請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/10102
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 王暉(Huei Wang) | |
dc.contributor.author | Nai-Chung Kuo | en |
dc.contributor.author | 郭迺中 | zh_TW |
dc.date.accessioned | 2021-05-20T21:02:04Z | - |
dc.date.available | 2013-07-26 | |
dc.date.available | 2021-05-20T21:02:04Z | - |
dc.date.copyright | 2011-07-26 | |
dc.date.issued | 2011 | |
dc.date.submitted | 2011-07-19 | |
dc.identifier.citation | [1] T. S. Rappaport, A. Annamalai, R. Buehrer and W. H. Tranter, “Wireless communication : past event and future perspective,” IEEE Communication Mag., pp. 148–161, May. 2002.
[2] P. Smulders, “Exploiting the 60-GHz band for local wireless multimedia access: prospects and future directions,” IEEE Communication Mag., pp. 140–147, Aug. 2002. [3] B. Piernas, et al., “A broadband and miniaturized V-band pHEMT frequency doubler,” IEEE Microw. Wireless Compon. Lett., vol. 10, pp. 276–278, Jul. 2000. [4] K. Nishikawa, et al., “Low-voltage and broadband V-band InP HEMT frequency doubler MMIC,” in IEEE MTT-S Int. Dig., 2005, pp. 45–48. [5] B. J. Huang, et al., “A 40-to-76 GHz balanced distributed doubler in 0.13 μm CMOS technology,” in Proc. European Microwave Integrated Circuits Conference, 2008, pp. 17–19. [6] M. Kantanen, J. Holmberg, T. Karttaavi, and J. Volotinen, “60 GHz frequency conversion 90 nm CMOS circuits,” in Proc. European Microwave Integrated Circuits Conference, 2008, pp. 60–63. [7] D. Y. Jung, and C. S. Park, “A low-power, high-suppression V-band frequency doubler in 0.13 μm CMOS,” IEEE Microw. Wireless Compon. Lett., vol. 18, pp. 551–553, Aug. 2008. [8] A. Chen, Y. Baeyens, Y. K. Chen, and J. Lin, “A 36-80 GHz high gain millimeter-wave double-balanced active frequency doubler in SiGe BiCMOS,” IEEE Microw. Wireless Compon. Lett., vol. 19, pp. 572–574, Sep. 2009. [9] G. Zhao, “The effects of biasing and harmonic loading on MESFET tripler performance,” Microwave Opt. Technol. Lett., vol. 9, pp. 189–194, Jul. 1995. [10] E. Camargo, Design of FET Multipliers and Harmonic Oscillator, Artech House, Cambridge, Mass., 1998. [11] G. Zhang, . D. Pollard, and C. M. Snowden, “A novel technique for HEMT tripler design,” in IEEE MTT-S Int. Dig., 1996, pp. 663–666. [12] J. E. Johnson, G. R. Branner, and J. P. Mima, “Design and optimization of large conversion gain active microwave frequency triplers,” IEEE Microw. Wireless Compon. Lett., vol. 15, pp. 457–459, Feb. 2005. [13] A. Boudiaf, D. Bachelet, and C. umelhard, “A high-efficiency and low-phase-noise 38 GHz PHEMT MMIC tripler,” IEEE Trans. Microw. Theory Tech., vol. 48, no. 12, pp. 2546–2553, Dec. 2000. [14] J. C. Chiu, C. P. Chang, M. P. Houng, and Y. H. Wang, “A 12–36 GHz PHEMT MMIC balanced frequency tripler,” IEEE Microw. Wireless Compon. Lett., vol. 16, no. 1, pp. 19–21, Jan. 2006. [15] Y. Campos-Roca, et al., “An optimized 25.5–76.5 GHz PHEMT-based coplanar frequency tripler,” IEEE Microw. Guided Wave Lett., vol. 10, no. 6, pp. 242–244, Jun. 2000. [16] H. Fudem, and E. C. Niehenke, “Novel millimeter wave active MMIC triplers,” in IEEE MTT-S Int. Dig., 1998, pp. 387–390. [17] C. Beaulieu, “Millimeter wave broadband frequency tripler in GaAs/InGaP HBT technology,” in IEEE MTT-S Int. Dig., 2000, pp. 1581–1584. [18] M.-C. Chen and C.-Y. Wu, “Design and analysis of CMOS subharmonic injection-locked frequency triplers,” IEEE Trans. Microw. Theory Tech., vol. 56, pp. 1869–1878, Aug. 2008. [19] Z. Chen and P. Heydari, “An 85-95.2 GHz transformer-based injected-locked frequency tripler in 65nm CMOS,” in IEEE MTT-S Int. Dig., 2010, pp. 776–779. [20] W. L. Chan and J. R. Long, “A 56-65 GHz injection-locked frequency tripler with quadrature outputs in 90-nm CMOS,” IEEE J. Solid-State Circuit, vol. 43, pp. 2739–2747, Dec. 2008. [21] S. Hara, T. Sato, R. Murakami, K. Okada, and A. Matsuzawa, “60 GHz injection locked frequency quadrupler with quadrature outputs in 65 nm CMOS process,” in IEEE Asia Pacific Microwave Conference Technical Digest, Dec. 2009, pp. 2268–2271. [22] Y. Campos-Roca, L. Verweyen, M. Neumann, M. Fernandez-Barciela, M. C. Curras-Francos, E.Sanchez-Sanchez, A. Hulsmann, and M. Schlechtweg,“Coplanar pHEMT MMIC frequency multipliers for 76-GHz automotive radar,” IEEE Microw. Guided Wave Lett., vol. 9, pp. 242–244. June 1999. [23] C. Wang and V. Fusco, “High-purity 56–66GHz quadrupler for V-band radio homodyne and heterodyne transceiver applications,” in IEEE International SOC Conference, Sept. 2009, pp. 203–205. [24] M. Schefer, “Integrated quadrupler circuit in coplanar technology for 60 GHz wireless applications,” in IEEE MTT-S Int. Microw. Symp. Dig., June 2002, pp. 355–358. [25] H. P. Forstner, F. Starzer, G. Haider, C. Wagner, and M. Jahn, “Frequency quadruplers for a 77GHz subharmonically pumped automotive radar transceiver in SiGe,” in IEEE European Microwave Integrated Circuits Conference, Sept. 2009, pp. 188–191. [26] D. Sandstrom, et al., “W-band CMOS amplifier achieving +10dBm saturated output power and 7.5dB NF,” in ISSCC Dig. Tech. Papers, pp. 486-487, Feb. 2009. [27] Y. S. Jiang, J. H. Tsai and H. Wang, “A W-band medium power amplifier in 90 nm CMOS,” IEEE Microw. Wireless Compon. Lett., vol. 18, pp. 818-820, Dec. 2008. [28] G. Liu, P. Haldi, T-J. K. Liu, and A. M. Niknejad, “Fully integrated CMOS power amplifier with efficiency enhancement at power back-off,” IEEE J. Solid-State Circuits, vol. 43, no. 3, pp. 600-609, Mar. 2008. [29] B. Wicks, E. Skadidas, and . Evans, “A 60-GHz fully-integrated Doherty power amplifier based on 0.13-μm CMOS process,” in IEEE RFIC Symp. Dig., 2008, pp. 69-72. [30] J. L. Kuo, Z. M. Tsai, K. Y. Lin, and H. Wang, “A V-band power amplifier in 0.13-μm CMOS,” in Asia Pacific Microwave Conference Technical Digest, 2008, pp. 1-4. [31] K. H. An, et al., “A 2.4 GHz fully integrated linear CMOS power amplifier with discrete power control,” IEEE Microw. Wireless Compon. Lett., vol. 19, no. 7, pp. 479-481, July 2009. [32] Y. S. Jeon, J. Cha, and S. Nam, “High-efficiency power amplifier using novel dynamic bias switching,” IEEE Trans. Microw. Theory Tech., vol. 55, no. 4, pp. 690–696, Apr. 2007. [33] K. Takahashi, S. Yamanouchi, T. Hirayama, and K. Kunihiro, “An envelope tracking power amplifier using an adaptive bias envelope amplifier for WCDMA handset,” in IEEE RFIC Symp. Dig., 2008, pp. 405-407. [34] Y. Eo and K. Lee, “High efficiency 5 GHz CMOS power amplifier with adaptive bias control circuit,” in IEEE RFIC Symp. Dig., June 2004, pp. 575-578. [35] Y. S. Noh and C. S. Park, “An intelligent power amplifier MMIC using a new adaptive bias control circuit for W-CDMA applications,” IEEE J. Solid-State Circuits, vol. 39, no. 6, pp. 967-970, June 2004. [36] A. Komijani, A. Natarajan, and A. Hajimiri, “A 24-GHz, 14.5-dBm fully integrated power amplifier in 0.18-μm CMOS,” IEEE J. Solid-State Circuits, vol. 40, pp. 1901-1908, Sept. 2005. [37] Y. N. Jen, J. H. Tsai, C. T. Peng, and T. W. Huang, “20 to 24 GHz 16.8 dBm fully integrated power amplifier using 0.18 μm CMOS process,” IEEE Microw. Wireless Compon. Lett., vol. 19, pp. 42-44, Jan. 2009. [38] J. L. Kuo, Z. M. Tsai, and H. Wang, “A 19.1-dBm fully-integrated 24 GHz power amplifier using 0.18-μm CMOS technology,” in Proc. European Microwave Integrated Circuit Conference, 2008, pp. 558-561. [39] J. W. Lee and S. M. Heo, “A 27 GHz, 14 dBm CMOS power amplifier using 0.18 μm common-source MOSFETs,” IEEE Microw. Wireless Compon. Lett.,” vol. 18, pp. 755-757, Nov. 2008. [40] H. Portela, V. Subramanian, and G. Boeck, “Fully integrated high efficiency K-band PA in 0.18-μm CMOS technology,” in Proc. Microwave and Optical Conference, Nov. 2009, pp. 393-396. [41] C. C. Hung, J. L. Kuo, K. Y. Lin, and H. Wang, “A 22.5-dB Gain, 20.1-dBm output power K-band power amplifier in 0.18-μm CMOS,” in IEEE RFIC Symp. Dig., June 2010, pp. 557-560. [42] P. C. Huang, et al., “A 22-dBm 24-GHz power amplifier using 0.18-μm CMOS technology,” in IEEE MTT-S Int. Dig., June 2010, pp. 248-251. [43] Steve C. Cripps, RF Power Amplifiers for Wireless Communication. Artech House, 1999. [44] Steve C. Cripps, Advanced Techniques in RF Power Amplifier Design. Artech House, 2002. [45] H.-M. Park, D.-H. Baek, K.-I. Jeon, and S. Hong, “A predistortion linearizer using envelope-feedback technique with simplified carrier cancellation scheme for class-A and class-AB power amplifiers,” IEEE Trans. Microw. Theory Tech., vol. 48, no. 6, pp. 898-904, June. 2000. [46] K. Yamauchi, K. Mori, and M. Nakayama, “A novel series diode linearizer for mobile radio power amplifier” in IEEE MTT-S Int. Microw. Symp. Dig., 1996, pp. 831-834. [47] S. Ko and J. Lin, “A novel linearizer and a fully integrated CMOS power amplifier,” in Asia-Pacific Microw. Conf. Tech. Dig., 2006, pp.144-147. [48] J.-H. Tsai, H.-Y. Chang, P.-S. Wu, Y.-L Line, T.-W Huang, and H. Wang, “Design and analysis of a 44-GHz MMIC low-loss built-in linearizer for high-linearity medium power amplifiers,” IEEE Trans. Microw. Theory Tech., vol. 54, no. 6, pp. 2487-2496, Jun. 2006. [49] J. Kim, M. S. Jeon, J. Lee, and Y. Kwon, “A new active predistorter with high gain and programmable gain and phase characteristics using cascode-FET structures,” IEEE Trans. Microw. Theory Tech., vol. 50, no. 11, pp. 2459-2466, Nov. 2002. [50] C. Yen and H. Chuang, “A 0.25-μm 20-dBm 2.4-GHz CMOS power amplifier with an integrated diode linearizer,” IEEE Microw. and Wireless Compon. Lett., vol. 13, pp. 45-47, Feb. 2003. [51] Y.-S. Lee, M.-W. Lee. And Y.-H. Jeong, “High-power amplifier linearization using the Doherty amplifier as a predistortion circuit,” IEEE Microw. and Wireless Compon. Lett., vol. 18, pp. 611-613, Sep. 2008. [52] T.-W. Kim, B. Kim, I. Nam, B. Koi, and K. Lee, “A low-power highly linear cascoded multiple-gate transistor CMOS RF amplifier with 10 dB IP3 improvement,” IEEE Microw. and Wireless Compon. Lett., vol. 9, pp. 420-422, Sept. 2003. [53] K.-H. Liang, C.-C Ho, M.-W. Hsieh and Y.-J. Chan, “Using auxiliary amplifier to cancel third-order intermodulation distortion for a 1.9 GHz CMOS linear amplifier design,” in IEEE RFIC Symp, Dig., 2005, pp. 237-240. [54] S.-W. Kim, C.-H. Park, S.-M. Lim and M.-S. Song, “A design of the predistorter using same structure of the IMD generators,” in Asia-Pacific Microw. Conf. Tech. Dig., 2007, pp.1-4. [55] J. Yi, Y. Yang, M. Park, W. Kang, and B. Kim, “Analog predistortion linearizer for high-power RF amplifiers,” IEEE Trans. Microw. Theory Tech., vol. 48, no. 12, pp. 2709-2713, Dec. 2000. [56] Y. Yang, Y.-Y. Wu, and B. Kim, “New predistortion linearizer using low-frequency even-order intermodulation components,” IEEE Trans. Microw. Theory Tech., vol. 50, no. 2, pp. 446-452, Feb. 2002. [57] H. Choi, Y. Jeong, J. S. Kenney, and C.-D. Kim, “Cross cancellation technique employing an error amplifier,” IEEE Microw. and Wireless Compon. Lett., vol. 18, pp.488-490, July. 2008. [58] H. Choi, Y. Jeong, C.-D. Kim, and J. S. Kenney, “Efficiency enhancement of feedforward amplifiers by employing a negative group-delay circuit,” IEEE Trans. Microw. Theory Tech., vol. 58, no. 5, pp. 1116-1125, May. 2010. [59] D.-G. Kim, N.-P. Hong, and Y.-W. Choi, “A novel linearization method of CMOS drive amplifier using IMD canceller,” IEEE Microw. and Wireless Compon. Lett., vol. 19, pp. 671-673, Oct. 2009. [60] J.-H. Tsai and T.-W. Huang, “A 38–46 GHz MMIC Doherty power amplifier using post-distortion linearization,” IEEE Microw. and Wireless Compon. Lett., vol. 17, pp. 388-390, May 2007. [61] M. H. Somerville, R. Blanchard, J. A. del Alamo, G. Duh, and P. C. Chao, “A new gate current extraction technique for measurement of on-state breakdown voltage in HEMTs,” IEEE Electron Device Lett., vol. 19, no. 11, pp. 405–407, Nov. 1998. [62] M. H. Somerville, R. Blanchard, J. A. del Alamo, K. G. Duh, and P. C. Chao,“On-state breakdown in power HEMTs: measurements and modeling,” IEEE Trans. Electron Device, vol. 46, no. 6, pp. 1087–1093, June. 1999. [63] G. Meneghesso, C. Canali, P. Cova, E. De Bortoli, and E. Zanoli, “Trapped charge modulation: a new cause of instability in AlGaAs/InGaAs pseudomorphic HEMTs,” IEEE Electron Device Lett., vol. 17, no. 7, pp. 232-234, Mar. 1996. [64] M. Borgarino, R. Menozzi, Y. Baeyens, P. Cova, and F. Fantini, “Hot electron degradation of the DC and F characteristic of AlGaAs/InGaAs/GaAs PHEMTs,” IEEE Trans. Electron Device, vol. 45, no. 2, pp. 366-372, Feb. 1998. [65] R. Menozzi, P. Cova, C. Canali, and F. Fantini, “Breakdown walkout in psedomorphic HEMTs,” IEEE Trans. Electron Device, vol. 43, no. 4, pp. 543–546, Apr. 1996. [66] H.-C. Chiu and C.-S. Cheng, “On-state and off-state breakdown voltages in GaAs PHEMTs with various field-plate and gate-recess extension structures,” IEEE Electron Device Lett., vol. 31, no. 3, pp. 186-188, Mar. 2010. [67] C. Gaquiere, B. Bonte, E. Bourcier, and Y. Crosnier, “Correlation between gate current and F power performances of millimeter HEMTs,” in Proc. European Microwave Integrated Circuit Conference, 1996, pp. 33–36. [68] N. Constantin and F. M. Ghannouchi, “Comprehensive experimental investigation of gate current limitation effects on power GaAs FETs F performances,” in IEEE MTT-S Int. Microw. Symp. Dig., 1995, pp. 717–720. [69] N. Constantin and F. M. Ghannouchi, “GaAs FETs gate current behavior and its effects on F performance and realiability in SSPAs,” IEEE Trans. Microw. Theory Tech., vol. 42, no. 12, pp. 2918-2925, Dec. 1999. [70] Y.-C. Chou, R. Lai, T. R. Block, A. Sharma, Q. Kan, D. L. Leung, D. Eng, and A. Oki, “The effect of F-driven gate current on DC/RF performance in GaAs pHEMT MMIC power amplifiers,” IEEE Trans. Microw. Theory Tech., vol. 53, no. 11, pp. 3398-3405, Nov. 2005. [71] A. Suarez, S. Jeon, and D. Rutledge, “Stability analysis and stabilization of power amplifiers,” IEEE Microw. Mag., pp. 51–65, Oct. 2006. [72] D. Teeter, A. Platzker, and R. Bourque, “A compact network for eliminating parametric oscillations in high power MMIC amplifiers,” in IEEE MTT-S Int. Microw. Symp. Dig., 1999, pp. 967–970. [73] S. Jeon, A. Suarez, and D. Rutledge, “Global stability analysis and stabilization of a class-E/F amplifier with a distributed active transformer,” IEEE Trans. Microw. Theory Tech., vol. 53, no. 12, pp. 3712–3722, Dec. 2005. [74] S. Jeon, A. Suarez, and D. Rutledge, “Analysis and elimination of hysteresis and noisy precursors in power amplifiers,” IEEE Trans. Microw. Theory Tech., vol. 54, no. 3, pp. 1096–1106, Mar. 2006. [75] V.-H. Do, V. Subramanian, W. Keusgen, and G. Boeck, “A 60 GHz SiGe-HBT power amplifier with 20% PAE at 15 dBm output power,” IEEE Microw. Wireless Compon. Lett., vol. 18, pp. 209–211, March 2008. [76] A. Hamidian and G. Boeck, “60 GHz wide-band power amplifier,” in Bipolar/BiCMOS Circuits and Technology Meeting, Oct. 2009, pp. 47– 50. [77] WI em conduc o G 0.1 μm pHEMT Model H ndbook. Taipei, Taiwan, R.O.C.: WIN Semiconduct., 2003. [78] G. Damrrine, A. Cappy, F. Heliodore, and E. Playez, “A new method for determining the FET small-signal equivalent circuit,” IEEE Trans. Microw. Theory Tech., vol. 36, no. 7, pp. 1151-1159, July 1988. [79] S. A. Mass, Nonlinear Microwave Circuits, Artech House, Boston, 1988. [80] G. Y. Chen, et al., “A 60–110 GHz low conversion loss tripler in 0.15-μm MHEMT proces,” in Asia Pacific Microwave Conference Technical Digest, 2009, pp. 377–380. [81] K. Y. Lin, et al., “A W-band GCPW MMIC diode tripler,” in Proc. European Microwave Conference, 2002, pp. 1–4. [82] M. Morgan, and S. Weinreb, “A full waveguide band MMIC tripler for 75-110 GHz,” in IEEE MTT-S Int. Dig., 2001, pp. 103–106. [83] Corless, et al., “On the Lambert W function,” Adv. Computational Maths., no. 5, pp. 329–359, 1996. [84] W. . Avellino, “Efficient odd harmonic generation with opposing biased varactor diodes,” Proc. IEEE, vol. 52, no. 7, pp. 868-869, Jul. 1964. [85] D. H. Steinbrecher, M. E. Goff, and A. H. Solomon, “Iterative synthesis of varactor-multipler microwave network and a doubler with 0.17 watt output at 47 GHz,” in IEEE MTT-S Int. Dig., 1967, pp. 157–160. [86] Z. Zhao, J. F. Bousquet, and S. Magierowski, “100 GHz parametric CMOS frequency doubler,” IEEE Microw. Wireless Compon. Lett., vol. 20, pp. 690–692, Oct. 2010. [87] Q. Xiao, et al., “A 270 GHz tuner-less heterostructure barrier varactor frequency tripler,” IEEE Microw. Wireless Compon. Lett., vol. 17, pp. 241–243, Apr. 2007. [88] J. Goel, et al., “High power V-band power amplifier using PHEMT technology,” in IEEE MTT-S Int. Dig., 1996, pp. 45–48. [89] C. A. Lin, J. L. Kuo, K. Y. Lin, and H. Wang, “A 24 GHz low power VCO with transformer feedback,” in IEEE RFIC Symposium Dig., 2009, pp. 75-78. [90] S. L. Liu, K. H. Chen, T. Chang, and A. Chin, “A low-power K band CMOS VCO with four-coil transformer feedback,” IEEE Microw. Wireless Compon. Lett., vol. 20, pp. 459–462, Aug. 2010. [91] C. K. Hsieh, K. Y. Kao, J. R. Tseng, and K. Y. Lin, “A K-band CMOS low power modified Colpitts VCO using transformer feedback,” in IEEE MTT-S Int. Dig., 2009, pp. 11293–1296. [92] H. H. Hsieh and L. H. Lu, “A V-band CMOS VCO with an admittancetransforming cross-coupled pair,” IEEE J. Solid State Circuits, vol. 44, no. 6, pp. 1599-1696, June 2009. [93] T. Copani, H. Kim, and B. Bakkaloglu, “A 0.13-μm CMOS local oscillator for 60-GHz applications based on push-push characteristic of capacitive degeneration,” in IEEE RFIC Symposium Dig., 2010, pp. 153-156. [94] C. Cao and K. K. O, “Millimeter-wave voltage-controlled oscillators in 0.13-μm CMOS technology,” IEEE J. Solid-State Circuits, vol. 41, no. 6, pp. 1297-1304, June 2006. [95] J. Borremans, M. Dehan, K. Scheir, M. Kuijk, and P. Wambacq, “VCO design for 60 GHz applications using differential shielded inductors in 0.13 μm CMOS ” in IEEE RFIC Symposium Dig., 2008, pp. 135-138. [96] V. Manan and S. I. Long, “A low power and low noise p-HEMT Ku band VCO,” IEEE Microw. Wireless Compon. Lett., vol. 16, pp. 131–133, Mar. 2006. [97] T. Kashiwa, et al, “A Ka-band high power monolithic HEMT VCO using a sub-resonator circuit with phase control architecture,” in Proc. European Microwave Conference, 1998, pp. 12–16. [98] T. Ryu, et al, “Monolithic Ka-band VCO with wide tuning range,” in Proc. European Microwave Conference, 2002, pp.1–3. [99] S. Kudszus, et al, “A 94 GHz HEMT-oscillator using high order sub-harmonic synchronization,” in IEEE MTT-S Int. Dig., 2000, pp. 39–42. [100] P. Y. Chen, et al, “An ultra low noise W-band GaAs-based PHEMT MMIC CPW VCO,” in Proc. European Microwave Conference, 2003, pp. 503-506. [101] D. Sira and P. Thomsen, “Output power control in class-E power amplifiers,” IEEE Microw. Wireless Compon. Lett., vol. 20, no.4, pp. 232-234, Apr. 2010. [102] U. . Pfeiffer, “A 20dBm fully-integrated 60GHz SiGe power amplifier with automatic level control,” IEEE J. Solid-State Circuits, vol. 42, no. 7, pp. 1455-1463, July 2000. [103] K. Kurokawa, “Power waves and scattering matrix,” IEEE Trans. Microw. Theory Tech., vol. 13, no. 3, pp. 194-202, Mar. 1965. [104] 紀秉松撰,高速電子遷移率電晶體及互補式金氧半場效電晶體之微波功率放大器之研究,國立台灣大學電信工程學研究所碩士論文,2009年。 [105] J. Dhar, S. K. Garg, R. K. Arora, and S. S. Rana, “Nonlinear design of a C band power amplifier using EEHEMT nonlinear model,” in Proc. Int. Symp. on Signals, Circuit and Systems, 2007, pp. 1–4. [106] WI em conduc o 0.1 μm InG pHEMT ow o e Dev ce Model Handbook. Taipei, Taiwan, R.O.C.: WIN Semiconduct., 2007. [107] E. Cipriani, P. Colantonio, F. Giannini, and R. Giofre, “Theoretical and experimental comparison of class F vs. Class F-1 PAs,” in Proc. European Microwave Integrated Circuit Conference, 2010, pp. 1670–1673. [108] T. Baksht, S. Solodky, M. Leibovitch, G. Bunin, and Y. Shapira, “Impact ionization measurements and modeling for power PHEMT,” IEEE Trans. Electron Device, vol. 50, no. 2, pp. 479-485, Feb. 2003. [109] D. Smely, M. Mayer, and G. Magerl, “A measurement based gate current model for GaAs MESFETs and HEMTs including self-heating and impact ionization,” in Proc. Int. Symp. on High Performance Electron Devices for Microwave and Optoelectronic Applications, 2001, pp. 223-228. [110] K. Fujii, Y. Hara, T. Yakabe, and H. Yabe, “Accurate modeling for drain breakdown current of GaAs MESFETs,” IEEE Trans. Microw. Theory Tech., vol. 47, no. 4, pp. 516–518, Apr. 1999. [111] M. Isler and K. Schunemann, “Impact-ionization effects on the high-frequency behavior of HFETs,” IEEE Trans. Microw. Theory Tech., vol. 52, no. 3, pp. 858–863, Mar. 2004. [112] C. Teyssandier, F. De Groote, R. Sommet, and J.-P. Teyssier, “Characteristic and modeling of impact ionization effects on small and large signal characteristics of AlGaAs/GaInAs/GaAs PHEMTs,” in Proc. European Microwave Integrated Circuit Conference, 2008, pp. 119–122. [113] H. Kawakami, “Bifurcation of periodic responses in forced dynamic nonlinear circuits: Computation of bifurcation values of the system parameters,” IEEE Trans. Circuits and Systems, vol. 31, pp. 248-260, March, 1984. [114] V. Rizzoli and A. Neri, “State of the art and present trends in nonlinear microwave CAD techniques,” IEEE Trans. Microw. Theory Tech., vol. 36, no. 2, pp. 343–365, Feb. 1988. [115] A. Suarez and R. Quere, Stability Analysis of Nonlinear Microwave Circuits, Artech House, 2003. [116] M.-D. Ker, “Whole-chip ESD protection design with efficient VDD-to-VSS ESD clamp circuit for submicron CMOS VLSI,” IEEE Trans. Electron Device, vol. 46, no. 1, pp. 173-183, Jan. 1999. [117] A. Vassighi and M. Sachdev, “Thermal runaway in integrated circuits,” IEEE Trans. Device and Materials Reliability, vol. 6, no. 2, pp. 300–305, June 2006. [118] A. Bessemoulin, R. Quay, S. Ramberger, H. Massler, and M. Schlechtweg, “A 4-W X-band compact coplanar high-power amplifier MMIC with 18-dB gain and 25% PAE,” IEEE J. Solid-State Circuits, vol. 38, no. 9, pp. 1433–1436, Sept. 2003. [119] C.-K. Chu, H.-K. Huang, H.-Z. Liu, C.-H. Lin, C.-H. Chang, C.-L. Wu, C.-S. Chang, and Y.-H. Wang, “An X-band high-power and high-PAE PHEMT MMIC power amplifier for pulse and CW operation,” IEEE Microw. Wireless Compon. Lett., vol. 18, no. 10, pp. 707–709, Oct. 2008. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/10102 | - |
dc.description.abstract | 本論文分成兩大部分,第一部分是是倍頻器的設計,將呈現兩個輸出於60 兆赫茲的倍頻器:第一個倍頻器為製作於0.25 微米矽鍺製程上的四倍頻器,採較傳統的設計方法,目的為介紹倍頻器的特性與其操作條件(偏壓、輸入功率)的關係;第二個倍頻器為製作於0.15 微米砷化鎵製程上的三倍頻器,此倍頻器的基頻與三倍頻輸出阻抗皆經設計使其在三倍頻輸出外也能有基頻功率輸出,此基頻功率可用於進一步提昇此三倍頻器的表現。
本論文第二部分是功率放大器的相關研究,首先將呈現兩個K頻段功率放大器,實現於台積電0.18 微米金氧半場效電晶體製程。這兩個電路的設計目的是實現適應偏壓技術,以提昇放大器輸出較小功率時的功率附加效率。第一個電路採二級共源級架構,透過其輸出端的耦合器,小部分的輸出功率將被耦合至一功率感測器,其轉換之直流電壓隨著輸出功率而改變,藉以控制放大器的閘極偏壓與汲極電流;第二個電路採二級疊接電晶體架構,其兩級閘級各並聯一個功率感測器以偵測射頻路徑上的功率強度,並將偵測到的功率轉換為控制閘級的直流電壓,藉以控制放大器的汲極電流。此二電路為適應偏壓技術首次運用在接近毫米波頻段的功率放大器上。 在改善效率之外,本論文另外提出一種全新的功率放大器線性化技術,其目的為消去功率放大器輸出的三階項雜訊。不似傳統的前饋控制架構,本電路只需要使用一個功率耦合器即可擷取出輔助的三階交叉調變訊號;另外,相較於使用另一非線性元件來產生輔助三階交叉調變訊號的傳統方法,本電路直接耦合電晶體反射的訊號,故不需要使用其他的非線性元件。作者將此概念實現在一個二十五兆赫茲的砷化鎵功率放大器上,當線性器打開時,只需增加10% (50 毫瓦)的直 流功耗,即可將OIP3 從25 dBm 提升至 39 dBm;若我們要求輸出一階項訊號必須比三階項雜訊大40 dB,則線性器開啟時輸出功率可由5 dBm 提升至14 dBm。 最後,本論文探討一個10 兆赫茲功率放大器在調整直流偏壓與操作功率時產生的滯後現象。這種現象從未被揭露與分析,肇因於閘極偏壓電阻與閘極電流耦合可同時產生多組直流解,包含穩定與不穩定的解。當功率放大器的操作變數(偏壓、輸入功率)改變時,原本的穩定解可能會變成不穩定,使系統的穩定解(量測值)產生不連續,產生滯後現象。本文提出嚴謹的分析方法,並提出閘極偏壓電阻設計值的上限。根據此偏壓電阻上限,我們重新設計了一個功率放大器,完全消除在第一個電路中所觀察到的滯後現象。 | zh_TW |
dc.description.abstract | This thesis consists of two main parts, the first part is the design of two V-band frequency multipliers, and the second part is the related topics of microwave power amplifiers, including two K-band adaptive-bias power amplifiers with enhancement in back-off efficiency, a novel method for power amplifier linearization, and the discovery
and analysis of hysteresis phenomena in PA operation. In the first part, the author presents a 52-75 GHz frequency quadrupler in 0.25-μm SiGe HBT and a 60-GHz frequency tripler in 0.15-μm pHEMT. The quadrupler features a wideband performance and introduces the corresponding changes in performance when the operated condition of the quadrupler changes. As for the tripler, the author revised the conventional structure of active frequency tripler by proposing two novel ideas. The first is to explore the harmonic load tuning with resistance load, and the second is to exploit the produced fundamental power at the drain of the FET in order to improve the performances of the tripler. The second part starts by presenting two K-band PAs, both fabricated in TSMC 0.18-μm CMOS, with adaptive bias technique that saves dc power when the PAs are operated with lower power levels. Although both the circuits involve the implement of a detector, the adaptive bias mechanisms in the two designs are realized by different methods, and the topologies of the two PAs are also different: the first one is a two-stage common-source amplifier and the second one is a two-stage cascode amplifier. Besides the introduction of the two PAs with their individual design methods and measured data, a brief comparison between the two works is also provided. Successively, the author proposes a novel method to generate an auxiliary third-order intermodulaion (IM3) signal, which can be used in power amplifier linearization by canceling the output IM3 power. This auxiliary signal is not obtained by conventional methods as driving a highly nonlinear device or subtracting the fundamental power from the output signal, but is simply achieved by exploiting the input reflected power of the main device. It is demonstrated that substantial IM3 power can be reflected to the source with little reflected fundamental power under some matching conditions of the device, and this feature can be utilized in the design of MMICs targeting excellent output IM3 cancellation with a simple structure. A 25-GHz PHEMT power amplifier is designed and fabricated to exemplify the proposed technique with outstanding linearity. The OIP3 of the proposed PA increases 14 dB from 25 to 39 dBm, and the output power enhances significantly from 5 to 14 dBm with -40-dB IM3 distortion (IMD3). The second part ends with the analysis of an X-band pHEMT PA with dc and RF hysteresis. The unusual phenomena can be attributed to the gate current resulted from the impact ionization coupling with the gate bias resistor, which is usually observed in the design of RF circuits to provide the gate bias. After the gate current is considered, two methods are proposed to analyze the hysteresis with the same conclusion. The cause of the encountered hysteresis is for the first time identified, and criteria for the selection of the gate bias resistor in order to avoid the hysteresis are proposed. Finally, a power amplifier complying with these criteria is presented with good performances and without hysteresis. | en |
dc.description.provenance | Made available in DSpace on 2021-05-20T21:02:04Z (GMT). No. of bitstreams: 1 ntu-100-R98942016-1.pdf: 8107266 bytes, checksum: 99965270f2f6ffdd4b6a5b228d17bbd5 (MD5) Previous issue date: 2011 | en |
dc.description.tableofcontents | 口試委員會審定書..............i
誌謝........................iii 中文摘要.....................iv ABSTRACT.....................vi CONTENTS....................viii LIST OF FIGURES..............xi LIST OF TABLES................xix Chapter 1 Introduction ..............................................1 1.1 Background and Motivation .............................1 1.2 Literature Survey .................................... 4 1.2.1 MMW Frequency Multipliers .......................... 4 1.2.2 K-band Power Amplifiers ............................ 6 1.2.3 MMIC Power Amplifier Linearization ................. 8 1.2.4 Gate Current and Reported Power Amplifier Hysteresis ...............................................10 1.3 Contributions ....................................... 11 1.4 Thesis Organization ..................................13 Chapter 2 V-band Frequency Multipliers ...................14 2.1 Design of A 52-75 GHz Frequency Quadrupler in 0.25-μm SiGe HBT .................................................14 2.1.1 Introduction .......................................14 2.1.2 Circuit Design .................................... 15 2.1.3 Experimental Results .............................. 17 2.1.4 Discussions ........................................25 2.2 Design of a 60-GHz Frequency Tripler with Gain and Dynamic Range Enhancement................................ 29 2.2.1 Introduction ............................................ 29 2.2.2 Harmonic generation of FET and diode tripler .......29 A. Harmonic Loading Effect of FET Tripler ................29 B. Harmonic Generation of Diode Tripler ..................41 C. Harmonic Generation of Diode Tripler ..................43 D. FET Tripler with Auxiliary Diode Tripler ............. 46 2.2.3 Circuit Design .....................................48 2.2.4 Experimental Results ...............................55 2.3 Performance Summary of the Two V-band Multipliers ... 59 Chapter 3 K-Band CMOS Power Amplifiers with Adaptive Bias for Enhancement in Back-off Efficiency .. ................63 3.1 Introduction......................................... 63 3.2 Circuit Design .......................................65 3.2.1 First Design: Power Amplifier with External Power Detector .................................................65 3.2.2 Second Design: Power Amplifier with Inserted Power Detector .................................................69 3.3 Experimental Results .................................77 3.3.1 First Design: Power Amplifier with External Power Detector ................................................ 77 3.3.2 Second Design: Power Amplifier with Inserted Power Detector .................................................84 3.4 Speed of the Adaptive-Bias Circuits ..................92 3.5 Summary ..............................................95 Chapter 4 Novel MMIC Power Amplifier Linearization Utilizing Input Reflected Nonlinearity ...................97 4.1 Introduction..........................................97 4.2 Concept of Input Reflected Nonlinearity ..............98 4.3 Circuit Design ......................................110 4.4 Measured Results ....................................115 4.5 Discussions .........................................123 4.6 Performance Summary .................................130 Chapter 5 DC/RF Hysteresis in Microwave pHEMT Amplifier Induced by Gate Current-Diagnosis and Elimination ......132 5.1 Introduction.........................................132 5.2 Observation of the Hysteresis .......................133 5.2.1 PA Design .........................................133 5.2.2 DC Hysteresis .....................................137 5.2.3 RF Hysteresis .....................................137 5.3 Diagnosis of the Hysteresis .........................139 5.3.1 Gate Current of pHEMT Device ......................139 5.3.2 Plot of Gate Current and Straight of Bias Resistor ................................................142 5.3.3 Auxiliary Generator and Full-Solution Detection ...............................................150 5.3.4 Maximum Gate Resistance in the Design of pHEMT PA ......................................................156 5.4 Measured Results ....................................160 Chapter 6 Conclusion ....................................163 REFERENCES ..............................................166 Publication List ........................................180 | |
dc.language.iso | en | |
dc.title | V頻段主動倍頻器與微波功率放大器效率與線性度改良及滯後現象之研究 | zh_TW |
dc.title | Research of V-band Active Frequency Multipliers and Efficiency/Linearity Enhancement and Hysteresis Phenomena of Microwave Power Amplifiers | en |
dc.type | Thesis | |
dc.date.schoolyear | 99-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 林坤佑(Kun-You Lin),張盛富(Sheng-Fuh Chang),蔡政翰(Jeng-Han Tsai),陳咨吰 | |
dc.subject.keyword | 倍頻器,功率放大器,金氧半場效電晶體,微波單晶積體電路,線性化,交叉調變,滯後,閘極電流, | zh_TW |
dc.subject.keyword | Frequency multiplier,power amplifier,MOS,MMIC,linearization,intermodulation distortion (IMD),hysteresis,gate current,impact ionization, | en |
dc.relation.page | 180 | |
dc.rights.note | 同意授權(全球公開) | |
dc.date.accepted | 2011-07-19 | |
dc.contributor.author-college | 電機資訊學院 | zh_TW |
dc.contributor.author-dept | 電信工程學研究所 | zh_TW |
顯示於系所單位: | 電信工程學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-100-1.pdf | 7.92 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。