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中文摘要 

 

   本篇論文主要是研讀羅華章博士在 1997 年的論文，對其內容與證明進行詳

細的研讀，並且提出四個陳述，對其做出證明。 

    首先，羅介紹了極化流形以及它的希爾伯特點。藉著幾何不變理論中的對於

希爾伯特點的穩定性定義了極化流形在幾何不變理論下的穩定性。藉此他給出穩

定性的性質。我們在這邊證明了我們第一個陳述。 

    再來，使用微分幾何的方法，羅改進了上面的性質。藉由格林流的定義，給

出了更廣的 Gieseker-Mumford 穩定性的性質。在這邊我們證明了兩個陳述。 

    最後，透過上述的分析，羅證明了他最後一個定理。在這邊我們證明了最後

一個陳述以及對於羅的定理我們做了一點修改得到一個關於 Gieseker-Mumford 穩

定性的幾何準則。 
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Abstract 

 

    This paper is to study Luo’s paper in 1997. We give four statements 

with their proofs.  

    Firstly, Luo introduce the polarized manifold and its Hilbert point. 

By the stability of Hilbert points in the Geometric Invariant Theory, he 

defined the stability of polarized manifolds in the Geometric Invariant 

Theory; hence he gave the proposition for the stability. We prove our first 

statement. 

    Secondly, Luo use the differential geometric method to reduce the 

proposition. By the definition of Green current, it gave the extended 

proposition for the Gieseker-Mumford stability, which is the first main 

theorem . Here we prove two statements. 

    Finally, use the above analysis, Luo proved the last theorem. We 

prove our final statement and do a slight improvement to give the 

geometric criterion for the Gieseker-Mumford stability. 
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1. Introduction

This survey paper is to study the paper of Luo [20] and to prove four

statements (cf. Statements 2.1, 3.1, 3.2 and 4.1) and two theorems (cf.

Theorem 4.1 and 4.4). In 1965, Mumford developed the Geometric
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2 SHOU-CHENG TUAN

Invariant Theory [25], which introduces a method to construct quo-

tients by group actions in algebraic geometry. For example, suppose

that there is a group action G ↪→ SL(n + 1,C) on a projective vari-

ety X ⊂ CPn; then we hope the quotient X/G to be still in the same

category of projective variety. In GIT, we define the quotient X/G

to be Proj ⊕r H0(X,O(r))G, where H0(X,O(r))G denotes the set of

G-invariant sections of O(r) on X. Here we have a simple example to

see the GIT quotient.

Example 1.1 (Pn from GIT). Let Cn+1 × C be the trivial line bundle

over Cn+1 and let G = C∗ be the action on Cn+1. Set the lifted action

µ̄k on the trivial line bundle Cn+1 × C to be defined by

(t, z, y) 7→ (t · z, tk · y),

where the first entry is the group action on Cn+1. If k < 0, then there

is no invariant sections over Cn+1 and that the quotient is empty. If

k = 0, the invariant sections are constant polynomials, so that the

quotient is a single point. For k > 0, the G-invariant sections of the

k-th power are the homogeneous polynomials on Cn of degree kp. If

k = 1, there is the quotient

Cn+1/C∗ = Proj ⊕k≥0 (C[x0, · · · , xn]k)

= ProjC[x0, · · · , xn] = Pn.

The points in this quotient are analyzed in some sense of stability

[20]. In the sense of topological characterisation of (semi)stability [25],

we have

Definition 1.1. If a reductive group G acts linearly on a vector space

V , then a non-zero point x of V is called

(1) unstable if 0 is in the closure of its orbit,

(2) semi-stable if 0 is not in the closure of its orbit,

(3) stable if its orbit is closed in V , and its stabilizer is finite.

This definition can be rewrote by the Hilbert-Mumford criterion.

Definition 1.2. A 1-parameter subgroup of a group G is a homomor-

phism λ : C∗ → G. We denote it by 1-PS of G.

The well-known tautological line bundle over Pn is O(−1). That is,

the fiber Ox(−1) over the point x ∈ Pn represents the corresponding

line of x in Cn+1 and let x0 = limλ→0 λ ·x, which is a fixed point of the
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C∗ action. Set ρ(x) ∈ Z to be the weight of this action, that is, λ ∈ C∗
acts on Ox0(−1) as λρ(x). The Hilbert-Mumford criterion is

Theorem 1.1. (1) If ρ(x) < 0 for all 1-PS, then x is stable.

(2) If ρ(x) ≥ 0 for all 1-PS, then x is semistable.

(3) If ρ(x) > 0 for some 1-PS, then x is unstable.

Notice that forming a moduli space of algebraic varieties is a GIT

problem. In general, problem of stability for any polarized projective

varieties is difficult to check. In 1977, Mumford [26] proved that the

necessary condition of smooth algebraic curves to be the Chow stable

and he used the asymptotic stability to construct the moduli space of

these curves.

In the same year, Gisesker [11] proved that the necessary condition of

algebraic surfaces to be stable in the sense of Hilbert-Mumford. Later,

Viehweg proved that points of the reduced Hilbert scheme of canon-

ically polarized manifolds are stable in the sense of Hilbert-Mumford

under the usual group action with respect to some ample sheaf [34, 1.7].

In 1982, Kobayashi [16] showed that any holomorphic bundle over

compact Kähler manifolds which satisfied the Einstein condition (also

called Hermitian-Yang-Mills metric) is stable (as in [5]). Separately,

Lübke [19] also gave the proof of the theorem posed in [16]. Here we

briefly give the definition of the stability used in [16]:

Definition 1.3. Let E → X be a holomorphic vector bundle (E, h)

with its Hermitian structure h over a compact Kähler manifold (X, g)

together with the Kähler metric g. Let F be the coherent subsheaf of

O(E) with rank(F) ≥ rank(E). Let Φ be the Kähler form of g,

deg(F) :=

∫
X

c1(F) · Φn−1,

and

µ(F) :=
deg(F)

rank(F)
,

which is defined to be the slope of F. We say that E is slope stable

(resp. slope semistable) if µ(F) < µ(O(E)) (resp. µ(F) ≥ µ(O(E)) )

Notice that in [16] he posed that

Conjecture 1.1. Let E be an indecomposable holomorphic vector bun-

dle on a compact Kähler manifold W with Kähler metric g. Then E



4 SHOU-CHENG TUAN

admits an Hermitian-Yang-Mills metric if and only if E is slope stable

with respect to g.

Donaldson [4] proved that a bundle over an algebraic surface is slope

stable with respect to the projective embedding if and only if it admits

an unique irreducible Hermitian-Yang-Mills metric. More generally,

Uhlenbeck and Yau [33] demonstrated the existence of a Hermitian-

Yang-Mills metric in slope stable holomorphic bundles over any com-

pact Kähler manifolds. In 1987, Donaldson [5] gave an alternative proof

for bundles over the projective manifolds X ⊆ CPN . He showed that

if a holomorphic bundle E over a compact Kähler manifold (X,ω) is

slope stable, then there exists a Hermitian-Yang-Mills metric on E.

This conjecture has a similar form for the case of variety. Yau [37]

suggested that a compact Kähler Einstein metric if and only if the

manifold is stable in the sense of geometric invariant theory. Tian [30]

proved this in case of complex surfaces and introduced his notion of

K-stability.

Definition 1.4 (Tian). We say that M is K-stable (resp. K-semistable),

if M has no nontrivial holomorphic vector fields, and for any spe-

cial degeneration W of M , the Futaki invariant fW0(vW ) has positive

(resp. nonnegative) real part. We say that M is weakly K-stable if

RefW0(vW ) ≥ 0 for any special degeneration W , and the equality holds

if and only if W is trivial.

In 1992, Ding and Tian [3] proved that if a cubic surface in CP3

has a Kähler-Einstein orbifold metric if it is semistable in the sense of

Mumford. Tian [31] showed that if M admits a Kähler-Einstein metric

with positive scalar curvature, then M is weakly K-stable (in fact, he

showed that the K-energy is proper if and only if a Kähler-Einstein

metric exists on a compact Kähler manifold with positive Chern class

and without any nontrivial holomorphic field). In particular, if M has

no nonzero holomorphic vector field, M is K-stable.

For the case of the polarized varieties and the special metric, Yau [37],

Tian [31] and Donaldson [7] conjectured that

Conjecture 1.2. (X,L) is K-polystable if and only if (X,L) admits a

Kähler metric with constant scalar curvature in the class c1(L). This

is unique up to the holomorphic automorphisms of (X,L).
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Donaldson [7] proved the ”if condition” in Conjecture 1.2 on toric

surfaces. Donaldson defined K-stability in algebraic geometry sense.

Definition 1.5 (Donaldson). The pair (M,L) is K-stable if for each

test configuration for (M,L) the Futaki invariant of the induced action

on (M0,L|M0) is less than or equal to zero, with equality if and only if

the configuration is a product configuration.

He [7] proved that a toric variety (M,L) has bounded Mabuchi en-

ergy from below on the invariant metrics and any minimizing sequence

has a K-convergent subseqence is K-stable with respect to toric degen-

erations. He also showed the converse on toric surfaces. In 1988, Burns,

D. and De Bartolomeis, P. proved that the projective bundles does not

admit a Kähler metric with constant scalar curvature (cf. [2], [15], [28]).

In 2005, Donaldson [8] proved that the Kähler metric with constant

scalar curvature implies K-semistability. On the other hands, Donald-

son [9] proved that the Kähler metric with constant scalar curvature

minimizes the Mabuchi functional.

In [27] and [28], Ross and Thomas proved that the K-stability of

the polarized varieties implies the slope stability. They proved that

if the polarized variety (X,L) is Chow (semi)stable, then it is slope

(semi)stable. If X is a curve, then the slope stability of X implies

K-stability, which gives the converse direction.

Note that Donaldson ( [4], [5]), Uhlenbeck and Yau ( [33]) proved the

Mumford stability of vector bundles is equivalent to the existence of

Hermitian-Yang-Mills metric which gives that the meaning of stability

of a vector bundle is described by its geometry. By the method of [31],

Luo [20] gave a geometric criterion for the polarized line bundle of

a polarized smooth projective variety to check the Gieseker-Mumford

stability.

With a slight of revision, we prove two theorems:

Theorem 1.2. Let M ⊂ CPN be a smooth projective subvariety, and

its Hilbert point [M ] ∈ Hilbh has only finite stabilizer with respect to

the action of SL(N + 1,C). Then [M ] ∈ Hilbh is (GIT) stable if there

exists σ ∈ SL(N + 1,C) such that

N∑
i,j=1

Re(cij)

V ol(M)

∫
σ(M)

zi · z̄j
|z1|2 + · · ·+ |zN |2

ωnFS = 1, (1)

where tr(cij) = N + 1.
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Theorem 1.3. Let (M,L) ∈ Ih′(C) be a polarized manifold, and µ0

be a large number given by (2). For any k ≥ µ0, if there exists a

Hermitian metric g (depends on k) on L over M such that there exists

a basis {s0, · · · sN} of H0(M,Lk) such that

δij =

∫
M

〈si, sj〉gk
‖s0‖2

gk
+ · · ·+ ‖sN‖2

gk

ωnFS,

then the k-th Hilbert point of (M,L) is (GIT) stable with respect to

G, and L = det(g∗(π
∗
2O(ν))) for all large enough ν as long as the

stabilizer of the Hilbert point is finite. And consequently, (M,L) is

Gieseker-Mumford stable.

2. Gieseker-Mumford stability

2.1. Moduli space of Polarized varieties. We need some defini-

tions.

Definition 2.1. Let Γ be a projective variety over C and let H be a

line bundle over Γ.

(1) If H is an ample line bundle over Γ, that is,

Γ ↪→ P(H0(Γ,Hµ)) for some µ� 1,

then H is called the polarization of Γ.

(2) If (1) holds, then the paring (Γ,H) is called the polarized vari-

ety.

(3) Suppose that (1) holds and the polynomial h(T ) ∈ Q[T ] is de-

fined by h′(µT ), where h′ comes from the Euler-Poincaré char-

acteristic X (Γ,Hµ) = h′(µ). Then we define h to be the Hilbert

polynomial of (Γ,H).

(4) If (1) holds and Γ is smooth, then (Γ,H) is called the polarized

manifold.

(5) A family {(Γα,Hα)|α ∈ Λ, for some index set Λ} of polarized

variety with the same Hilbert polynomial h is called bounded if

there exists some µ0 � 1 such that Hµ is very ample for µ ≥ µ0.

Consider the moduli problem of polarized varieties

I : Schemes/C→ Sets.
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Definition 2.2. Let h′(T ) ∈ Q[T ] be a polynomial defined as in Defi-

nition 2.1 of degree n so that we have

Ih′(C) = {(Γ,H)|(Γ,H) ∈ I(C),X (Γ,Hm) = h′(m) ∀m ≥ 1}.

Two polarized varieties (Γα,Hα) and (Γβ,Hβ) are identified if there is

an isomorphism τ : Γα → Γβ such that τ ∗(Hβ) ∼= Hα

By the Matsusaka’s big theorem ( [24], [18]) and the results of Kollár

[17], the functor Ih′(C) is bounded and the higher dimensional coho-

mology groups H i(Γ,Hµ) = 0, that is,

Hµ is very ample, for all µ ≥ µ0,

H i(Γ,Hµ) = 0, for all i ≥ 1, µ ≥ µ0.
(2)

Let N = h′(µ)− 1. H0(Γ,Hµ) has dimension h′(µ). Notice that this

embedding depends on the choice of a basis of H0(Γ,Hµ).

According to the results of Grothendieck (or cf. [29] and [28]), there

is a scheme Hilbh (called the Hilbert scheme) parameterizing all the

subschemes of CPN with fixed Hilbert polynomial h. By the results [17],

there exists the universal family g : Univh → Hilbh together with an

embedding Univh ↪→ Hilbh × CPN . That is,

Univh Hilbh × CPN

Hilbh

⊂

g

Definition 2.3. For any projective subvariety X ⊂ CPN with Hilbert

polynomial h ∈ Q[T ], the Hilbert point of X is the corresponding point

[X] ∈ Hilbh. For any polarized variety (X,L) ∈ Ih′(C), let µ ≥ µ0 and

consider an embedding eµ : X → CPN by Lµ. Then the Hilbert point

of eµ(X) ⊂ CPN is called (one of) the µ-th Hilbert point of (X,L).

The universal family Univh consists of pairs ([X], X), where X is

the projective variety X ⊂ CPN and [X] denotes its Hilbert point, so

that the action of group G = SL(N + 1,C) on Univh is

σ · ([X], X) = (σ · [X], σ ·X)

= ([σ ·X], σ ·X) for all σ ∈ G,

which is the lifted action of G on Hilbh. Therefore the action of G on

Hilbh and the lifting of this action to Univh are equivalent.
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Grothendieck proved that on Hilbh there is an ample line bundle

L = det(g∗π
∗
2O(ν)) ν ≥ ν0, (3)

where π2 : Uinvh → CPN is the projection. Note that the action

on Hilbh is lifted to the ample line bundle L which means that L is

G-linearized.

2.2. Gieseker-Mumford stability. Here we define the stability of

polarized varieties in the Mumford sense.

Definition 2.4. A point x ∈ H = Hilbh is called (GIT) stable with

respect to G, the ample line bundle L on the Hilbert scheme Hilbh and

the given linearisation, if x has finite stabilizer and for some m ≥ 1,

there exists a section t ∈ Γ(Hilbh,L
m)G such that:

(1) Ht = H−V (t) is affine, where V (t) denotes the zero locus of t,

(2) x ∈ Ht, or in other terms, t(x) 6= 0,

(3) the induced action of G on Ht is closed.

Moreover, (Γ,H) is called Gieseker-Mumford stable if when µ is very

large, there exists ν0 ≥ 1 such that for any ν ≥ ν0, the µ-the Hilbert

points of (Γ,H) in Hilbh is (GIT) stable with respect to G and the

ample line bundle L of Hilbh.

Note that the Hilbert scheme Hilbh and the universal family Univh
are usually singular. We need some reductions to use some differential

geometric method.

2.3. Propositions for Stability. Assume that Lm is very ample for

some m ≥ 1. This gives an embedding from H = Hilbh to a projective

space CPM such that Lm = OCPM (1)|H , where M = h0(H,Lm). Since

L is G-linearized, the action of G on CPM is represented rationally.

That is, G→ SL(M + 1,C), and the embedding of H is G equivalent.

Let θ : CM+1 \{0} → CPM be the projection, and Ĥ be the affine cone

over H, that is, the closure of θ−1(H) in CM+1.

Now we can give some propositions for the stability.

Proposition 2.1 (Luo). x ∈ H(L)s if and only if for all points x̂ ∈
θ−1(x), the orbit of x̂ in Ĥ is closed and the stabilizer of x is finite.

Fix a point x in H, define the function

Fx(σ) = − log(‖σ(x̂)‖2), for σ ∈ G, (4)

where x̂ is a fixed lifting of x to the fiber of OCPM (1) at x.
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Proposition 2.2 (Luo). The point x of the Hilbert scheme is (GIT)

stable defined as before if and only if Fx is a proper function on G, i.e.,

for any c1, c2 ∈ R the set

{σ ∈ G | c1 ≤ Fx(σ) ≤ c2}

is a compact subset of G with respect to Hausdorff topology.

This proposition is proved by the first statement.

Statement 2.1. Proposition 2.1 is equivalent to Proposition 2.2.

Proof. Suppose that for every x̂ ∈ θ−1(x) the orbit x̂ in the θ−1(Hilbh)

is closed and the stabilizer of x is finite. Let

A(c1, c2) = {σ ∈ G | c1 ≤ Fx(σ) ≤ c2}

for any c1 and c2 in R with c1 < c2. Assume that the sequence {σn}∞n=1

is contained in the set A(c1, c2). It suffices to prove that this sequence

has a convergent subsequence. Note that the sequence satisfies

e−
c2
2 ≤ ‖σn(x̂)‖ ≤ e−

c1
2 .

Clearly, it has a convergent subsequence, say {σnk(x̂)}, such that

lim
k→+∞

σnk(x̂) = y,

which implies that there is a convergent subsequence {σnk} such that

limk→∞ σnk = σ∞ with σ∞ ∈ SL(M + 1,C). This proves the compact-

ness of the set A(c1, c2).

Conversely, suppose that the function Fx is proper. Let y be a limit

point of the orbit of x̂. Suppose that there is a sequence {σn(x̂)} con-

verging to y as n→∞. Set b1 = infn∈N Fx(σn) and b2 = supn∈N Fx(σn),

so that A(b1, b2) is a set containing {σn}. Since Fx is proper, then

A(b1, b2) is compact and {σn} has a convergent subsequence {σnk}.
Setting limk→∞ σnk = σ∞ and clearly limk→∞ σnk(x̂) = σ∞(x̂) = y by

the uniqueness of the limit. On the other hand, let τ be a stabilizer

of x. Fx(·) is constant for all stabilizers of x. Let Fx(τ) = L be a

constant and let AL = A(L,L). Let AL = ∪α{τα} (by the discreteness

of AL). Thus AL is compact due to the properness of Fx. Since AL is

compactness, the stabilizer of x is finite.

�

The Proposition 2.2 gives the following:
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Proposition 2.3 (Luo). Let (M,L) ∈ Ih′(C) be a polarized manifold,

and µ0 be given as in above. Then for any µ ≥ µ0, the µ-th Hilbert

point x ∈ Hilbh of (M,L) is (GIT) stable with respect to G and L =

det(g∗(π
∗
2(O(ν)))) (ν ≥ ν0), if and only if FM is a proper function on

G, where FM : G→ R is defined by

FM(σ) = − log(‖σ(x̂)‖2), (5)

and ‖ · ‖ is any Hermitian metric on L0 = det(f∗(i
∗π̄∗2O(υ))) over Ḡ.

Remark 2.1. By Proposition 2.1 and Statement 2.1, it suffices to prove

Proposition 2.3 is the reduction of the Proposition 2.2.

Proof. Note that x is the corresponding µ-th Hilbert point of (M,L)

in Hilbh. There is a morphism

τx : G→ Hilbh for any x ∈ H

defined by τx(σ) = σ(x).

By the completeness of the Hilbert scheme, there exists a smooth

compactification Ḡ of G, such that we have an extension of τx

τ : Ḡ→ Hilbh.

By τ , we have

Σ̄ Univh

Ḡ Hilbh

f g

τ

where Σ̄ is the pull-back of Univh. Let i : Σ̄ → Ḡ × CPN be the

inclusion, π̄1 and π̄2 be the projections of Ḡ × CPN to Ḡ and CPN ,

respectively. That is,

Σ̄ Ḡ× CPN

Ḡ

i

f

By the boundedness of Univh, if ν0 is very large, then for all fibers Γ

of g : Univh → Hilbh it gives

H i(Γ,OΓ(ν)) = 0 for i ≥ 1, ν ≥ ν0.
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Therefore, it gives that for all ν ≥ ν0,

τ ∗(L) = τ ∗(det(g∗(π
∗
2O(ν))) = det(f∗(i

∗π̄∗2O(ν))).

�

Remark 2.2. By the definition of Fx, it depends on the line bundle L

which comes from the universal family over the Hilbert scheme. Note

that the Hilbert scheme and its universal family are usually singular.

Although there are still singularities on Σ̄, all of the singularities are

contained in f−1(Ḡ \G). FM depends only on the family f : Σ̄→ Ḡ.

3. Singular Riemann-Roch

3.1. Some Results from Intersection theorem. In Luo’s paper,

he used some intersection theory [10] to deal with the singular fibers

which come from the pull backs of the Hilbert scheme H = Hilbh and

the universal family Univh over H. We only describe breifly the key

theorem and results.

Theorem 3.1 (Fulton). For every algebraic scheme X over a given

field K, there is a homomorphism

τX : K0(X)→ A∗(X)Q

such that

(1) (Covariance). If f : X → Y is proper, α ∈ K0(X) (Grothendieck

group of coherent sheaves), then f∗τX(α) = τY f∗(α).

(2) (Module). If α ∈ K0(X), β ∈ K0(X) (Grothendieck group of

locally free sheaves), then τX(β ⊗ α) = ch(β) ∩ τ(α).

(3) (Top Term) If V is a closed subvariety of X, with dim(V ) = n,

then

τX(OV ) = [V ] + (terms of dimension < n).

Use Theorem 3.1 Luo [20] gave the following lemma:

Lemma 3.1 (Luo). There are cycles [Dk] (1 ≤ k ≤ s) on CPN , and

(r − 1)-dimensional cycles [Ck] (1 ≤ k ≤ s) on Ḡ, such that

1

(n+ 1)!
g∗(c1(s∗Lν)n+1) + π1∗(ch(Lν) ∩

s∑
k=1

([Ck]× [Dk]))r−1

= c1(L0) +
1

2
c1(Ḡ),

(6)



12 SHOU-CHENG TUAN

and we may choose Ck(1 ≤ k ≤ s) to be divisors of Ḡ supported in

Ḡ−G.

Proof. The Todd class for a general variety X can be defined by

Td(X) = τX(OX) ∈ A∗(X)Q,

and for any β ∈ K0(X), τX(β) can be written as

τX(β) = ch(β) ∩ Td(X).

By the covariance of Riemann-Roch, f : Σ̄→ Ḡ gives that

f∗τΣ̄(i∗(Lν)) = τḠ(f∗i
∗(Lν)).

By the other properties, the left hand side of the above equality gives

that

f∗τΣ̄(i∗(Lν)) = f∗(ch(i∗(Lν))) ∩ τΣ̄(OΣ̄)

= f∗(ch(i∗(Lν))) ∩ ([Σ̄] + terms of lower dimension).

Let Σ̄ be a desingularization of Σ̄ together with the canonical morphism

π : Σ̃→ Σ̄ and morphism s : Σ̃→ Ḡ× CPN commuting with π and i,

that is,

Σ̃

Σ̄ Ḡ× CPN

Ḡ

π
s

i

f

g

Note that there is

[Σ̄] = π∗[Σ̃].

Since i∗(Lν) is a line bundle over Σ̄, by the Projection Formula for

Chow group it gives that

π∗(ch(s∗(Lν)) ∩ [Σ̃]) = ch(i∗(Lν)) ∩ π∗[Σ̃].

By the above equalities, there is

f∗τΣ̄(i∗(Lν)) = g∗(ch(s∗(Lν))) ∩ ([Σ̃] + terms of lower dimension)

= g∗(ch(s∗(Lν)) ∩ [Σ̃]) + π̄∗1(ch(Lν) ∩ [Z]),
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where [Z] is a cycle of Ḡ× CPN supported in Σ̄, and

dim(Z) ≤ n+ r − 1, r = dim(Ḡ).

Here n = dim(Σ̄)−dim(Ḡ) is the dimension of generic fiber. There is a

filtration CPN ⊃ CPN−1 ⊃ · · · ⊃ CP1 of CPN , and each CPk−CPk−1 =

Ck is affine. Thus CPN has a cellular decomposition and there is a

surjective morphism of Chow groups⊕
k+l=m

Ak(Ḡ)⊗ Al(CPN)→ Am(Ḡ× CPN),

which implies that

[Z] = [C1]× [D1] + · · ·+ [Cr]× [Dr],

where [Ci]’s are cycles on Ḡ and [Di]’s are cycles on CPN . Assume that

among [C1], · · · , [Cr], there are only [C1], · · · , [Cs] are in Zr−1(Ḡ), r =

dim(Ḡ). From the above equalities, comparing the parts in Ar−1(Ḡ)

gives that

1

(n+ 1)!
g∗(c1(s∗Lν)n+1) + π1∗(ch(Lν) ∩

s∑
k=1

([Ck]× [Dk]))r−1

= c1(det(f∗i
∗(Lν))) +

1

2
c1(Ḡ)

= c1(L0) +
1

2
c1(Ḡ),

Assume that [Dk] is bk-dimensional cycle of CPN . For all 0 ≤ i ≤
N , Ai(CPN) is a free abelian group generated by i-dimensional linear

subspace CPi of CPN . Therefore, assume that bk is different from each

other, and b1 < · · · < bs. Note that

π̄∗2(ch(Lν) ∩
s∑

k=1

[Ck]× [Dk])r−1

=
s∑

k=1

π̄1∗(ch(Lν) ∩ [Dk])0[Ck]

=
s∑

k=1

νbk

bk!
(c1(L)bk)0[Ck]

=
s∑

k=1

λkν
bk [Ck],

(7)
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where λk are some constants. Thus we have

1

(n+ 1)!
g∗(c1(s∗Lν)n+1) +

s∑
k=1

λkν
bk [Ck] = c1(L0) +

1

2
c1(Ḡ).

Note that the restrictions of L0 and KḠ on G are trivial line bundles

because of the G action. By the exact sequence A∗(Ḡ−G)→ A∗(Ḡ)→
A∗(Ḡ)→ 0, it implies that there exist divisors Y and Y0 with supports

in Ḡ−G satisfying

1

(n+ 1)!
g∗(c1(s∗Lν)n+1) +

s∑
k=1

λkν
bk [Ck] = [Y ] +

1

2
[Y0]. (8)

As known, there is

(r − 1) + bk = dim(Ck ×Dk) ≤ n+ r − 1,

which implies that b1 < · · · < bs < n+ 1. Choosing ν = 1, 2, · · · , s+ 1

in (ref17) and then solving a non-degenerate (s + 1) × (s + 1) system

of linear equations give that for every k, λk[Ck] may be represented by

divisors with support in Ḡ−G, i.e., we may assume that Ck is a divisor

with support in Ḡ−G. The proof is completed.

�

3.2. Green Current and logarithmic Green Current. By the

standard Euclidean metric on the hyperplane bundle over CPN , there

are the Hermitian metrics on s∗(L) over Σ̃ and on L over Ḡ×CPN . Let

ωFS denote the Fubini-Study metric on CPN . The curvature of s∗(L) is

s∗π̄∗2(ωFS) and the curvature of L is π̄∗2(ωFS). Fix a Hermitian metric

‖ · ‖ on L0 with the curvature R(‖ · ‖) and a Hermitian metric ‖ · ‖Ḡ on

KḠ with the curvature R(‖ · ‖Ḡ). Assume that [Ck] is Poincaré dual to

a smooth differential form αk on Ḡ and [Dk] is the Poincaré dual to a

smooth differential form βk on CPN .

Recall the Green current used in Gillet-Soulé [12].

Definition 3.1 (Gillet-Soulé). If X is any n-dimensional smooth pro-

jective (complex) variety, and Y ⊂ X a closed irreducible subvariety of

codimension p, then there exists a (p − 1, p − 1)−current ψ, which is

called the Green current, and a smooth closed (p, p)-form ω on X such

that √
−1

2π
∂∂̄(ψ) + δY = ω,

where δY is the current representing integration on Y.
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Remark 3.1. Suppose that X, Y are defined as Definition 3.1 and

i : Y ↪→ X is an inclusion map. Then there is a 2(n − p)-current δY
such that

δY (α) =

∫
Y

i∗(α),

where α is any compactly supported 2(n− p)-form on X.

Recall the definition of the form of logarithmic type in [12]

Definition 3.2 (Gillet-Soulé). A smooth form η on X − Y is said to

be a form of logarithmic type (or log type) along Y if there exists a

projective morphism

π : Z → X

and a smooth form ϕ on Z − π−1(Y ) such that

(1) Z is smooth, π−1(Y ) is a divisor with normal crossings (d.n.c.),

and π is smooth over Z − π−1(Y );

(2) η is the direct image by π of the restriction of ϕ to Z−π−1(Y );

(3) for any point x ∈ Z, there is an open neighborhood U of x, and

a system of holomorphic coordinates (z1, · · · , zn) of U centered

at x such that π−1(Y ) ∩ U has equation z1 · · · zk = 0, for some

k ≤ n, and there exist smooth ∂ and ∂̄-closed forms αk on U ,

i = 1, · · · , k and a smooth form β on U with

ϕ|U =
k∑
i=1

αi · log|zi|2 + β

By the desingularization, there exists a projective morphism

π : X̃ → X

such that X̃ is smooth, E = π−1 is a d.n.c. and π|(X̃\E) is isomorphic,

which satisfies the Definition 3.2 (1),(2). ψ is of logarithmic type along

Y if near each x ∈ X̃, z1 · · · zk = 0 (1 ≤ k ≤ n) is the local equation of

E and there exist ∂ and ∂̄ closed smooth forms αi and a smooth form

β such that

π∗(ψ) =
k∑
i=1

αi · log|zi|2 + β.

Thus ψ is called the logarithmic Green current of the subvariety Y ⊂ X.
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Lemma 3.2 (Luo). There is a measurable function θν (depending on

ν), such that as currents we have

νn+1

(n+ 1)!
g∗(s

∗π̄∗2(ωFS)n+1) + π̄1∗(exp(π̄
∗
2ωFS) ∧

s∑
k=1

αk ∧ βk)k−1

=

√
−1

2π
R(‖ · ‖) +

√
−1

4π
R(‖ · ‖Ḡ) +

√
−1

2π
∂∂̄θν ,

(9)

where θν is a smooth function when restrict on G, and is bounded from

above by a constant on G. Here (·)r−1 means the (r − 1, r − 1) part of

differential form.

Proof. Let [Z] ∈ An+r−1(Σ̃) and [Y ] ∈ Ar−1(Ḡ) be cycles such that

[Z] = c1(s∗Lν)n+1 and [Y ] = (c1(L0)+1
2
c1(Ḡ)). According to Lemma 3.1

we have

νn+1

(n+ 1)!
g∗[Z] +

s∑
k=1

λkν
bk [Ck] = [Y ],

which is an equality between cycles. In terms of currents, it gives

νn+1

(n+ 1)!
g∗(δZ) +

s∑
k=1

δCk = δY .

Let ψZ , ψY and ψCk be the logarithmic Green currents of Z ⊂ Σ̃,

Y ⊂ Ḡ and Ck ⊂ Ḡ, respectively. By the Definition 3.1 we have

νn+1

(n+ 1)!
(g∗(s

∗π̄∗2(ωFS)n+1)− ∂∂̄g∗(ψZ))

+ π̄1∗(exp(π̄
∗
2ωFS) ∧

s∑
k=1

αk ∧ βk)k−1 −
s∑

k=1

λkν
bk∂∂̄ψCk

=

√
−1

2π
R(‖ · ‖) +

√
−1

4π
R(‖ · ‖Ḡ)− ∂∂̄ψY ,

which gives that (7) is valid for some measurable function θν which is

given by

θν =
νn+1

(n+ 1)!
g∗(ψZ) +

s∑
k=1

λkν
bkψCk − ψY .

By the Definition 3.2(1), g∗(ψZ) is smooth onG−g∗(Z), ψCk are smooth

on G−(C1 + · · ·+Cs) and ψY is smooth on G−Y , so that θν is smooth

on G− (g∗(Z) + Y + (C1 + · · ·+Cs)) and by Definition 3.2(3), it is at

most logarithmic growth on g∗(Z) + Y + (C1 + · · ·+ Cs) + (Ḡ−G).
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Since in (13) every term except for ∂∂̄θν is smooth on G, then by

the regularity of ∂̄, θν can be extended to be a smooth function on G.

By [32], [1], there exists a Green operator G(x, y) such that

θν(x) =
1

V

∫
Ḡ

θν(y)ωry −
1

V

∫
Ḡ

G(x, y)∆θν(y)ωry.

since θν is smooth on G and at most logarithmic growth along Ḡ, then

the term 1
V

∫
Ḡ
θν(y)ωry is finite. Since every term in (13) is smooth on Ḡ

except for ∂∂̄θν and g∗(s
∗π̄∗2(ωFS)n+1) is a positive (1, 1)-current, then

instead of ∆θν the second integral is bounded below. Therefore, θν is

bounded above on G.

�

3.3. Secondary Characteristic Classes Type Computations. Let

0 ∈ G ⊂ Ḡ denote the identity of G and let M0 = g−1(0) be the fiber of

g : Σ̃ → Ḡ over 0. Since M0 = (0,M) by the definition of Σ̃, then M0

is isomorphic to M and we identify M0 with M . Set ω = s∗π̄∗2(ωFS|M0)

and P (M,ω) = {ωα|ωα is a Kähler metric on M and is cohomologous

to ω}.

Definition 3.3 (Luo). For any ω
′ ∈ P (M,ω), let ω

′
= ω + ∂∂̄ϕ for

some smooth function ϕ. Then DM(ω
′
) is defined by

DM(ω′) =

∫ 1

0

∫
M

ϕ̇tω
n
t ∧ dt (10)

Here ωt = ω + ∂∂̄ϕt(0 ≤ t ≤ 1) is a smooth path from ω to ω′ in

P (M,ω).

This definition is well-defined (cf. [21], [22] and [14]). Since M0 is as

a subvariety of CPN and M is identified with M0, M is a subvariety of

CPN . For any σ ∈ G, g−1(σ(0)) can be identified with σ(M) ⊂ CPN .

Let

ωσ = σ∗(ωFS|σ(M)) ∈ P (M,ω). (11)

Definition 3.4. Bergman metrics of M ⊂ CPN is defined by

Berg(M) = {ωσ|σ ∈ G} ⊂ P (M,ω).

Now consider DM as a functional on Berg(M) and that

DM(σ) = DM(ωσ) for any σ ∈ G. (12)

For deriving information of DM , we have a series of lemmas [20].
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Lemma 3.3 (Luo). For any smooth 2(r − 1)-form φ with compact

support in G∫
Σ̃

s∗π̄∗2(ωFS)n+1 ∧ g∗(φ) =

∫
G

√
−1

2π
(n+ 1)DM(σ) ∧ ∂∂̄φ. (13)

Proof. Let ψ : G×M → G(M) be defined by ψ(σ, x) = (σ, σ(x)), where

G(M) := g−1(G) ⊂ G × CPN and . As before, there are Hermitian

metrics on s∗(L) over Σ̃ and on L over Ḡ×CPN , which are comes from

the standard Euclidean metric on the hyperplane bundle over CPN .

Assume that H denotes the Hermitian metric on ψ∗s∗(L) by pulling

back the Hermitian metric on s∗(L), and the curvature is denoted by

R(H).

By the projection pr2 : G ×M → M , since ψ∗s∗(L) ∼= pr∗2(L|M),

then there is another Hermitian metric H0 = pr∗2(H|M) on ψ∗s∗(L).

Therefore, let Ht be a path of Hermitian metrics (0 ≤ t ≤ 1) on

ψ∗s∗(L) over G×M from H0 to H. That is,

Ht = exp(−ϕt)H0 and ϕt = t · log(
H0(σ, x)

H(σ, x)
).

Therefore we have {
−∂∂̄ log(Ht) = R(Ht)

R(Ht) = R(H0) + ∂∂̄ϕt.

Then it gives that∫
Σ̃

s∗π̄∗2(ωFS)n+1 ∧ g∗(φ)

=

∫
G×M

ψ∗s∗π̄∗2(ωFS)n+1 ∧ ψ∗g∗(φ)

=

∫
G×M

(

√
−1

2π
R(H)))n+1 ∧ pr∗1(φ)

=

∫
G×M

∫ 1

0

d

dt
(

√
−1

2π
R(Ht))

n+1 ∧ pr∗1(φ)−
∫
G×M

(

√
−1

2π
R(H0))n+1 ∧ pr∗1(φ).

Since∫
G×M

(

√
−1

2π
R(H0))n+1 ∧ pr∗1(φ) =

∫
G×M

(

√
−1

2π
∂∂̄ log(H0))n+1 ∧ pr∗1(φ)

=(

√
−1

2π
)n+1

∫
M

∂(∂̄H ∧ (∂∂̄H)n)

∫
G

φ,
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then by Stokes’ theorem this integral is zero. Hence we have∫
G×M

∫ 1

0

(n+ 1)(

√
−1

2π
R(Ht))

n d

dt
(

√
−1

2π
R(Ht)) ∧ pr∗1(φ)

=

∫
G×M

∫ 1

0

(

√
−1

2π
(n+ 1)∂∂̄(

∂ϕt
∂t

)) ∧ (

√
−1

2π
R(Ht))

n ∧ pr∗1(φ)

=

∫
G×M

∫ 1

0

(

√
−1

2π
(n+ 1)(

∂ϕt
∂t

)) ∧ (

√
−1

2π
R(Ht))

n ∧ pr∗1(∂∂̄φ)

=

∫
G

√
−1

2π
(n+ 1)DM(σ) ∧ ∂∂̄φ,

which is followed from the integration by part and the definition of

DM . �

Lemma 3.4 (Luo). For any smooth 2(r − 1)-form φ with compact

support in G∫
Ḡ

(

√
−1

2π
R(‖ · ‖) +

√
−1

4π
R(‖ · ‖Ḡ)) ∧ φ

=

∫
G

(

√
−1

2π
FM(σ)−

√
−1

4π
log(‖s0‖2

Ḡ)) ∧ ∂∂̄φ.
(14)

Proof. By the Poincaré-Lelong equation [13], there is a meromorphic

section s0 of KḠ,and s0|G is a nonzero holomorphic section of KG such

that √
−1

2π
R(‖ · ‖Ḡ) = δY0 −

√
−1

2π
∂∂̄log(‖s0‖2

Ḡ), (15)

where Y0 is a divisor of Ḡ supported in Ḡ − G. Similarly, there is a

divisor Y (depends on ν) supported in Ḡ−G such that
√
−1

2π
R(‖ · ‖) = δY +

√
−1

2π
∂∂̄FM(σ). (16)

(15) and (16) are true in the sense of current. By the definition of δY0
and the integration by parts∫

Ḡ

√
−1

2π
R(‖ · ‖Ḡ) ∧ φ =

∫
Ḡ

(δY0 −
√
−1

2π
∂∂̄log(‖s0‖2

Ḡ)) ∧ φ

=

∫
Ḡ

δY0 ∧ φ−
∫
Ḡ

√
−1

2π
∂∂̄log(‖s0‖2

Ḡ) ∧ φ

= −
∫
G

√
−1

2π
log(‖s0‖2

Ḡ) ∧ ∂∂̄φ.
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Similarly, we obtain∫
Ḡ

(

√
−1

2π
R(‖ · ‖) ∧ φ =

∫
Ḡ

(δY +

√
−1

2π
∂∂̄FM(σ)) ∧ φ

=

∫
Ḡ

δY ∧ φ+

∫
Ḡ

√
−1

2π
FM(σ) ∧ ∂∂̄φ

=

∫
G

√
−1

2π
FM(σ) ∧ ∂∂̄φ.

�

Lemma 3.5 (Luo). For any smooth 2(r − 1)-form φ with compact

support in G∫
Ḡ×CPN

exp(π̄∗2(ωFS))∧αk∧βk∧π̄∗1(φ) = −
∫
G

√
−1

2π
λkν

bk log(‖sk‖2)∧∂∂̄φ,

(17)

where sk is the section of OḠ(Ck) defining Ck, and λk is the constant

given by (6).

Proof. Fix a Hermitian metric ‖ · ‖ on OḠ(Ck). By the Poincaré-Lelong

equaiton [13] and the previous Lemma 3.1, there are sections sk of

OḠ(Ck) and the constant λk such that

π̄1∗(exp(π̄
∗
2(ωFS)) ∧ αk ∧ βk) = δB −

√
−1

2π
λkν

bk∂∂̄log(‖sk‖2),

where B is a divisor supported in Ḡ−G. Then by the definition of δB
and the integration by parts∫

Ḡ×CPN
exp(π̄∗2(ωFS)) ∧ αk ∧ βk ∧ π̄∗1(φ)

=

∫
Ḡ

π̄1∗(exp(π̄
∗
2(ωFS)) ∧ αk ∧ βk) ∧ φ

=

∫
Ḡ

(δB −
√
−1

2π
λkν

bk∂∂̄log(‖sk‖2)) ∧ φ

= −
∫
G

√
−1

2π
λkν

bk log(‖sk‖2) ∧ ∂∂̄φ.

�

3.4. Analytic Criterion to Check Stability. In the beginning, we

need the Statement 3.1 for the following propositions and statements.
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Statement 3.1. Let M ⊂ CPN be a smooth projective subvariety, and

suppose that its Hilbert point [M ] ∈ Hilbh has only finite stabilizer with

respect to the action of G = SL(N + 1,C). If DM has a critical point,

then DM is a proper function on G, and there exist constant δ > 0 and

C ∈ R such that

DM(s) ≥ δ · log(d(s, Ḡ\G)) + C (18)

Here d(s, Ḡ\G) is the distance of s to Ḡ\G with respect to a smooth

metric on Ḡ.

Remark 3.2. In fact, this statement is the [20, Lemma 3.1]. We want

to reprove the part of inequality.

Proof. For any s ∈ G = SL(N + 1,C), let s∗s = U∗Λ2U , where U is an

unitary matrix and Λ is a real diagonal matrix. Then by the definition

of DM , DM(s) = DM(Λ · U). Let φ : (C∗)N × U(N + 1,C) → G be a

surjective map such that for any (z1, · · · , zN , U) ∈ (C∗)N×U(N+1,C),

φ(z1, · · · , zN , U) = Λ · U, for Λ = diag(z0, · · · , zN),

where z0 = (z1 · · · zN)−1. It suffices to prove that the pullback function

φ∗(DM) on (C∗)N × U(N + 1,C) is proper. Fixed U ∈ U(N + 1,C),

and let ϕ = φ∗(DM)|(C∗)N×{U}. Then

(1) by (11), since g∗(s
∗π̄∗2(ωFS)n+1) is a positive (1, 1) current, then

by [13], ϕ is a plurisubharmonic function on (C∗)N . That is,

(
∂2ϕ

∂zi∂z̄j
) ≥ 0,

(2) the complex Hessian of ϕ is nonzero everywhere and

(3) ϕ is invariant under the action of torus S1 × · · · × S1.

Then we have

(
∂2ϕ

∂ log |zi|∂ log |z̄j|
) > 0.

Therefore, ϕ is a strictly convex function of (log |z1|, · · · , log |zN |) for

all z = (z1, · · · , zN) ∈ (C∗)N .

Since ϕ has a critical point, assume that p = (0, · · · , 0) without loss

of generality. Let ~u = (u1, · · · , uN) be the unit vector. It suffices to

prove the inequality for the coordinates x = (x1, · · · , xN) ∈ (R>0)N ,

where xi := |zi| for all i. For all unit vector ~u, by the strictly con-

vexity of ϕ in (log x1, · · · , log xN), D2
~uϕ(log x1, · · · , log xN) > 0. Thus
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D~uϕ(log x1, · · · , log xN)(r~u) is an increasing in r > 0. For r ≥ 4, there

is a constant δ > 0 such that

D~uϕ(log x1, · · · , log xN)(r~u) =
N∑
i=1

∂ϕ

∂ log xi
(r~u) · ui

xi
> δ.

In each ~u, let

L(r~u) =
N∑
i=1

∂ϕ

∂ log xi
(4~u) log rui + b~u,

where b~u is a constant such that ϕ(4~u) = L(4~u), and

f(~x) = δ · log(
N∑
i=1

x2
i ).

For ~x 6= 0, we have

D~uf(~x) =
N∑
i=1

2δxiui
x2

1 + · · ·+ x2
N

.

For ~x = r~u and r ≥ 4, we have

D~uf(r~u) =
2δ

r
≤ δ

2
.

Consider

D~uL(r~u)−D~uf(r~u) ≥ δ − δ

2
=
δ

2
> 0

Thus we have

L(r~u) ≥ f(r~u) + C~u,

where C~u is a constant depends on ~u and the equality is valid whence

r = 4. For each unit vector ~u and r ≥ 4, we have

ϕ(r~u) ≥ L(r~u) ≥ f(r~u) + C~u.

By the continuity of ϕ and f , there is a minimum C̃ = min~u(C~u) such

that

ϕ(r~u) ≥ δ log(r2) + C̃

Choose C ′ ∈ R>0 such that for (
∑N

i=1 x
2
i )

1
2 ≤ 4

ϕ(~x) ≥ δ log(
N∑
i=1

x2
i ) + C ′.
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Set C = min{C ′, C̃}. Then we have

ϕ(~x) ≥ δ log(‖x‖2) + C.

�

By a series of lemmas in the last section, there is a holomorphic

function R [20], [31] on G such that

FM(σ)− νn+1

n!
DM(σ)+

s∑
k=1

λkν
bk log(‖sk‖2)

− 1

2
log(‖s0‖2) + θν(σ) = log |R(σ)|2.

(19)

Statement 3.2. There are constants l > 0 and C > 0 such that

|R(σ)| ≤ C · d(σ, Ḡ \G)−l,

where d(σ, Ḡ \G) denotes the distance of σ to Ḡ \G with respect to the

standard metric on Ḡ.

Proof. By (19), we have

|R(σ)|2 ≤ C̃ exp(FM(σ)) exp(−ν
n+1

n!
DM(σ)),

where C̃ ≥ exp(
∑s

k=1 λkν
bk log(‖sk‖2)− 1

2
log(‖s0‖2) + θν(σ)), since θν

is bounded above. Note that

‖σ(x̂)‖2 = (σ(x̂))∗ · (σ(x̂)) = x̂∗σ∗σx̂ = x̂∗U∗Λ2Ux̂,

where U = (bij) ∈ U(N+1,C) is an unitary matrix and Λ = diag(z0, · · · , zN).

Let x̂ = (x̂0, · · · , x̂N)t so that we have

x̂∗U∗(|zi|2bij)x̂ =
N∑
i=0

N∑
j=0

N∑
k=0

|zk|2bkj b̄kix̂j ¯̂xi.

Fixed x̂ and U ; therefore we have constants K1 and K2 such that

K1

N∑
i=0

|zi|2 ≤ ‖σ(x̂)‖2 ≤ K2 ·
N∑
i=0

|zi|2.
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Hence we have

|R(σ)|2 = C̃‖σ(x̂)‖−2 exp(−ν
n+1

n!
DM(σ))

≤ C̃K−1
1 exp(−Cν

n+1

n!
) · (

N∑
i=0

|zi|2)−1d(σ, Ḡ \G)−
δνn+1

n!

≤ K ′ · d(σ, Ḡ \G)−1− δν
n+1

n! ,

where the constant K ′ is larger than C̃K−1
1 exp(−Cνn+1

n!
) and we use

(16) with the smooth metric on Ḡ.

Note that the last inequality is valid by the Statement 3.1. Let

l = 1 + δνn+1

n!
; hence the inequality is proved.

�

Lemma 3.6. There are constants l > 0 and C > 0 such that

|R(σ)| ≤ C · d(σ,W \G)−l,

where W is given by

W = {[zij, w]0≤i,j≤N | det(zij) = wN+1},

and d(σ,W \G) denotes the distance of σ to W \G with respect to the

standard metric on CP(N+1)2. In fact, R is a constant.

Proof. By the Statement 3.2, the above inequality is valid.

Since R is extended to be a meromorphic function on W . Notice

W is normal and W \G is irreducible. Then R is a nonzero constant,

otherwise the divisor W \ G is linearly equivalent to zero (cf. [31],

[20]). �

Lemma 3.7 (Luo). There are constants C
′
> 0 such that for ν large

enough

FM(σ) ≥ νn+1

n!
DM(σ)−

s∑
k=1

λkν
bk log(‖sk‖2) +

1

2
log(‖s0‖2)− C ′ .

(20)

Here λk and 0 ≤ bk ≤ n are constants.

Proof. From the (19), recall that θν is bounded above and R is a con-

stant. �
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Proposition 3.1 (luo). Let (M,L) ∈ Ih′(C) be a polarized manifold,

and µ0 be given as above. For any µ ≥ µ0, if DM is a proper function

on Berg(M), then the µ-th Hilbert point x ∈ Hilbh of (M,L) is (GIT)

stable with respect to G and L = det(g∗(i
∗π̄∗2O(ν))) for very large ν.

Proof. If DM is proper, FM is proper by Lemma 3.7. Consequently, the

result is followed from Proposition 2.3. �

4. Heat Kernel and Gieseker-Mumford stability

4.1. Criterion for Stability of Subvariety of CPN .

Statement 4.1. Show that σ is a critical point of DM on G if and

only if it satisfies the following equation

N∑
i,j=1

Re(cij)

V ol(M)

∫
σ(M)

zi · z̄j
|z1|2 + · · ·+ |zN |2

ωnFS = 1, (21)

where tr(cij) = N + 1. In particular, if there exists a constant C such

that for all i, j ∫
σ(M)

zi · z̄j
|z1|2 + · · ·+ |zN |2

ωnFS = C · δij, (22)

then

1

V ol(M)

∫
σ(M)

zi · z̄j
|z1|2 + · · ·+ |zN |2

ωnFS =
1

N + 1
δij, (23)

which is the result in [20].

Proof. Let σ be the critical point of DM and let s : (−ε, ε) → G =

SL(N + 1) be a path through σ, say s(0)σ−1 = I. Since s(t)σ−1 is a

curve starting from the identity, then s′(0)σ−1 ∈ sl(N+1,C). Denoted

DM(s(t)) by DM(t). Recall that

ωt = ω + ∂∂̄ϕt,

where ϕt is a function on M . Since M is a projective variety, for

z = [z0, · · · , zN ] ∈M , we have

ϕt(z) = log(
‖s(t) · z‖2

‖z‖2
).
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By the definition of DM , choose a path ωs = ω + ∂∂̄ψs from ω to ω0

(from s = 0 to s = λ = 1 − τ) and arbitrarily from ω0 to ωτ without

loss of generality since DM is well-defined. That is,

ωs =

{
ω + ∂∂̄ψs, if 0 ≤ s ≤ λ

ω + ∂∂̄ϕs−λ, if λ ≤ s ≤ 1.

Then

DM(τ) =

∫ 1

0

∫
M

∂ψs
∂s
· ωns ∧ ds

=

∫ 1

0

∫
M

dt

d(λt)

∂ψλt
∂t
· ωnλt ∧ λdt+

∫ 1

λ

∫
M

∂ϕs−λ
∂s

· ωns−λ ∧ ds

=

∫ 1

0

∫
M

∂ψλt
∂t
· ωnλt ∧ dt+

∫ τ

0

∫
M

∂ϕt
∂t
· ωnt ∧ dt

= DM(0) +

∫ τ

0

∫
M

∂ϕt
∂t
· ωnt ∧ dt.

(24)

Suppose that σ is a critical point of DM on G. Then

dϕt
dt

=
d

dt
log
‖s(t) · z‖2

‖z‖2

=
2Re < s

′
(t) · z, s(t) · z >
‖s(t) · z‖2

=
2Re < (s

′
(t) + σ) · z, s(t) · z >
‖s(t) · z‖2

− 2Re < σ · z, s(t) · z >
‖s(t) · z‖2

.

For t = 0, we have

0 =

∫
M

(
Re < (s

′
(0) + σ) · z, σ · z >
‖σ · z‖2

− Re < σ · z, σ · z >
‖σ · z‖2

) ∧ ωn0

=

∫
M

Re < (s
′
(0) + σ)σ−1σ · z, σ · z >
‖σ · z‖2

∧ σ∗(ωFS|σ(M))
n − V ol(M)

=

∫
σ(M)

Re < (s
′
(0) + σ)σ−1 · w,w >

‖w‖2
∧ ωnFS − V ol(M)

=
N∑

i,j=0

Re(cij

∫
σ(M)

wj · w̄i
‖w‖2

∧ ωnFS)− V ol(M).
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where (cij) = (s
′
(0) + σ)σ−1. Thus

N∑
i,j=0

Re(cij

∫
σ(M)

wj · w̄i
‖w‖2

∧ ωnFS) = V ol(M),

where

tr((cij)) = tr((s
′
(0) + σ)σ−1)

= tr(s
′
(0)σ−1 + I) = N + 1.

If (20) holds, then we include Luo’s condition (23). �

Here we have a slight improvement with the original theorem of

Luo [20].

Theorem 4.1. Let M ⊂ CPN be a smooth projective subvariety, and

its Hilbert point [M ] ∈ Hilbh has only finite stabilizer with respect to

the action of SL(N + 1,C). Then [M ] ∈ Hilbh is (GIT) stable if there

exists σ ∈ SL(N + 1,C) such that (21) holds.

Proof. By hypothesis, (21) implies that DM has a critical point and

thus DM is proper by Statement 3.1; therefore, the Proposition 3.1

implies that [M ] is (GIT) stable. �

Remark 4.1. In fact, Theorem 4.1 is valid whence σ ∈ SL(N + 1,C)

satisfies (23).

Here is an important application of Luo’s theorems. In [6], Donald-

son defined that if V ⊂ CPN is any projective variety, defining M(V )

to be the skew-adjoint (N + 1)× (N + 1) matrix with entries

M(V )αβ =
√
−1

∫
V

bαβdµV ,

where dµV is the standard measure on V induced by the Fubini-Study

metric and bαβ =
zαz̄β
‖z‖2 . If the projective varieties V such that M(V ) is

a multiple of the identity matrix, this variety is called to be a balanced

variety in CPN . Let (M,L) be a polarized variety. We say (M,Lk) is

balanced if the image ek(M) of the embedding ek of M into a projective

space is balanced in CPN .

Suppose that (M,Lk) is balanced and let

ωk =
2π

k
e∗µ(ωFS).
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so the cohomology class [ωk] = 2πc1(L) in H2(M) is independent of k.

Donaldson proved that

Theorem 4.2 (Donaldson). Suppose that the group Aut(M,L) of holo-

morphic automorphisms of pair (M,L) is discrete and (M,Lk) is bal-

anced for all sufficiently large k. Suppose that ωk → ω∞ in C∞ as

k →∞. Then ω0 has constant scalar curvature.

Note that Zhang, S. [38] first proved the stability of varieties (X,Lr)

is equivalent to the balanced varietiesX ⊂ PN(r), which was reproved or

rediscovered in different forms. As the result of Zhang, there is a similar

guess about the necessary and sufficient condition of stability of the

bundles E over polarized algebraic variety (X,L) to the existence of a

balanced map, which is proved by Wang [35]. In [36], Wang showed that

the if the bundle is Gieseker stable then it gives the Hermitian-Yang-

Mills metric. In addition, Maciocia [23] discussed the preservation of

the Gieseker stability and the semistability under the Fourier transform

of Mukai.

4.2. Relate Gieseker-Mumford Stability to Heat Kernel.

Definition 4.1. Let (M,ω) be a compact Kähler manifold, and let L be

a holomorphic line bundle with a Hermitian metric g. Then we define

Bk = Bk(z, g, ω) to be a function on M , and for any z ∈M

Bk(z, g, ω) =
N∑
i=0

‖si(z)‖2
g. (25)

Here s0, · · · , sN is any orthonormal frame of H0(M,Lk).

Bk is well-defined, that is, it is independent of the choice of the

orthonormal frame s0, · · · , sN of H0(M,Lk). In [20], Luo proved that

Theorem 4.3 (Luo). Let (M,L) ∈ Ih′(C) be a polarized manifold,

and µ0 be a large number given by (2). For any k ≥ µ0, if there

exists a Hermitian metric g (depends on k) on L over M such that

Bk(z) = Bk(z, g, Ric(g)) is pointwise constant function on M , then

the k-th Hilbert point of (M,L) is (GIT) stable with respect to G, and

L = det(g∗(π̄
∗
2O(ν))) for all large enough ν as long as the stabilizer

of the Hilbert point is finite. And consequently, (M,L) is Gieseker-

Mumford stable.

Here we also have a slight improvement with the above Theorem.
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Theorem 4.4. Let (M,L) ∈ Ih′(C) be a polarized manifold, and µ0

be a large number given by (2). For any k ≥ µ0, if there exists a

Hermitian metric g (depends on k) on L over M such that there exists

a basis {s0, · · · sN} of H0(M,Lk) such that

δij =

∫
M

〈si, sj〉gk
‖s0‖2

gk
+ · · ·+ ‖sN‖2

gk

ωnFS,

then the k-th Hilbert point of (M,L) is (GIT) stable with respect to

G, and L = det(g∗(π
∗
2O(ν))) for all large enough ν as long as the

stabilizer of the Hilbert point is finite. And consequently, (M,L) is

Gieseker-Mumford stable.

Proof. There is an embedding of M into CPN defined by

z 7→ [s0(z) : · · · : sN(z)].

If σ = id, it gives that for a smooth path η : (−ε, ε) → G = SL(N +

1,C) with η(0) = id,

d

dt
ϕt|t=0 =

d

dt
log(
‖η(t) · z‖2

gk

‖z‖2
gk

)|t=0

=
2Re < η′(0) · z, z >gk

‖z‖2
gk

,

and that for identifying M with ek(M) and for s = s(z) = [s0(z) : · · · :
sN(z)],

dDM

dt
(0) =

∫
M

2Re < η′(0) · s, s >gk

‖s0‖2
gk

+ · · ·+ ‖sN‖2
gk

∧ id∗(ωFS|M)n

= 2
N∑

i,j=0

Re(η′(0))ijδij

= 2
N∑
i=0

Re(η′(0))ii = 0,

which implies that id is a critical point of DM and id satisfies the

equation (23). Therefore, Theorem 4.1 implies that the k-th Hilbert

point of M is (GIT) stable in the Hilbert scheme Hilbh. �
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