Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 食品科技研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/101063
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor呂廷璋zh_TW
dc.contributor.advisorTing-Jang Luen
dc.contributor.author王之玥zh_TW
dc.contributor.authorZhi-Yue Wangen
dc.date.accessioned2025-11-27T16:07:07Z-
dc.date.available2025-11-28-
dc.date.copyright2025-11-27-
dc.date.issued2025-
dc.date.submitted2025-11-10-
dc.identifier.citation李梢(2022)。網絡藥理學。北京:清華大學出版社。
Abbas, M. A.; Al-Kabariti, A. Y.; Sutton, C., Comprehensive understanding of the role of GPER in estrogen receptor-alpha negative breast cancer. The Journal of Steroid Biochemistry and Molecular Biology 2024, 241, 106523.
Agency, U. S. E. P. Guide to Method Flexibility and Approval of EPA Water Methods, Chapter 3: Quality Control Requirements; U.S. Environmental Protection Agency (EPA): Washington, D.C., December, 1996a.
Agency, U. S. E. P. Test Methods for Evaluating Solid Waste, Physical/Chemical Methods. SW-846, Method 8000B: Determinative Chromatographic Separations; U.S. Environmental Protection Agency (EPA): Washington, D.C., December, 1996b.
Amagase, H.; Farnsworth, N. R., A review of botanical characteristics, phytochemistry, clinical relevance in efficacy and safety of Lycium barbarum fruit (Goji). Food Research International 2011, 44, 1702-1717.
Barnes, J. S.; Schug, K. A., Structural characterization of cyanidin-3,5-diglucoside and pelargonidin-3,5-diglucoside anthocyanins: Multi-dimensional fragmentation pathways using high performance liquid chromatography-electrospray ionization-ion trap-time of flight mass spectrometry. International Journal of Mass Spectrometry 2011, 308, 71-80.
Baud, S.; Mendoza, M. S.; To, A.; Harscoët, E.; Lepiniec, L.; Dubreucq, B., WRINKLED1 specifies the regulatory action of LEAFY COTYLEDON2 towards fatty acid metabolism during seed maturation in Arabidopsis. The Plant Journal 2007, 50, 825-838.
Bey, E.; Marchais-Oberwinkler, S.; Kruchten, P.; Frotscher, M.; Werth, R.; Oster, A.; Algül, O.; Neugebauer, A.; Hartmann, R. W., Design, synthesis and biological evaluation of bis(hydroxyphenyl) azoles as potent and selective non-steroidal inhibitors of 17beta-hydroxysteroid dehydrogenase type 1 (17beta-HSD1) for the treatment of estrogen-dependent diseases. Bioorganic & Medicinal Chemistry 2008, 16, 6423-35.
Bittremieux, W.; Wang, M.; Dorrestein, P. C., The critical role that spectral libraries play in capturing the metabolomics community knowledge. Metabolomics 2022, 18, 94.
Cai, G.; Kim, S.-C.; Li, J.; Zhou, Y.; Wang, X., Transcriptional regulation of lipid catabolism during seedling establishment. Molecular Plant 2020, 13, 984-1000.
Cai, Y.; Zhou, Z.; Zhu, Z.-J., Advanced analytical and informatic strategies for metabolite annotation in untargeted metabolomics. TrAC Trends in Analytical Chemistry 2023, 158, 116903.
Chedik, L.; Mias-Lucquin, D.; Bruyere, A.; Fardel, O., In Silico Prediction for Intestinal Absorption and Brain Penetration of Chemical Pesticides in Humans. In International Journal of Environmental Research and Public Health, 2017; Vol. 14.
Chen, D.-L.; Li, G.; Liu, Y.-Y.; Ma, G.-X.; Zheng, W.; Sun, X.-B.; Xu, X.-D., A new cadinane sesquiterpenoid glucoside with cytotoxicity from Abelmoschus sagittifolius. Natural Product Research 2019, 33, 1699-1704.
Chen, G.; Li, X.; Saleri, F.; Guo, M., Analysis of Flavonoids in Rhamnus davurica and Its Antiproliferative Activities. Molecules 2016, 21, 1275.
Chen, L.; Lu, W.; Wang, L.; Xing, X.; Chen, Z.; Teng, X.; Zeng, X.; Muscarella, A. D.; Shen, Y.; Cowan, A., Metabolite discovery through global annotation of untargeted metabolomics data. Nature Methods 2021, 18, 1377-1385.
Chen, W.; Gao, Y.; Xie, W.; Gong, L.; Lu, K.; Wang, W.; Li, Y.; Liu, X.; Zhang, H.; Dong, H., Genome-wide association analyses provide genetic and biochemical insights into natural variation in rice metabolism. Nature Genetics 2014, 46, 714-721.
Chen, Y.; Ross, A. B.; Åman, P.; Kamal-Eldin, A., Alkylresorcinols as markers of Whole grain wheat and rye in cereal products. Journal of Agricultural and Food Chemistry 2004, 52, 8242-8246.
Clifford, M. N.; Knight, S.; Kuhnert, N., Discriminating between the six isomers of dicaffeoylquinic acid by LC-MSn. Journal of Agricultural and Food Chemistry 2005, 53, 3821-3832.
Collins, F. W.; Mullin, W. J., High-performance liquid chromatographic determination of avenanthramides, n-aroylanthranilic acid alkaloids from oats. Journal of Chromatography A 1988, 445, 363-370.
Commission, E. Commission Implementing Regulation (EU) 2021/808 of 22 March 2021 on the performance criteria for analytical methods used in testing and analysis of certain substances in live animals and animal products. https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A32021R0808 (accessed June 17, 2025).
Daina, A.; Michielin, O.; Zoete, V., SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Scientific Reports 2017, 7, 42717.
Daina, A.; Zoete, V., A boiled‐egg to predict gastrointestinal absorption and brain penetration of small molecules. ChemMedChem 2016, 11, 1117-1121.
Day, A. J.; DuPont, M. S.; Ridley, S.; Rhodes, M. J. C.; Rhodes, M. J. C.; Morgan, M. R. A.; Williamson, G., Deglycosylation of flavonoid and isoflavonoid glycosides by human small intestine and liver beta‐glucosidase activity. Febs Letters, 1998, 436.
De Bruijn, W. J. C.; van Dinteren, S.; Gruppen, H.; Vincken, J.-P., Mass spectrometric characterisation of avenanthramides and enhancing their production by germination of oat (Avena sativa). Food Chemistry 2019, 277, 682-690.
Demkura, P. V.; Abdala, G.; Baldwin, I. T.; Ballareݩ, C. L., Jasmonate-dependent and-independent pathways mediate specific effects of solar ultraviolet B radiation on leaf phenolics and antiherbivore defense. Plant Physiology 2010, 152, 1084-1095.
Dong, X.; Gao, Y.; Chen, W.; Wang, W.; Gong, L.; Liu, X.; Luo, J., Spatiotemporal distribution of phenolamides and the genetics of natural variation of hydroxycinnamoyl spermidine in rice. Molecular Plant 2015, 8, 111-121.
