請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/100996完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 潘敏雄 | zh_TW |
| dc.contributor.advisor | Min-Hsiung Pan | en |
| dc.contributor.author | 梁兆怡 | zh_TW |
| dc.contributor.author | Siu-Yi Leung | en |
| dc.date.accessioned | 2025-11-26T16:24:05Z | - |
| dc.date.available | 2025-11-27 | - |
| dc.date.copyright | 2025-11-26 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2025-09-30 | - |
| dc.identifier.citation | Abdellatif, M. (2012). Differential expression of microRNAs in different disease states. Circ Res, 110(4), 638-650. doi:10.1161/circresaha.111.247437
Abe, T., Sato, T., & Murotomi, K. (2023). Sudachitin and Nobiletin Stimulate Lipolysis via Activation of the cAMP/PKA/HSL Pathway in 3T3-L1 Adipocytes. Foods, 12(10). doi:10.3390/foods12101947 Afshari, H., Noori, S., & Zarghi, A. (2023). A novel combination of metformin and resveratrol alleviates hepatic steatosis by activating autophagy through the cAMP/AMPK/SIRT1 signaling pathway. Naunyn Schmiedebergs Arch Pharmacol, 396(11), 3135-3148. doi:10.1007/s00210-023-02520-7 Ahn, J., Lee, H., Kim, S., Park, J., & Ha, T. (2008). The anti-obesity effect of quercetin is mediated by the AMPK and MAPK signaling pathways. Biochem Biophys Res Commun, 373(4), 545-549. doi:10.1016/j.bbrc.2008.06.077 Akbar, N., Azzimato, V., Choudhury, R. P., & Aouadi, M. (2019). Extracellular vesicles in metabolic disease. Diabetologia, 62(12), 2179-2187. doi:10.1007/s00125-019-05014-5 Ambros, V. (2024). MicroRNA-mediated gene regulation and the resilience of multicellular animals. Postepy Biochem, 70(1), 62-70. doi:10.18388/pb.2021_515 Bartel, D. P. (2004). MicroRNAs: genomics, biogenesis, mechanism, and function. Cell, 116(2), 281-297. doi:10.1016/s0092-8674(04)00045-5 Batchuluun, B., Pinkosky, S. L., & Steinberg, G. R. (2022). Lipogenesis inhibitors: therapeutic opportunities and challenges. Nat Rev Drug Discov, 21(4), 283-305. doi:10.1038/s41573-021-00367-2 Bray, G. A., Kim, K. K., & Wilding, J. P. H. (2017). Obesity: a chronic relapsing progressive disease process. A position statement of the World Obesity Federation. Obes Rev, 18(7), 715-723. doi:10.1111/obr.12551 Brestoff, J. R., & Artis, D. (2015). Immune regulation of metabolic homeostasis in health and disease. Cell, 161(1), 146-160. doi:10.1016/j.cell.2015.02.022 Castaño, C., Kalko, S., Novials, A., & Párrizas, M. (2018). Obesity-associated exosomal miRNAs modulate glucose and lipid metabolism in mice. Proc Natl Acad Sci U S A, 115(48), 12158-12163. doi:10.1073/pnas.1808855115 Chen, X., Li, B., Ji, S., Wu, D., Cui, B., Ren, X., & Liang, H. (2023). Small molecules interfacial assembly regulate the crystallization transition process for nobiletin stabilization. Food Chem, 426, 136519. doi:10.1016/j.foodchem.2023.136519 Cho, Y. E., Seo, W., Kim, D. K., Moon, P. G., Kim, S. H., Lee, B. H., & Baek, M. C. (2018). Exogenous exosomes from mice with acetaminophen-induced liver injury promote toxicity in the recipient hepatocytes and mice. Sci Rep, 8(1), 16070. doi:10.1038/s41598-018-34309-7 Choi, Y., Kim, Y., Ham, H., Park, Y., Jeong, H. S., & Lee, J. (2011). Nobiletin suppresses adipogenesis by regulating the expression of adipogenic transcription factors and the activation of AMP-activated protein kinase (AMPK). J Agric Food Chem, 59(24), 12843-12849. doi:10.1021/jf2033208 Chou, Y. C., Ho, C. T., & Pan, M. H. (2018). Immature Citrus reticulata Extract Promotes Browning of Beige Adipocytes in High-Fat Diet-Induced C57BL/6 Mice. J Agric Food Chem, 66(37), 9697-9703. doi:10.1021/acs.jafc.8b02719 Connolly, K. D., Guschina, I. A., Yeung, V., Clayton, A., Draman, M. S., Von Ruhland, C., & Rees, D. A. (2015). Characterisation of adipocyte-derived extracellular vesicles released pre- and post-adipogenesis. J Extracell Vesicles, 4, 29159. doi:10.3402/jev.v4.29159 Couch, Y., Akbar, N., Roodselaar, J., Evans, M. C., Gardiner, C., Sargent, I., & Anthony, D. C. (2017). Circulating endothelial cell-derived extracellular vesicles mediate the acute phase response and sickness behaviour associated with CNS inflammation. Sci Rep, 7(1), 9574. doi:10.1038/s41598-017-09710-3 Crescitelli, R., Lässer, C., Szabó, T. G., Kittel, A., Eldh, M., Dianzani, I., & Lötvall, J. (2013). Distinct RNA profiles in subpopulations of extracellular vesicles: apoptotic bodies, microvesicles and exosomes. J Extracell Vesicles, 2. doi:10.3402/jev.v2i0.20677 Crewe, C., