y; with supports

in G — G satisfying
1

(n—|— 1)!9*(01( *LV n+1 +Z/\kV Ck] [ ]_|_ %[Yb] (8)

k=1
As known, there is

(r—1) + bg=dim(Cy XD} £n+7r—1,

which implies that by < 4« - <bo<n = Choosing v =1,2,--- ,s+1
in (refl7) and then solvihg#@ non-degeneraté-(s + 1) x (s + 1) system
of linear equations give that for, every /f, /\k[C’k] may be represented by
divisors with support in G — G',__l e. W,e anay assurie that Cj, is a divisor
with support in' G — G. The ro@_ephﬂpleted

O
| fi ‘,. | @ =
3.2. Green Current and loga#ithmi Green Current. By the
standard Euclidean métric lr* the hyperijane hundle over CPV, there
are the Hermitian metricson s(L) oveérY aid.on L over G x CP". Let
wrg denote the Fubini-Study metric on"€P", The curvature of s*(L) is
s*75(wrs) and the curvature of Lyis @s(wrs). Fix a Hermitian metric
|| - |l on Lo with the curvature R(|| - ||) and a Hermitian metric || - ||z on
K& with the curvature R(|| - [|a). Assume that [C] is Poincaré dual to
a smooth differential form oy on G and [Dy] is the Poincaré dual to a
smooth differential form S5 on CPY.
Recall the Green current used in Gillet-Soulé [12].

Definition 3.1 (Gillet-Soulé). If X is any n-dimensional smooth pro-
jective (complex) variety, and Y C X a closed irreducible subvariety of
codimension p, then there exists a (p — 1,p — 1)—current 1, which is
called the Green current, and a smooth closed (p,p)-form w on X such

that
N =1 -
788('@&) + (SY = W,

where dy s the current representing integration on Y.
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Remark 3.1. Suppose that X,Y are defined as Definition 3.1 and
i:Y — X is an inclusion map. Then there is a 2(n — p)-current dy

such that
i) = [ ir(a)
Y

where « is any compactly supported 2(n — p)-form on X.
Recall the definition of the form of logarithmic type in [12]

Definition 3.2 (Gillet-Soulé). A smooth form n on X —Y is said to
be a form of logarithmic type (or log type) along Y if there exists a
projective morphism

il —reX
and a smooth form @ onZ —T=H¥) ach that

(1) Z is smooth, 7 (Y) ¥ o divisor Ul normal crossings (d.n.c.),
and m i SMeoth overyZ = m (Y’) Al

(2) n is the direct image b -,a,fthﬁ astriction of @ to 7 — LY);

(3) for any point v € Z,t erw i?en netghborhood U of x, and
a system of holemerphic C _’(dm ﬂes (21, 5 zn) of U centered
at x such that T ()’I) s eq%atwn Zi% 2, = 0, for some
k <n, and theﬁe er SF smooth dland O-closed forms oy on U,
i=1,--- .k G d a-smiooth form onl/ with

olu = Zai . log]zi|2 +

i=1
By the desingularization, there exists a projective morphism
X =X

such that X is smooth, E = 7! is a d.n.c. and 7T|(X—\E) is isomorphic,
which satisfies the Definition 3.2 (1),(2). v is of logarithmic type along
Y if near each z € )2', 212, =0 (1 <k <n) is the local equation of
E and there exist 9 and 9 closed smooth forms a; and a smooth form
[ such that

k
= Zai log|z)® + B.
i=1

Thus # is called the logarithmic Green current of the subvariety Y C X.
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Lemma 3.2 (Luo). There is a measurable function 0, (depending on
v), such that as currents we have

Vn+1

mg*(s*ﬁ;“ (wps)™h) + T (exp(Tiwrs) A ; ag A Br)k—1 o

e e VI,

=5 Bl ID + = £ - lle) + —5—006,,
where 6, is a smooth function when restrict on G, and is bounded from
above by a constant on G. Here (-),—y means the (r —1,r — 1) part of
differential form.

Proof. Let [Z] € Apir—1(X) and [Y] € A,_1(G) be cycles such that
[Z) = er(s* L) and [Y] = (ei(Lo)+5€1(G)). According to Lemma 3.1

we have ¥
e

|
|

iy = )
& o NBSIER] = [,
1 [ ]+’; RG] ‘_[ ]
which is an equalitﬁf;B"etweerﬁ;b.}es. II‘f;_-t?rms of errrents, it gives
yar=—xa
7 Vn+1 —

& LSS\ -4
(e 1)!F ( ”ﬁ— o i

M -1 |

Let ¢z, ¢y and t¢, .be tk{e logéfr?%hmiic Gregg; cutrents of Z C X,
Y C G and C, C Gy réspect \lely. By theL efinition 3.1 we have

Vn+1 N o .3 (il
(g+(s" T3 (wrs)™™ ) 39, (V7))

(n+1)!

+ 77'1*<€$p(7_1';wps) VAN Z o N 616)14—1 — Z /\kakﬁ((;d}Ck
k=1 k=1

Ve Ve i
=5 Bl 1)+ = —R(] - ll¢) — 00Uy,
which gives that (7) is valid for some measurable function 6, which is

given by

Vn+1

0, = ———0g. A /%F — Yy
Ol+;w!g(¢g)%_2§; KV ¢T% wY
By the Definition 3.2(1), ¢.(1¢z) is smooth on G—g.(Z), ©¢, are smooth
on G—(Cy+---+C5) and ¢y is smooth on G—Y, so that 6, is smooth
on G—(g«(Z2)+Y + (Cy+---+ C5)) and by Definition 3.2(3), it is at
most logarithmic growth on ¢,(Z2) +Y + (Cy + -+ + C,) + (G — G).
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Since in (13) every term except for 996, is smooth on G, then by
the regularity of 0, 6, can be extended to be a smooth function on G.
By [32], [1], there exists a Green operator G(x,y) such that

_ % /G 0, (y)w! — % /G G(z,y) 20, (y)w,

since 6, is smooth on G and at most logarithmic growth along G, then
the term fG 0, (y)wj is finite. Since every term in (13) is smooth on G
except for 900, and g,(s*75(wrs)™ ™) is a positive (1, 1)-current, then
instead of A#, the second integral is bounded below. Therefore, 6, is

bounded above on G.
O

3.3. Secondary Characteristic Classes Type Computations. Let
0 € G C G denote the 1dent1ty ot G and let My =.¢~"(0) be the fiber of
g: % — G over 0. Since My =0, M) By thé-definition of X, then M,
is isomorphic to M and wé identify M, withi/. Set w = 573 (wrs|, )
and P(M,w) = {wild/is a Kéhler metnc on Wiand is cohomologous
to w}. Y -— [I‘.f.

Definition 3.3 (Luo). For ny , let W= w4+ 00y for
some smooth functwn go Then D w 'zﬁl deﬁned by

L/ / WL /\dt (10)
Here wy = w + (933013(0 < t < 1)%is a “smooth path from w to W' in
P(M,w).

This definition is well-defined (cf. [21], [22] and [14]). Since M, is as
a subvariety of CPY and M is identified with My, M is a subvariety of
CP". For any o € G, g*(¢(0)) can be identified with o(AM) C CP".
Let

Wy = 0" (Wrsleny) € P(M,w). (11)
Definition 3.4. Bergman metrics of M C CPY is defined by
Berg(M) = {w,|c € G} C P(M,w).
Now consider D), as a functional on Berg(M) and that
Dy(0) = Dy(w,) for any o € G. (12)

For deriving information of D), we have a series of lemmas [20].
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Lemma 3.3 (Luo). For any smooth 2(r — 1)-form ¢ with compact
support in G

/o

5 ~——(n+1)Dy(0) NODp.  (13)
el m

[ s A (0) =
Proof. Let 1 : GxM — G(M) be defined by ¢ (o, z) = (0,0(x)), where
G(M) := ¢ (G) € G x CPY and . As before, there are Hermitian
metrics on s*(L) over ¥ and on L over G x CP", which are comes from
the standard Euclidean metric on the hyperplane bundle over CP".
Assume that H denotes the Hermitian metric on ¢*s*(L) by pulling
back the Hermitian metric on s*(L), and the curvature is denoted by
R(H).

By the projection pry 3G x M = Misince ¢"s*(L) = pr3(L|m),
then there is another Hermltlan metr;c Hoy = pry(H|p) on ¢*s*(L )
Therefore, let H; be a- path of Hermitian.. metrlcs 0<t<1o
Y*s*(L) over G X M from Hy to H. That is;

B _— e Ho(o, )
H, = exp(—pi)Ho | m@ft'i ‘(IDL =t- log( H(o.7) ).
- | ’
Therefore we have m

Then it gives that
/ s* T3 (wps)" A g (9)
)
— w*S*ﬂ';(WFS)n+1 A w*g*((b)

GxM
-/ M(£R<H>>>“+l Apr (@)

/GxM/ HO™ nprifo) - /GXM<§R<H )" Apr(6).

Since

[ O Ry aprito) = [ (5 ovton(y Apri(o)
GxM GxM

27 s

:(g)n+1 /M O(OH A (00H)") /G 2
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then by Stokes’ theorem this integral is zero. Hence we have

| <n+1><ER<Ht>> L L i) nri o)

= [ [ e 099G A o R i)

/GxM/ o\ 1 (aait)) (\/2_1R(Ht))" A pri(00¢)

S E VL (1 4 1)Dar(o) A 996,

which is followed from the integration by part and the definition of

Dyy. o ] KT O
l" "'"f

Lemma 3.4 (Luo) For ang smootltp‘?(r — 1’) _form ¢ with compact
support in G r"rj - N

(14)

Proof. By the Pﬁin-(':?&;re elong equation ]
section s of KG,&ﬁd .E‘FDEG orplnc Sectlon of K such

'_(_'a nonzero hol
that : . ‘*’ ':-e_Q

Y1 o o “;—:a@tagwsouc;) (15

where Yj is a d1v1sor of G supported in G — G. Similarly, there is a
divisor Y (depends on v) supported in G — G such that

) V=1 -

WR(H -[)) = oy + 73(93\4(0)- (16)

(15) and (16) are true in the sense of current. By the definition of dy,
and the integration by parts

/ lerne= [ (6vs — =L 0Bog ul) 1 6
B \/__ _
= [ bwno— [ L otog(lsli)
Liog(lsol2) 1 080,
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Similarly, we obtain

[ R Ao = [ 6+ Y 00k o

G /5y/\¢+/—FM ) A 98
/‘/_ (o) A 9D,
O

Lemma 3.5 (Luo). For any smooth 2(r — 1)-form ¢ with compact
support in G

Mol I ET
'-{, - -
/ exp(73(wrs) /\iﬁlk/\ﬁkf‘ﬂ 1(9) :_41‘-* _"'_)\ s log (|| sk]|*) A0Do,
GxCPY ﬁz G* {27“’
= o (17)
where s is the se‘&twn (Ck) deﬁn ,cmd'-kk 1s the constant
given by (6). \ @
Proof Fix a Hermltla metql o - By ’aiheh.F’omcare Lelong

ere. are sections sj, of

iy, ;..
s
A ?*

R
—

1 (cap(7; <wps»>>*A o/ % Awlzkaawgumu )

,.r'

where B is a divisor suppgrggd in G — d T‘heﬁ by the definition of dp
and the integration by parts i oy S

/_ exp(ms(wrs)) A ag A By A1 (¢)
GxCcpN

_ /G T (exp(Th(wrs)) A ax A Be) A é
= [ 65— ¥ 0Bl ) A
G s
L log([ls?) A 936

/V—_12
G

3.4. Analytic Criterion to Check Stability. In the beginning, we
need the Statement 3.1 for the following propositions and statements.

d
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Statement 3.1. Let M C CP" be a smooth projective subvariety, and
suppose that its Hilbert point [M] € Hilby, has only finite stabilizer with
respect to the action of G = SL(N + 1,C). If Dy has a critical point,
then Dy is a proper function on G, and there exist constant 6 > 0 and
C € R such that

Dys(s) > 8 -log(d(s, G\G)) + C (18)

Here d(s, G\G) is the distance of s to G\G with respect to a smooth
metric on G.

Remark 3.2. In fact, this statement is the [20, Lemma 3.1]. We want
to reprove the part of inequality.

Proof. For any s € G = SL(N+1,C), let'sts = U*A*U, where U is an

unitary matrix and Adsa real diagonal :matrix. Then by the definition

of Ds, Dar(s) = Dyt (K58 )6t ¢ @Y UN +1,C) — G be a

surjective map such that forany (z1,-- - ,/2NG U) ((C*)N xU(N+1,C),
b(z1, - e, U) = Af- FU_%W f@r W= dmg(zo, 2N,

| a—

where zp = (z1:-2n) T It fﬁ@ﬁnl"olve that the pullback function
¢*(Dur) o ((C*) x U(N: +T , IﬁproPF : leed UeU(N +1,0C),
and let p = ¢* (DM)|(<C*)NX{ |
(1) by (11), sinceg,{s*x {upg 21 151|£ p081tlve (1,1) current, then
by [13], p is'a plunsubharmonlc funcﬁlon on (C*)V. That is,

020"
8Zi62j

(2) the complex Hessian of ¢ is nonzero everywhere and
(3) ¢ is invariant under the action of torus S x - - x S

>0,

Then we have

2
( ¢ .,
dlog|z|0log | %]

Therefore, ¢ is a strictly convex function of (log |z], - - ,log|zn|) for
all z = (21, -+, 2n) € (C)V.

Since ¢ has a critical point, assume that p = (0,--- ,0) without loss
of generality. Let @ = (uy,--- ,uy) be the unit vector. It suffices to
prove the inequality for the coordinates = (z1,---,zn5) € (Rso)Y,
where z; := |z]| for all . For all unit vector u, by the strictly con-

vexity of ¢ in (logzy,--- ,logzy), Dip(logzy,--- ,logzy) > 0. Thus
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Dgo(logxy,- -+ ,logxy)(rd) is an increasing in r > 0. For r > 4, there
is a constant o > 0 such that

% (). Y55

N
Dﬁw(logmla U 710ng)(rﬁ) = Z 310gx T
i=1 ¢ ¢

In each u, let

N

q op

L(ru) = Z Tlog 11 (410) log ru; + bz,
=1

where bz is a constant such that ¢(4%) = L(44), and

=\ . 2
)

Consider

Thus we have

where C is a constant depends on @ and the equality is valid whence
r = 4. For each unit vector @ and r > 4, we have

o(ra) > L(rd) > f(ra) + Ca.

By the continuity of ¢ and f, there is a minimum C' = ming(Cy) such
that

o(rit) > dlog(r?) + C
Choose C" € R+ such that for (Efil 22)z <4

N
p(7) > dlog(D> af) +C".

i=1
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Set €' = min{C’, C}. Then we have

p(7) = dlog([lz*) + C

4

By a series of lemmas in the last section, there is a holomorphic
function R [20], [31] on G such that

n-+1

. DM(a>+ZAkubk o)
k=1 (19)

0, log |R(o)|?.
ﬁll?oll :; (o) =log |R(0)|

e
Statement 3.2. Th@?‘é ‘are cqzis,tantsi‘> 0 aﬁ'&l p > 0 such that

S

-

14

FM(O') —

J*x
'H—- L] | l'

standard metmé‘bn G

el

Proof. By (19), *-Wehp,a

where C' > exp(35_, )\kyl’-‘v %gg)[skrp =+ og(lTsOH )+ 6,(c)), since 6,
is bounded above. Note that

lo(@)|* = (o(2))" - (0(2)) = 3”070k = F"U" AU,
where U = (b;;) € U(N+1,C) is an unitary matrix and A = diag(zo, - - - , 2n).
Let & = (&g, -+ ,&n)" so that we have
N N N o
U (|2ibij)a =Y > el bagbri .
=0 j=0 k=0

Fixed z and U; therefore we have constants K; and K5 such that

N N
Ky |al < llo@)® < Ka- ) laif
=0 i=0
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Hence we have

|R(0)]> = Cllo(&)] 2 exp(— - D (o))
< C’Kflexp(—cynH) : (ZI |3 (o, G\ G) o

1— Sv

< K'-d(0.G\G)

where the constant K’ is larger than C'K;* exp(—c”n—n;rl) and we use
(16) with the smooth metric on G.
Note that the last inequality is valid by the Statement 3.1. Let

=1+ 6” ; hence the 1nequaht}/ is proved
e & { O

A " .. N

= 4'€ S0 such that
an\é 0 such tha

Fo

Lemma 3.6. Ther{f“' %f%"@‘a,‘c’ans
J

AL -
4 ‘l'R <
= J k) ;r_',_'J
where W is given by | ' g,
[ L ] / i '
— N+1y-
.

§ \G’ with respect to the

standard metric 07'): (CP(W . cOnsta"'nt

Proof. By the Statemegjz 3 2 ﬂre above:i ne?uai]i‘g‘y is valid.

Since R is extended to be a, meromPrphﬂc function on W. Notice
W is normal and W \ G is 1rredu01b{e Then R is a nonzero constant,
otherwise the divisor W \ G is linearly equivalent to zero (cf. [31],

[20]). 4
Lemma 3.7 (Luo). There are constants C' > 0 such that for v large
enough
i i b ) 1 )
Fuo) > 2 = 3 hwr o) + 3 og(lsl) -

(20)
Here \;, and 0 < b, < n are constants.

Proof. From the (19), recall that 6, is bounded above and R is a con-
stant. 4
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Proposition 3.1 (luo). Let (M, L) € J3,,(C) be a polarized manifold,
and po be given as above. For any p > po, if Dy is a proper function
on Berg(M), then the u-th Hilbert point x € Hilb, of (M, L) is (GIT)
stable with respect to G and £ = det(g.(i*75O(v))) for very large v.

Proof. It Dy is proper, F); is proper by Lemma 3.7. Consequently, the
result is followed from Proposition 2.3. U

4. HEAT KERNEL AND GIESEKER-MUMFORD STABILITY

4.1. Criterion for Stability of Subvariety of CP".

Statement 4.1. Show that g_issa-critical point of Dy on G if and
only if it satisfies the following @quatign

i\[: Re(CZ])r/ : ZZ Z] 1 (21)
VOZ(M) (M 21\2 BEE |ZN|2 s =
where tr(c;;) =N + 1, In partmulgr ' @flthere emsts a constant C such
that for all i, j :}-[‘T—; |
- L‘ Sci, 22
/(M J21|2 JH + |ZN|2}H: | gy ( )
then Lo -
1 i+ & 1
—_— s = 52“7 23
VOZ(M) /O'(M) ’21|2—|—"'+|ZN|2wFS N+1 J ( )

which is the result in [20].

Proof. Let o be the critical point of Dy, and let s : (—¢,¢) - G =
SL(N + 1) be a path through o, say s(0)c~! = I. Since s(t)o ! is a
curve starting from the identity, then s'(0)o~! € si(N+1,C). Denoted
Dy (s(t)) by Dp(t). Recall that

W = w + 85@,5,
where ; is a function on M. Since M is a projective variety, for
z=lz0,+-,2n] € M, we have
Is(t) - 2|
pi(z) = log(F——5—).

112
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By the definition of D, choose a path w; = w + 00, from w to wy
(from s = 0to s = A = 1 —7) and arbitrarily from wy to w, without
loss of generality since D, is well-defined. That is,

o w00, f0<s<\
ST wH00p,_y, ifA<s<I.

Then

1 aws
D = cwl
v (7) /0 /M 55 s A ds
B /1/ dt Oy o
)y Ju dOXt) 8t e

[ "-'1:;;»-_:-
2Re< (st ()w;’gg@mk Re <o ns(t) 2>

Is(t) - 2| () - 2|

For t = 0, we have

O:/(Re<(s/(0)—|—0)2-z,a-z>_Re<a-z,a2-z>)/\wg
M lo- ]l lo - ]|
Re < (s(0)+o)o to-z,0-2> "
:/ (5(0) +o)o A 0" (@rsloan)" — Vol(M)
M lo- ]|

= A whg — Vol(M)

/ Re < (s'(0) +0)o - w,w >
o (M) [w][?

N
ZR@ CU/ || ”2 /\wFS) Vol(M).

2,7=0
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where (c;;) = (s (0) + o)o!. Thus

N _
3 Re(cij/ S A W) = Vol(M),
4720 o (M) [Jwl|
where
tr((c;)) = tr((s (0) + o))
=tr(s (0)o ' +1) =N +1.
If (20) holds, then we include Luo’s condition (23). O

Here we have a slight improvement with the original theorem of
Luo [20].

Theorem 4.1. Let M C C]PN be a smooth progective subvariety, and
its Hilbert point [M] € Hulbyahts only ﬁmte stabulizer with respect to
the action of SL(N + 1, Q). Then [M] € Hilby, is(GIT) stable if there
exists o € SL(N +4,C) such"th@t (21) holds

Ur‘"”-n

Proof. By hypothesis,| (21) impl ‘J |DM has a critical point and
thus Dy, is proper by Statemen rﬁ 1 Jpjerefore the Proposition 3.1
implies that [M]is(GIT) sja le. &8 7 O

e o)

: |
Remark 4.1. In fact The r%m 44 is U%L)bd whence o€ SL(IN+1,C)

satisfies (23).

Here is an important applicé:tionﬁ of Lﬁo’s theorems. In [6], Donald-
son defined that if V' c CP" is any projective variety, defining M (V)
to be the skew-adjoint (N 4 1) x (N 4 1) matrix with entries

M<v)&5 =V _1/ baﬁd,uVa
Vv

where dpy is the standard measure on V' induced by the Fubini-Study
metric and b, = EQTQ If the projective varieties V' such that M (V) is

a multiple of the identity matrix, this variety is called to be a balanced
variety in CPY. Let (M, L) be a polarized variety. We say (M, L¥) is
balanced if the image e; (M) of the embedding e, of M into a projective
space is balanced in CP".

Suppose that (M, L¥) is balanced and let
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so the cohomology class [wy] = 2mc; (L) in H?(M) is independent of k.
Donaldson proved that

Theorem 4.2 (Donaldson). Suppose that the group Aut(M, L) of holo-
morphic automorphisms of pair (M, L) is discrete and (M, L¥) is bal-
anced for all sufficiently large k. Suppose that w, — ws tn C™ as
k — o0o. Then wy has constant scalar curvature.

Note that Zhang, S. [38] first proved the stability of varieties (X, L")
is equivalent to the balanced varieties X ¢ PV which was reproved or
rediscovered in different forms. As the result of Zhang, there is a similar
guess about the necessary and sufficient condition of stability of the
bundles E over polarized algebraic variety (X, L) to the existence of a
balanced map, which is proved by Wang [35]..In [36], Wang showed that
the if the bundle is Gieseker stable then it gives. the Hermitian-Yang-
Mills metric. In additien;-Magiocia [23] dlscussed the preservation of

the Gieseker Stablllty and.the semlstablhty under the Fourier transform
of Mukai. i h - i

1 ¥ i
!' '] 1

4.2. Relate Gieseker-Mu forE taHn]lty to Heat Kernel.

l
Definition 4.1. Let (M w) Ib a cﬂnpacf Kdhler manifold, and let L be
a holomorphic line bundle u{/z h a Hermztmn metric g. Then we define
By, = B(z,9,w) to be a funpz%wn on M !a{nd for any z € M

(2. 9.4 Z #: (= Ilg (25)

Here sg, -+, sn is any orthonormal fmme of HO(M, L¥).

B, is well-defined, that is, it is independent of the choice of the
orthonormal frame sq, - -+ , sy of HO(M, L*). In [20], Luo proved that

Theorem 4.3 (Luo). Let (M,L) € J,(C) be a polarized manifold,
and po be a large number given by (2). For any k > o, if there
exists a Hermitian metric g (depends on k) on L over M such that
Bi(z) = By(z,g, Ric(g)) is pointwise constant function on M, then
the k-th Hilbert point of (M, L) is (GIT) stable with respect to G, and
£ = det(g.(m50(v))) for all large enough v as long as the stabilizer
of the Hilbert point is finite. And consequently, (M, L) is Gieseker-
Mumford stable.

Here we also have a slight improvement with the above Theorem.
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Theorem 4.4. Let (M,L) € 3,(C) be a polarized manifold, and pg
be a large number given by (2). For any k > o, if there exists a

Hermitian metric g (depends on k) on L over M such that there ezists
a basis {so, -+ sn} of H*(M, L*) such that

(Siy8i) gk
5" :/ J/1g wn
Y llsollZe - A sl 2T

then the k-th Hilbert point of (M, L) is (GIT) stable with respect to
G, and £ = det(g.(m30(v))) for all large enough v as long as the
stabilizer of the Hilbert point is finite. And consequently, (M, L) is
Gieseker-Mumford stable.

o ] IS
Proof. There is an emb@dhhnghﬁ M mf;@ Py jeﬁned by
& . o —'ik o o
\:_x 5’.{'—> 0T N

If o =1d, it glVES t'ha"t or a
1,C) with n(0 )7-— zd

and that for identifying M \ﬁlth_ek(M ) and flor s=s(z)=[so(z):-:
sn(2)],
dDyy 2Re < n/'(0) - 5,5 >,

—(0) = g /\’Ld (wp5|M)”
dt a Isol2e + -+ 4 sl

which implies that ¢d is a critical point of D), and ¢d satisfies the
equation (23). Therefore, Theorem 4.1 implies that the k-th Hilbert
point of M is (GIT) stable in the Hilbert scheme Hilby,. O
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