Edison, A. S.; Hall, R. D.; Junot, C.; Karp, P. D.; Kurland, I. J.; Mistrik, R.; Reed, L. K.; Saito, K.; Salek, R. M.; Steinbeck, C.; Sumner, L. W.; Viant, M. R., The time is right to focus on model organism metabolomes. Metabolites, 2016, 6.
Edreva, A.; Yordanov, I.; Kardjieva, R.; Hadjiiska, E.; Gesheva, E., Expression of phenylamides in abiotic stress conditions. Bulgarian Journal of Plant Physiology, 1995, 21, 15-23.
Edwards, D.; Batley, J.; Snowdon, R. J., Accessing complex crop genomes with next-generation sequencing. Theoretical and Applied Genetics 2013, 126, 1-11.
Ertan, K.; Türkyılmaz, M.; Özkan, M., Color and stability of anthocyanins in strawberry nectars containing various co-pigment sources and sweeteners. Food Chemistry 2020, 310, 125856.
Fang, T.; Zhou, S.; Qian, C.; Yan, X.; Yin, X.; Fan, X.; Zhao, P.; Liao, Y.; Shi, L.; Chang, Y.; Ma, X.-F., Integrated metabolomics and transcriptomics insights on flavonoid biosynthesis of a medicinal functional forage, Agriophyllum squarrosum (L.), based on a common garden trial covering six ecotypes. Frontiers in Plant Science 2022, 13.
Ferreres, F.; Gil-Izquierdo, A.; Andrade, P. B.; Valentão, P.; Tomás-Barberán, F. A., Characterization of C-glycosyl flavones O-glycosylated by liquid chromatography-tandem mass spectrometry. Journal of Chromatography A 2007, 1161, 214-223.
Fiehn, O., Metabolomics-the link between genotypes and phenotypes. Functional Genomics 2002, 155-171.
Fiehn, O.; Robertson, D.; Griffin, J.; van der Werf, M.; Nikolau, B.; Morrison, N.; Sumner, L. W.; Goodacre, R.; Hardy, N. W.; Taylor, C., The metabolomics standards initiative (MSI). Metabolomics 2007, 3, 175-178.
Fu, R.; Yang, P.; Li, Z.; Liu, W.; Amin, S.; Li, Z., Avenanthramide a triggers potent ROS-mediated anti-tumor effects in colorectal cancer by directly targeting DDX3. Cell Death & Disease 2019, 10, 593.
García-Beneytez, E.; Cabello, F.; Revilla, E., Analysis of Grape and Wine Anthocyanins by HPLC-MS. Journal of Agricultural and Food Chemistry 2003, 51, 5622-5629.
Gautam, D.; Han, S. J.; Hamdan, F. F.; Jeon, J.; Li, B.; Li, J. H.; Cui, Y.; Mears, D.; Lu, H.; Deng, C.; Heard, T.; Wess, J., A critical role for beta cell M3 muscarinic acetylcholine receptors in regulating insulin release and blood glucose homeostasis in vivo. Cell Metab 2006, 3, 449-61.
Ge, H.; Zhang, B.; Li, T.; Yu, Y.; Men, F.; Zhao, S.; Liu, J.; Zhang, T., Potential targets and the action mechanism of food-derived dipeptides on colitis: network pharmacology and bioinformatics analysis. Food & Function 2021, 12, 5989-6000.
Geng, P.; Sun, J.; Zhang, M.; Li, X.; Harnly, J. M.; Chen, P., Comprehensive characterization of C-glycosyl flavones in wheat (Triticum aestivum L.) germ using UPLC-PDA-ESI/HRMSn and mass defect filtering. Journal of Mass Spectrometry, 2016, 51, 914-930.
Guijas, C.; Montenegro-Burke, J. R.; Domingo-Almenara, X.; Palermo, A.; Warth, B.; Hermann, G.; Koellensperger, G.; Huan, T.; Uritboonthai, W.; Aisporna, A. E.; Wolan, D. W.; Spilker, M. E.; Benton, H. P.; Siuzdak, G., METLIN: A technology platform for identifying knowns and unknowns. Analytical Chemistry 2018, 90, 3156-3164.
Hafez Ghoran, S.; Wang, W.; Sang, S., Germination under the dark as an efficient method to enrich barley hordatine aglycones and to prepare a hordatine-rich fraction. Food Chemistry 2025, 472, 142963.
Hajduch, M.; Matusova, R.; Houston, N. L.; Thelen, J. J., Comparative proteomics of seed maturation in oilseeds reveals differences in intermediary metabolism. Proteomics 2011, 11, 1619-1629.
Hao, Y.; Zhang, Z.; Luo, E.; Yang, J.; Wang, S., Plant metabolomics: applications and challenges in the era of multi-omics big data. aBIOTECH 2025, 6, 116-132.
He, F.; Chen, W.-K.; Yu, K.-J.; Ji, X.-N.; Duan, C.-Q.; Reeves, M. J.; Wang, J., Molecular and biochemical characterization of the UDP-glucose: Anthocyanin 5-O-glucosyltransferase from Vitis amurensis. Phytochemistry 2015, 117, 363-372.
Health Promotion Administration, Ministry of Health and Welfare. Healthy Diet Standards. https://www.hpa.gov.tw/Pages/Detail.aspx?nodeid=543&pid=8382 (accessed October 10, 2025).
Ho, P.-Y.; Koh, Y.-C.; Lu, T.-J.; Liao, P.-L.; Pan, M.-H., Purple Napiergrass (Pennisetum purpureum Schumach) hot water extracts ameliorate high-fat diet-induced obesity and metabolic disorders in mice. Journal of Agricultural and Food Chemistry 2023, 71, 20701-20712.
Hopkins, A. L., Network pharmacology: the next paradigm in drug discovery. Nature chemical biology 2008, 4, 682-690.
Hotta, Y.; Nagatsu, A.; Liu, W.; Muto, T.; Narumiya, C.; Lu, X.; Yajima, M.; Ishikawa, N.; Miyazeki, K.; Kawai, N., Protective effects of antioxidative serotonin derivatives isolated from safflower against postischemic myocardial dysfunction. Molecular and Cellular Biochemistry 2002, 238, 151-162.
Hundleby, P. A.; Harwood, W. A., Impacts of the EU GMO regulatory framework for plant genome editing. Food and Energy Security 2019, 8, e00161.
Ikeuchi, Y.; Kimura, S.; Numata, T.; Nakamura, D.; Yokogawa, T.; Ogata, T.; Wada, T.; Suzuki, T.; Suzuki, T., Agmatine-conjugated cytidine in a tRNA anticodon is essential for AUA decoding in archaea. Nature Chemical Biology 2010, 6, 277-282.
Institute, T. L. R. Nutritious and healthy new napiergrass cultivars Taishiu No. 5 and No. 6. https://www.angrin.tlri.gov.tw/grass/Napier56/Napier56.htm (accessed June 6, 2025),
Ishihara, A.; Nakao, T.; Mashimo, Y.; Murai, M.; Ichimaru, N.; Tanaka, C.; Nakajima, H.; Wakasa, K.; Miyagawa, H., Probing the role of tryptophan-derived secondary metabolism in defense responses against Bipolaris oryzae infection in rice leaves by a suicide substrate of tryptophan decarboxylase. Phytochemistry 2011, 72, 7-13.
Jack, I.; Clark, P.; Ndukwe, G., Evaluation of phytochemical, antimicrobial and antioxidant capacities of Pennisetum purpureum (Schumach) extracts. Chemical Science International Journal 2020, 29, 1-14.
Jackson, R. S., Wine science: principles and applications. Academic press: 2020.
Jan, R.; Asaf, S.; Numan, M.; Lubna; Kim, K.-M., Plant secondary metabolite biosynthesis and transcriptional regulation in response to biotic and abiotic stress conditions. Agronomy 2021, 11, 968.
Kasote, D. M.; Duncan, G. J.; Neacsu, M.; Russell, W. R., Rapid method for quantification of anthocyanidins and anthocyanins in human biological samples. Food Chemistry 2019, 290, 56-63.
Katsuda, S.-i.; Suzuki, K.; Koyama, N.; Takahashi, M.; Miyake, M.; Hazama, A.; Takazawa, K., Safflower seed polyphenols (N-(p-coumaroyl) serotonin and N-feruloylserotonin) ameliorate atherosclerosis and distensibility of the aortic wall in Kurosawa and Kusanagi-hypercholesterolemic (KHC) rabbits. Hypertension Research 2009, 32, 944-949.
Khoo, H. E.; Azlan, A.; Tang, S. T.; Lim, S. M., Anthocyanidins and anthocyanins: colored pigments as food, pharmaceutical ingredients, and the potential health benefits. Food & Nutrition Research, 2017, 61, 1361779.
Kim, Y.; Lee, S.; Ryu, J. H.; Yoon, K. D.; Shin, S. S., Effect of Aurea Helianthus stem extract on anti-melanogenesis. Bioscience, Biotechnology, and Biochemistry 2018, 82, 1871-1879.
Kind, T.; Fiehn, O., Metabolomic database annotations via query of elemental compositions: mass accuracy is insufficient even at less than 1 ppm. BMC Bioinformatics 2006, 7, 234.
Kind, T.; Fiehn, O., Advances in structure elucidation of small molecules using mass spectrometry. Bioanalytical Reviews 2010, 2, 23-60.
Kind, T.; Meissen, J. K.; Yang, D.; Nocito, F.; Vaniya, A.; Cheng, Y.-S.; VanderGheynst, J. S.; Fiehn, O., Qualitative analysis of algal secretions with multiple mass spectrometric platforms. Journal of Chromatography A 2012, 1244, 139-147.
Kind, T.; Tsugawa, H.; Cajka, T.; Ma, Y.; Lai, Z.; Mehta, S. S.; Wohlgemuth, G.; Barupal, D. K.; Showalter, M. R.; Arita, M., Identification of small molecules using accurate mass MS/MS search. Mass Spectrometry Reviews 2018, 37, 513-532.
King, R. R.; Calhoun, L. A., Characterization of cross-linked hydroxycinnamic acid amides isolated from potato common scab lesions. Phytochemistry 2005, 66, 2468-2473.
Kitao, M.; Yazaki, K.; Tobita, H.; Agathokleous, E.; Kishimoto, J.; Takabayashi, A.; Tanaka, R., Anthocyanins act as a sugar-buffer and an alternative electron sink in response to starch depletion during leaf senescence: a case study on a typical anthocyanic tree species, Acer japonicum. Journal of Experimental Botany 2024, 75, 3521-3541.
Koenig, R.; Dickman, J. R.; Kang, C.; Zhang, T.; Chu, Y.-F.; Ji, L. L., Avenanthramide supplementation attenuates exercise-induced inflammation in postmenopausal women. Nutrition Journal 2014, 13, 21.
Koenig, R. T.; Dickman, J. R.; Wise, M. L.; Ji, L. L., Avenanthramides are bioavailable and accumulate in hepatic, cardiac, and skeletal muscle tissue following oral gavage in rats. Journal of Agricultural and Food Chemistry 2011, 59, 6438-6443.
Königshofer, H.; Lechner, S., Are polyamines involved in the synthesis of heat-shock proteins in cell suspension cultures of tobacco and alfalfa in response to high-temperature stress? Plant Physiology and Biochemistry 2002, 40, 51-59.
Koyama, N.; Kuribayashi, K.; Seki, T.; Kobayashi, K.; Furuhata, Y.; Suzuki, K.; Arisaka, H.; Nakano, T.; Amino, Y.; Ishii, K., Serotonin derivatives, major safflower (Carthamus tinctorius L.) seed antioxidants, inhibit low-density lipoprotein (LDL) oxidation and atherosclerosis in apolipoprotein E-deficient mice. Journal of Agricultural and Food Chemistry 2006, 54, 4970-4976.
Koyama, N.; Suzuki, K.; Furukawa, Y.; Arisaka, H.; Seki, T.; Kuribayashi, K.; Ishii, K.; Sukegawa, E.; Takahashi, M., Effects of safflower seed extract supplementation on oxidation and cardiovascular risk markers in healthy human volunteers. British Journal of Nutrition 2009, 101, 568-75.
Li, W.; Wen, L.; Chen, Z.; Zhang, Z.; Pang, X.; Deng, Z.; Liu, T.; Guo, Y., Study on metabolic variation in whole grains of four proso millet varieties reveals metabolites important for antioxidant properties and quality traits. Food Chemistry 2021, 357, 129791.
Li, Y.-Y.; Di, R.; Baibado, J. T.; Cheng, Y.-S.; Huang, Y.-Q.; Sun, H.; Cheung, H.-Y., Identification of kukoamines as the novel markers for quality assessment of Lycii Cortex. Food Research International 2014, 55, 373-380.
Li, Z.; Zhao, C.; Zhao, X.; Xia, Y.; Sun, X.; Xie, W.; Ye, Y.; Lu, X.; Xu, G., Deep Annotation of Hydroxycinnamic Acid Amides in Plants Based on Ultra-High-Performance Liquid Chromatography-High-Resolution Mass Spectrometry and Its In Silico Database. Analytical Chemistry 2018, 90, 14321-14330.
Lipinski, C. A., Drug-like properties and the causes of poor solubility and poor permeability. Journal of Pharmacological and Toxicological Methods 2000, 44, 235-49.
Liu, X.; Wang, Y.; Ge, W.; Cai, G.; Guo, Y.; Gong, J., Spectrum-effect relationship between ultra-high-performance liquid chromatography fingerprints and antioxidant activities of Lophatherum gracile Brongn. Food Science & Nutrition 2022, 10, 1592-1601.
Ly, D.; Kang, K.; Choi, J.-Y.; Ishihara, A.; Back, K.; Lee, S.-G., HPLC analysis of serotonin, tryptamine, tyramine, and the hydroxycinnamic acid amides of serotonin and tyramine in food vegetables. Journal of Medicinal Food 2008, 11, 385-389.
Ma, Y.; Kind, T.; Yang, D.; Leon, C., MS2Analyzer: A Software for Small Molecule Substructure Annotations from Accurate Tandem Mass Spectra. Analytical Chemistry 2014.
Marinova, E.; Georgiev, L.; Totseva, I.; Seizova, K.; Milkova, T., Antioxidant activity and mechanism of action of some synthesised phenolic acid amides of aromatic amines. Czech Journal of Food Sciences 2013, 31.
Mata, R.; Morales, I.; Pérez, O.; Rivero-Cruz, I.; Acevedo, L.; Enriquez-Mendoza, I.; Bye, R.; Franzblau, S.; Timmermann, B., Antimycobacterial compounds from Piper sanctum. Journal of Natural Products 2004, 67, 1961-1968.
Ministry of Agriculture (Taiwan). Overview of napiergrass cultivars in Taiwan. https://www.moa.gov.tw/ws.php?id=2503170 (accessed June 6, 2025).
Mitsis, M.; Markopoulos, G.; Alexiou, G. A.; Vartholomatos, E.; Lazari, D.; Hodaj, E.; Nastos, D.; Lianos, G.; Zagorianakou, P.; Galani, V., Antiproliferative and cytotoxic action of N-(p-coumaroyl) serotonin in lung cancer cells. Journal of BUON.: Official Journal of the Balkan Union of Oncology 2018, 23, 1693-1698.
Mu, C.; Sheng, Y.; Wang, Q.; Amin, A.; Li, X.; Xie, Y., Potential compound from herbal food of Rhizoma Polygonati for treatment of COVID-19 analyzed by network pharmacology: Viral and cancer signaling mechanisms. Journal of Functional Foods 2021, 77, 104149.
Mu, H.; Chen, J.; Huang, W.; Huang, G.; Deng, M.; Hong, S.; Ai, P.; Gao, C.; Zhou, H., OmicShare tools: A zero-code interactive online platform for biological data analysis and visualization. iMeta 2024, 3, e228.
Murcia, G.; Fontana, A.; Pontin, M.; Baraldi, R.; Bertazza, G.; Piccoli, P. N., ABA and GA3 regulate the synthesis of primary and secondary metabolites related to alleviation from biotic and abiotic stresses in grapevine. Phytochemistry 2017, 135, 34-52.
Nothias, L.-F.; Nothias-Esposito, M.; Da Silva, R.; Wang, M.; Protsyuk, I.; Zhang, Z.; Sarvepalli, A.; Leyssen, P.; Touboul, D.; Costa, J., Bioactivity-based molecular networking for the discovery of drug leads in natural product bioassay-guided fractionation. Journal of Natural Products 2018, 81, 758-767.
Nothias, L.-F.; Petras, D.; Schmid, R.; Dührkop, K.; Rainer, J.; Sarvepalli, A.; Protsyuk, I.; Ernst, M.; Tsugawa, H.; Fleischauer, M., Feature-based molecular networking in the GNPS analysis environment. Nature Methods 2020, 17, 905-908.
Obata, T.; Fernie, A. R., The use of metabolomics to dissect plant responses to abiotic stresses. Cellular and Molecular Life Sciences 2012, 69, 3225-3243.
Ojo, O. A.; Ojo, A. B.; Barnabas, M.; Iyobhebhe, M.; Elebiyo, T. C.; Evbuomwan, I. O.; Michael, T.; Ajiboye, B. O.; Oyinloye, B. E.; Oloyede, O. I., Phytochemical properties and pharmacological activities of the genus Pennisetum: A review. Scientific African 2022, 16, e01132.
Okaraonye, C.; Ikewuchi, J., Nutritional and antinutritional components of Pennisetum purpureum (Schumach). Pakistan Journal of Nutrition 2009, 8, 32-34.
Onjai-uea, N.; Paengkoum, S.; Taethaisong, N.; Thongpea, S.; Sinpru, B.; Surakhunthod, J.; Meethip, W.; Purba, R. A. P.; Paengkoum, P., Effect of cultivar, plant spacing and harvesting age on yield, characteristics, chemical composition, and anthocyanin composition of purple Napier grass. Animals 2023, 13, 10.
Oster, A.; Hinsberger, S.; Werth, R.; Marchais-Oberwinkler, S.; Frotscher, M.; Hartmann, R. W., Bicyclic substituted hydroxyphenylmethanones as novel inhibitors of 17β-hydroxysteroid dehydrogenase type 1 (17β-HSD1) for the treatment of estrogen-dependent diseases. J Med Chem 2010, 53, 8176-86.
Park, C. H.; Lee, A. Y.; Kim, J. H.; Seong, S. H.; Cho, E. J.; Choi, J. S.; Kim, M. J.; Yang, S.; Yokozawa, T.; Shin, Y. S., Protective effects of serotonin and its derivatives, N-feruloylserotonin and N-(p-coumaroyl) serotonin, against cisplatin-induced renal damage in mice. The American journal of Chinese medicine 2019, 47, 369-383.
Park, J. B., Isolation and characterization of N-feruloyltyramine as the P-selectin expression suppressor from garlic (Allium sativum). Journal of Agricultural and Food Chemistry 2009, 57, 8868-8872.
Patti, G. J.; Yanes, O.; Siuzdak, G., Metabolomics: the apogee of the omics trilogy. Nature Reviews Molecular Cell Biology 2012, 13, 263-269.
Peng, M.; Shahzad, R.; Gul, A.; Subthain, H.; Shen, S.; Lei, L.; Zheng, Z.; Zhou, J.; Lu, D.; Wang, S., Differentially evolved glucosyltransferases determine natural variation of rice flavone accumulation and UV-tolerance. Nature Communications 2017, 8, 1975.
Perez de Souza, L.; Alseekh, S.; Scossa, F.; Fernie, A. R., Ultra-high-performance liquid chromatography high-resolution mass spectrometry variants for metabolomics research. Nature Methods 2021, 18, 733-746.
Pichersky, E.; Gang, D. R., Genetics and biochemistry of secondary metabolites in plants: an evolutionary perspective. Trends in plant science 2000, 5, 439-445.
Popović, Z.; Krstić-Milošević, D.; Marković, M.; Vidaković, V.; Bojović, S., Gentiana asclepiadea L. from two high mountainous habitats: inter- and intrapopulation variability based on species’ phytochemistry. Plants 2021, 10, 140.
Potterat, O., Goji (Lycium barbarum and L. chinense): Phytochemistry, pharmacology and safety in the perspective of traditional uses and recent popularity. Planta Medica 2010, 76, 7-19.
Pretorius, C. J.; Tugizimana, F.; Steenkamp, P. A.; Piater, L. A.; Dubery, I. A., Metabolomics for Biomarker Discovery: Key Signatory Metabolic Profiles for the Identification and Discrimination of Oat Cultivars. Metabolites 2021, 11.
Putschögl, M.; Zirak, P.; Penzkofer, A., Absorption and emission behaviour of trans-p-coumaric acid in aqueous solutions and some organic solvents. Chemical Physics 2008, 343, 107-120.
Qiao, J.; Feng, Z.; Zhang, Y.; Xiao, X.; Dong, J.; Haubruge, E.; Zhang, H., Phenolamide and flavonoid glycoside profiles of 20 types of monofloral bee pollen. Food Chemistry 2023, 405, 134800.
Reisdorph, N. A.; Walmsley, S.; Reisdorph, R., A perspective and framework for developing sample type specific databases for lc/ms-based clinical metabolomics. Metabolites 2019, 10.
Roumani, M.; Besseau, S.; Gagneul, D.; Robin, C.; Larbat, R., Phenolamides in plants: an update on their function, regulation, and origin of their biosynthetic enzymes. Journal of Experimental Botany 2021, 72, 2334-2355.
Rubinskiene, M.; Jasutiene, I.; Venskutonis, R.; Viskelis, P., HPLC determination of the composition and stability of blackcurrant anthocyanins. Journal of chromatographic science 2005, 43, 478-82.
Saffer, A. M.; Irish, V. F., Flavonol rhamnosylation indirectly modifies the cell wall defects of RHAMNOSE BIOSYNTHESIS1 mutants by altering rhamnose flux. The Plant Journal 2018, 94, 649-660.
Sang, S.; Chu, Y., Whole grain oats, more than just a fiber: Role of unique phytochemicals. Molecular Nutrition & Food Research 2017, 61.
Savolainen, O. I.; Coda, R.; Suomi, K.; Katina, K.; Juvonen, R.; Hanhineva, K.; Poutanen, K., The role of oxygen in the liquid fermentation of wheat bran. Food Chemistry 2014, 153, 424-431.
Sawada, Y.; Nakabayashi, R.; Yamada, Y.; Suzuki, M.; Sato, M.; Sakata, A.; Akiyama, K.; Sakurai, T.; Matsuda, F.; Aoki, T.; Hirai, M. Y.; Saito, K., RIKEN tandem mass spectral database (ReSpect) for phytochemicals: a plant-specific MS/MS-based data resource and database. Phytochemistry 2012, 82, 38-45.
Scheubert, K.; Hufsky, F.; Petras, D.; Wang, M.; Nothias, L.-F.; Dührkop, K.; Bandeira, N.; Dorrestein, P. C.; Böcker, S., Significance estimation for large scale metabolomics annotations by spectral matching. Nature Communications 2017, 8, 1494.
Schmid, R.; Petras, D.; Nothias, L.-F.; Wang, M.; Aron, A. T.; Jagels, A.; Tsugawa, H.; Rainer, J.; Garcia-Aloy, M.; Dührkop, K., Ion identity molecular networking for mass spectrometry-based metabolomics in the GNPS environment. Nature communications 2021, 12, 3832.
Schymanski, E. L.; Jeon, J.; Gulde, R.; Fenner, K.; Ruff, M.; Singer, H. P.; Hollender, J., Identifying small molecules via high resolution mass spectrometry: communicating confidence. Environmental science & technology 2014a, 48 4, 2097-8.
Schymanski, E. L.; Jeon, J.; Gulde, R.; Fenner, K.; Ruff, M.; Singer, H. P.; Hollender, J., Identifying Small Molecules via High Resolution Mass Spectrometry: communicating confidence. Environmental Science & Technology 2014b, 48, 2097-2098.
Seeram, N. P.; Momin, R. A.; Nair, M. G.; Bourquin, L. D., Cyclooxygenase inhibitory and antioxidant cyanidin glycosides in cherries and berries. Phytomedicine 2001, 8, 362-369.
Sendri, N.; Bhandari, P., Anthocyanins: a comprehensive review on biosynthesis, structural diversity, and industrial applications. Phytochemistry Reviews 2024, 23, 1913-1974.
Sew, Y. S.; Ströher, E.; Fenske, R.; Millar, A. H., Loss of mitochondrial malate dehydrogenase activity alters seed metabolism impairing seed maturation and post-germination growth in Arabidopsis. Plant Physiology 2016, 171, 849-863.
Shaik, S. S.; Carciofi, M.; Martens, H. J.; Hebelstrup, K. H.; Blennow, A., Starch bioengineering affects cereal grain germination and seedling establishment. Journal of Experimental Botany 2014, 65, 2257-2270.
Shen, S.; Zhan, C.; Yang, C.; Fernie, A. R.; Luo, J., Metabolomics-centered mining of plant metabolic diversity and function: Past decade and future perspectives. Molecular Plant 2023, 16, 43-63.
Shen, X.; Wang, R.; Xiong, X.; Yin, Y.; Cai, Y.; Ma, Z.; Liu, N.; Zhu, Z.-J., Metabolic reaction network-based recursive metabolite annotation for untargeted metabolomics. Nature Communications 2019, 10, 1516.
Šmídová, B.; Šatínský, D.; Dostálová, K.; Solich, P., The pentafluorophenyl stationary phase shows a unique separation efficiency for performing fast chromatography determination of highbush blueberry anthocyanins. Talanta 2017, 166, 249-254.
Smith, R.-K., Handbook of Environmental Analysis. In 4th ed.; Genium Publishing Corporation: Schenectady, NY, USA, 1999; pp 138-155.
Society, C. N. The Chinese Dietary Guidelines 2022. http://dg.cnsoc.org/article/04/70JvPbFmTlyZbjoO67LeRg.html (2025-10-10),
Song, D.; Liu, S.; Fan, L.; Yang, J.; Li, H.; Xia, Y.; Li, Y., Nutrient stoichiometric and resorption characteristics of the petals of four common urban greening Rosaceae tree species. Frontiers in Plant Science 2023, 14, 1201759.
Straßmann, S.; Passon, M.; Schieber, A., Chemical hemisynthesis of sulfated cyanidin-3-o-glucoside and cyanidin metabolites.Molecules, 2021; Vol. 26.
Stravs, M. A.; Dührkop, K.; Böcker, S.; Zamboni, N., MSNovelist: de novo structure generation from mass spectra. Nature Methods 2022, 19, 865-870.
Su, K.; Zhu, F.; Guo, L.; Zhu, Y.; Li, W.; Xiong, X., Retrospective study on professor zhongying zhou's experience in traditional chinese medicine treatment on diabetic nephropathy. Journal of Traditional Chinese Medicine 2013, 33, 262-267.
Sumner, L. W.; Amberg, A.; Barrett, D.; Beale, M. H.; Beger, R.; Daykin, C. A.; Fan, T. W.-M.; Fiehn, O.; Goodacre, R.; Griffin, J. L., Proposed minimum reporting standards for chemical analysis: chemical analysis working group (CAWG) metabolomics standards initiative (MSI). Metabolomics 2007, 3, 211-221.
Takii, T.; Kawashima, S.; Chiba, T.; Hayashi, H.; Hayashi, M.; Hiroma, H.; Kimura, H.; Inukai, Y.; Shibata, Y.; Nagatsu, A., Multiple mechanisms involved in the inhibition of proinflammatory cytokine production from human monocytes by N-(p-coumaroyl) serotonin and its derivatives. International Immunopharmacology 2003, 3, 273-277.
Takimoto, T.; Suzuki, K.; Arisaka, H.; Murata, T.; Ozaki, H.; Koyama, N., Effect of N‐(p‐coumaroyl) serotonin and N‐feruloylserotonin, major anti‐atherogenic polyphenols in safflower seed, on vasodilation, proliferation and migration of vascular smooth muscle cells. Molecular Nutrition & Food Research 2011, 55, 1561-1571.
Tanaka, Y.; Sasaki, N.; Ohmiya, A., Biosynthesis of plant pigments: anthocyanins, betalains and carotenoids. The Plant Journal 2008, 54, 733-49.
Tareq Hassan Khan, M., Predictions of the ADMET properties of candidate drug molecules utilizing different QSAR/QSPR modelling approaches. Current Drug Metabolism 2010, 11, 285-295.
Thaisungnoen, K.; Umar, M.; Singh, M.; Anal, A., Ultrasonic-assisted extraction of bioactive extract from napier grass (pennisetum purpureum), evaluation of its bioactivity, antimutagenicity and cytotoxicity. Natural and Life Sciences Communications 2024, 23.
Tianjin Chasesun Pharmaceutical Co., L., Randomized, Double-blind Placebo-controlled Phase I Study to Assess Safety, Tolerance and Pharmacokinetics of a Single Intravenous Injection Kukoamine B Mesilate in Healthy Volunteers. In Southwest Hospital, C., Ed. ClinicalTrials.gov: 2014.
Tianjin Chasesun Pharmaceutical Co., L., Randomized, Double-blind Placebo-controlled Phase I Study to Assess Safety, Tolerance,Pharmacokinetics of Multiple-dose Kukoamine B Mesilate in Healthy Volunteers. In Southwest Hospital, C., Ed. ClinicalTrials.gov: 2016.
Tsai, P.-J.; Wu, S.-C.; Cheng, Y.-K., Role of polyphenols in antioxidant capacity of napiergrass from different growing seasons. Food Chemistry 2008, 106, 27-32.
Tsugawa, H.; Cajka, T.; Kind, T.; Ma, Y.; Higgins, B.; Ikeda, K.; Kanazawa, M.; VanderGheynst, J.; Fiehn, O.; Arita, M., MS-DIAL: data-independent MS/MS deconvolution for comprehensive metabolome analysis. Nature Methods 2015, 12, 523-526.
Ube, N.; Harada, D.; Katsuyama, Y.; Osaki-Oka, K.; Tonooka, T.; Ueno, K.; Taketa, S.; Ishihara, A., Identification of phenylamide phytoalexins and characterization of inducible phenylamide metabolism in wheat. Phytochemistry 2019, 167, 112098.
Wakimoto, T.; Nitta, M.; Kasahara, K.; Chiba, T.; Ye, Y.; Tsuji, K.; Kan, T.; Nukaya, H.; Ishiguro, M.; Koike, M.; Yokoo, Y.; Suwa, Y., Structure-activity relationship study on alpha1 adrenergic receptor antagonists from beer. Bioorganic & Medicinal Chemistry Letters 2009, 19, 5905-8.
Walsh, J.; Haddock, J.; Blumberg, J. B.; McKay, D. L.; Wei, X.; Dolnikowski, G.; Chen, C. O., Identification of methylated metabolites of oat avenanthramides in human plasma using UHPLC QToF-MS. International Journal of Food Sciences and Nutrition 2018, 69, 377-383.
Wang, J. H.; Zhao, L. F.; Wang, H. F.; Wen, Y. T.; Jiang, K. K.; Mao, X. M.; Zhou, Z. Y.; Yao, K. T.; Geng, Q. S.; Guo, D.; Huang, Z. X., GenCLiP 3: mining human genes' functions and regulatory networks from PubMed based on co-occurrences and natural language processing. Bioinformatics 2019.
Wang, M.; Carver, J. J.; Phelan, V. V.; Sanchez, L. M.; Garg, N.; Peng, Y.; Nguyen, D. D.; Watrous, J.; Kapono, C. A.; Luzzatto-Knaan, T., Sharing and community curation of mass spectrometry data with Global Natural Products Social Molecular Networking. Nature Biotechnology 2016, 34, 828-837.
Wang, M.; Firrman, J.; Liu, L.; Yam, K. L., A Review on Flavonoid Apigenin: Dietary Intake, ADME, Antimicrobial Effects, and Interactions With Human Gut Microbiota. Biomed Research International 2019a.
Wang, P.; Chen, H.; Zhu, Y.; McBride, J.; Fu, J.; Sang, S., Oat Avenanthramide-C (2c) is biotransformed by mice and the human microbiota into bioactive metabolites1, 2, 3. The Journal of Nutrition 2015a, 145, 239-245.
Wang, S.; Suh, J. H.; Zheng, X.; Wang, Y.; Ho, C.-T., Identification and quantification of potential anti-inflammatory hydroxycinnamic acid amides from wolfberry. Journal of Agricultural and Food Chemistry 2017, 65, 364-372.
Wang, W.; Snooks, H. D.; Sang, S., The Chemistry and Health Benefits of Dietary Phenolamides. Journal of Agricultural and Food Chemistry 2020b, 68, 6248-6267.
Wang, Y.; Wen, J.; Zheng, W.; Zhao, L.; Fu, X.; Wang, Z.; Xiong, Z.; Li, F.; Xiao, W., Simultaneous determination of neochlorogenic acid, chlorogenic acid, cryptochlorogenic acid and geniposide in rat plasma by UPLC-MS/MS and its application to a pharmacokinetic study after administration of Reduning injection. Biomedical Chromatography 2015b, 29, 68-74.
Wang, Z.-F.; Hu, Y.-Q.; Wu, Q.-G.; Zhang, R., Virtual screening of potential anti-fatigue mechanism of polygonati rhizoma based on network pharmacology. Combinatorial chemistry & high throughput screening 2019b, 22, 612-624.
Watrous, J.; Roach, P.; Alexandrov, T.; Heath, B. S.; Yang, J. Y.; Kersten, R. D.; Van Der Voort, M.; Pogliano, K.; Gross, H.; Raaijmakers, J. M., Mass spectral molecular networking of living microbial colonies. Proceedings of the National Academy of Sciences 2012, 109, E1743-E1752.
Whittall, J. B.; Voelckel, C.; Kliebenstein, D. J.; Hodges, S. A., Convergence, constraint and the role of gene expression during adaptive radiation: floral anthocyanins in Aquilegia. Molecular Ecology 2006, 15, 4645-4657.
Wise, M. L. Avenanthramides: Chemistry and Biosynthesis. Oats Nutrition and Technology; Chu, Y., Ed.; Wiley-Blackwell: Hoboken, NJ, USA, 2013; https://doi.org/10.1002/9781118354100.ch8.
Wolfender, J.-L.; Nuzillard, J.-M.; Van der Hooft, J. J.; Renault, J.-H.; Bertrand, S., Accelerating metabolite identification in natural product research: toward an ideal combination of liquid chromatography-high-resolution tandem mass spectrometry and NMR profiling, in silico databases, and chemometrics. Analytical Chemistry 2018, 91, 704-742.
Wu, Z.-R.; Bai, Z.-T.; Sun, Y.; Chen, P.; Yang, Z.-G.; Zhi, D.-J.; Li, Y.; Wang, X.; Du, J.-J.; Yang, R., Protective effects of the bioactive natural product N-trans-Caffeoyldopamine on hepatotoxicity induced by isoniazid and rifampicin. Bioorganic & Medicinal Chemistry Letters 2015a, 25, 5424-5426.
Wu, Z.-R.; Li, J.-Y.; Guo, D.-D.; Guan, Q.-G.; Li, H.-Y., Two cinnamoyloctopamine antioxidants from garlic skin attenuates oxidative stress and liver pathology in rats with non-alcoholic steatohepatitis. Phytomedicine 2015b, 22, 178-182.
Xiao, P.-t.; Liu, S.-y.; Kuang, Y.-j.; Jiang, Z.-m.; Lin, Y.; Xie, Z.-s.; Liu, E. H., Network pharmacology analysis and experimental validation to explore the mechanism of sea buckthorn flavonoids on hyperlipidemia. Journal of Ethnopharmacology 2021, 264, 113380.
Xu, W.; Luo, G.; Yu, F.; Jia, Q.; Zheng, Y.; Bi, X.; Lei, J., Characterization of anthocyanins in the hybrid progenies derived from Iris dichotoma and I.domestica by HPLC-DAD-ESI/MS analysis. Phytochemistry 2018, 150, 60-74.
Yandeau-Nelson, M.; Lauter, N.; Zabotina, O., Advances in metabolomic applications in plant genetics and breeding. CABI Reviews 2015, 1-15.
Yang, C.; Shen, S.; Zhou, S.; Li, Y.; Mao, Y.; Zhou, J.; Shi, Y.; An, L.; Zhou, Q.; Peng, W.; Lyu, Y.; Liu, X.; Chen, W.; Wang, S.; Qu, L.; Liu, X.; Fernie, A. R.; Luo, J., Rice metabolic regulatory network spanning the entire life cycle. Molecular Plant 2022, 15, 258-275.
Yang, J. Y.; Sanchez, L. M.; Rath, C. M.; Liu, X.; Boudreau, P. D.; Bruns, N.; Glukhov, E.; Wodtke, A.; De Felicio, R.; Fenner, A., Molecular networking as a dereplication strategy. Journal of Natural Products 2013, 76, 1686-1699.
Yang, S.; Wang, C.; Li, X.; Wu, C.; Liu, C.; Xue, Z.; Kou, X., Investigation on the biological activity of anthocyanins and polyphenols in blueberry. Journal of Food Science 2021, 86, 614-627.
Yoshihara, T.; Takamatsu, S.; Sakamura, S., Three new phenolic amides from the roots of eggplant (Solanum melongena L.). Agricultural and Biological Chemistry 1978, 42, 623-627.
Zhan, C.; Lei, L.; Liu, Z.; Zhou, S.; Yang, C.; Zhu, X.; Guo, H.; Zhang, F.; Peng, M.; Zhang, M.; Li, Y.; Yang, Z.; Sun, Y.; Shi, Y.; Li, K.; Liu, L.; Shen, S.; Wang, X.; Shao, J.; Jing, X.; Wang, Z.; Li, Y.; Czechowski, T.; Hasegawa, M.; Graham, I.; Tohge, T.; Qu, L.; Liu, X.; Fernie, A. R.; Chen, L.-L.; Yuan, M.; Luo, J., Selection of a subspecies-specific diterpene gene cluster implicated in rice disease resistance. Nature Plants 2020, 6, 1447-1454.
Zhang, H.; Zeng, X.; Yin, Y.; Zhu, Z.-J., Knowledge and data-driven two-layer networking for accurate metabolite annotation in untargeted metabolomics. Nature Communications 2025, 16, 8118.
Zhang, X.; Wang, J.; Li, P.; Sun, C.; Dong, W., Integrative metabolome and transcriptome analyses reveals the black fruit coloring mechanism of Crataegus maximowiczii C. K. Schneid. Plant Physiology and Biochemistry 2023, 194, 111-121.
Zhou, S.; Chen, J.; Lai, Y.; Yin, G.; Chen, P.; Pennerman, K. K.; Yan, H.; Wu, B.; Zhang, H.; Yi, X.; Wang, C.; Fu, M.; Zhang, X.; Huang, L.; Ma, X.; Peng, Y.; Yan, Y.; Nie, G.; Liu, L., Integrative analysis of metabolome and transcriptome reveals anthocyanins biosynthesis regulation in grass species Pennisetum purpureum. Industrial Crops and Products 2019a, 138, 111470.
Zhou, W.; Chen, F.; Zhao, S.; Yang, C.; Meng, Y.; Shuai, H.; Luo, X.; Dai, Y.; Yin, H.; Du, J., DA-6 promotes germination and seedling establishment from aged soybean seeds by mediating fatty acid metabolism and glycometabolism. Journal of Experimental Botany 2019b, 70, 101-114.
Zhou, Z.; Luo, M.; Zhang, H.; Yin, Y.; Cai, Y.; Zhu, Z.-J., Metabolite annotation from knowns to unknowns through knowledge-guided multi-layer metabolic networking. Nature communications 2022, 13, 6656.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/101063-
dc.description.abstract主要糧食與飼料作物為禾本科植物,其植物次級代謝物除參與生長與防禦的調控外,亦具多樣的生理活性,為保健食品的重要來源。本研究以高解析質譜為核心分析平台,結合代謝體學與化學計量學策略,採用非目標式、猜測式與目標式分析流程,以偵測不同類型的次級代謝物。藉此克服化學結構多樣性與現有資料庫覆蓋範圍有限,所造成次級代謝物準確註釋與系統性分析之困難。結果顯示禾本科作物中次級代謝物酚酸、類黃酮、花青素、酚醯胺及皂苷為主要類別;線上資料庫初步篩選同時偵測到醛類、胺基酸衍生物、脂肪酸、有機酸、生物鹼、香豆素、二萜、吲哚及核苷酸等多種代謝物。非目標式代謝體分析結果顯示,狼尾草的特徵酚酸為綠原酸類化合物;其類黃酮衍生物除具有O-醣苷鍵結外,亦具有相當比例的C-醣苷鍵結結構。進一步透過自建資料庫比對,共註釋出10種花青素,其中7種為首次於狼尾草中發現。在12種穀物樣品中共鑑定出53種酚醯胺化合物,包括aliphatic型、aromatic型、agmatine型/二聚體及燕麥胺類,其中含有17對順反異構物。利用分子網絡分析模式首次於小米中揭示九種酚醯胺醣苷結合態。發芽後的穀物幼苗中,酚醯胺主要在根部大量蓄積,且Z型異構體比例超過40%,本研究亦首次對該類異構體進行相對定量分析。本研究所建立的分析模式、化學結構資訊與資料庫,成功應用於禾本科植物多類次級代謝物的註釋與比較;可為其他禾本科作物研究提供植物化合物層面的參考;亦為天然物研究、功能性食品開發及較少研究之植物物種的化學特徵解析,提供可行的策略與參考框架。zh_TW
dc.description.abstractMajor cereal and forage crops are Poaceae plants. Their secondary metabolites not only participate in regulating growth and defense but also exhibit diverse bioactivities, serving as important sources of functional ingredients. In this study, the high-resolution mass spectrometry platform integrated with metabolomics and chemometric approaches was employed as the core analytical system. Untargeted, suspect, and targeted workflows were adopted to detect various classes of secondary metabolites, thereby overcoming the challenges in accurate annotation and systematic analysis arising from structural diversity and the limited coverage of existing databases. The results revealed that phenolic acids, flavonoids, anthocyanins, phenolamides, and saponins constitute the major groups of secondary metabolites in Poaceae crops. Preliminary screening using online databases additionally detected a wide range of metabolites, including aldehydes, amino acid derivatives, fatty acids, organic acids, alkaloids, coumarins, diterpenes, indoles, and nucleotides. Non-targeted metabolomic analysis showed that chlorogenic acids were the characteristic phenolic acids in Napier grass, while its flavonoid derivatives contained not only O-glycosidic linkages but also a considerable proportion of C-glycosidic structures. Further comparison with an in-house database enabled the annotation of 10 anthocyanins, seven of those were characterized in Napier grass for the first time. Across 12 cereal samples, a total of 53 phenolamides were putatively identified, including aliphatic, aromatic, agmatine-derived/dimeric, and avenanthramide types, comprising 17 E/Z-isomeric pairs. Molecular networking analysis further revealed nine glycosylated phenolamides in millet for the first time. In germinated cereal seedlings, phenolamides were predominantly accumulated in roots, with Z-isomers accounting for more than 40%. This study also represents the first relative quantification of these isomers. The analytical workflows, together with the established structural information and databases, were successfully applied to the annotation and comparison of multiple classes of secondary metabolites in Poaceae crops. The analytical workflows, along with the established structural information and databases, were successfully applied to the annotation and comparison of multiple classes of secondary metabolites in Poaceae crops. These results provide compound-level references for future studies on other Poaceae crops and offer feasible strategies and frameworks for phytochemical research, functional foods development, and the structural characterization of less-studied plant species.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-11-27T16:07:07Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-11-27T16:07:07Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents謝辭 i
摘要 iii
Abstract iv
目次 vi
圖次 ix
表次 xiii
第一章、前言 1
第二章、文獻回顧 3
2.1 植物代謝體在植物生長上的重要意義 3
2.1.1植物次級代謝物與代謝體學 3
2.1.2代謝體學在植物次級代謝變異與環境適應研究中的應用 4
2.2 植物次級代謝物註釋之挑戰 8
2.3 基於分子網絡的植物次級代謝物註釋解決方案 9
第三章、禾本科植物次級代謝物之篩選-以非目標式分析為起點 11
3.1 前言 11
3.2 材料與方法 13
3.2.1 樣品組成和前處理方式 13
3.2.2 UHPLC-ESI-HRMS分析 14
3.2.3分子網絡分析 15
3.2.4 Compound Discoverer方法設定 15
3.2.5 資料庫的構建與儀器方法調整 15
3.2.6 非目標分析之重要活性成分註釋結果以及可信度等級 17
3.3 結果與討論 19
3.3.1 使用缐上資料庫對狼尾草中機能性成分的初步篩選 19
3.3.2 分子網絡結合質譜斷裂模式呈現禾本科作物中C-醣苷類黃酮多樣性 30
3.3.3 禾本科植物中重要化合物類別在人體小腸中吸收預測 40
3.4 第三章補充資料 44
3.4.1 禾本科植物中化合物註釋清單 44
3.4.2 燕麥皂苷之分子網絡 47
3.5 小結 50
第四章、非目標式代謝體學分析-以狼尾草不同品種中花青素的差異爲例 51
第四章縮寫表 51
4.1 前言 52
4.2 材料與方法 53
4.2.1 植物材料 53
4.2.2 標準品和藥品 53
4.2.3 樣品前處理 55
4.2.4 儀器與分析條件 55
4.2.5 定性策略 56
4.2.6 定量標準 57
4.2.7 差異性化合物篩選 58
4.3 結果與討論 60
4.3.1. 花青素之定性分析 60
4.3.2. 三個品種狼尾草之間及台畜五號不同部位間花青素相對含量之變化 67
4.3.3. 花青素定量分析結果 67
4.3.4. 狼尾草中花青素相關代謝物累積-化合物層級解析 69
4.4 第四章補充資料 75
4.4.1 狼尾草補充資料 75
4.4.2 花青素掃描清單 76
4.4.3 方法確效 82
4.4.4 差異性代謝物篩選 85
4.5 小結 89
第五章、穀物酚醯胺的系統解析:分子網絡在定性上應用、結構多樣性及分布特徵 90
第五章縮寫表 90
5.1 前言 90
5.2 材料與方法 99
5.2.1樣品組成 99
5.2.2 穀物幼苗培育 99
5.2.3 樣品前處理 100
5.2.4 標準品、檢量線以及方法回收率 100
5.2.5 UHPLC-HR-MS分析 102
5.2.6 分子網絡分析 103
5.2.7 試驗設計 103
5.3 結果與討論 103
5.3.1 酚醯胺之定性分析 103
5.3.2 穀物中酚醯胺之整體分布 130
5.3.3稻米發芽過程中酚醯胺變化 132
5.3.4 其他穀物發芽過程中酚醯胺變化 136
5.4 小結 145
5.5 第五章補充資料 146
5.5.1 化合物定性圖譜 146
5.5.2 穀物中酚醯胺相對含量分布 167
第六章、結論 170
第七章、參考文獻 171
第八章、附錄 186
8.1 網絡藥理學之疾病治療預測 186
8.2 禾本科植物中重要化合物的網絡藥理學資訊 188
-
dc.language.isozh_TW-
dc.subject高解析質譜-
dc.subject禾本科作物-
dc.subject代謝體學-
dc.subject分子網絡-
dc.subject類黃酮-
dc.subject花青素-
dc.subject酚醯胺-
dc.subjecthigh-resolution mass spectrometry-
dc.subjectPoaceae crops-
dc.subjectmetabolomics-
dc.subjectmolecular networking-
dc.subjectflavonoids-
dc.subjectanthocyanins-
dc.subjectphenolamides-
dc.title藉由代謝體學和化學計量法評估禾本科作物之活性成分zh_TW
dc.titleEvaluation of the bioactivity components in Poaceae crops through metabolomics and chemometrics approachesen
dc.typeThesis-
dc.date.schoolyear114-1-
dc.description.degree博士-
dc.contributor.coadvisor陳時欣zh_TW
dc.contributor.coadvisorShih Hsin Chenen
dc.contributor.oralexamcommittee張永和;謝淑貞;林詩舜;陳宏彰;周繼中zh_TW
dc.contributor.oralexamcommitteeYung-Ho Chang;Shu-Chen Hsieh ;Shih-Shun Lin ;Hong-Jhang Chen;Kevin Chi-Chung Chouen
dc.subject.keyword高解析質譜,禾本科作物代謝體學分子網絡類黃酮花青素酚醯胺zh_TW
dc.subject.keywordhigh-resolution mass spectrometry,Poaceae cropsmetabolomicsmolecular networkingflavonoidsanthocyaninsphenolamidesen
dc.relation.page195-
dc.identifier.doi10.6342/NTU202504656-
dc.rights.note未授權-
dc.date.accepted2025-11-10-
dc.contributor.author-college生物資源暨農學院-
dc.contributor.author-dept食品科技研究所-
dc.date.embargo-liftN/A-
顯示於系所單位:食品科技研究所

文件中的檔案:
檔案 大小格式 
ntu-114-1.pdf
  未授權公開取用
9.12 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved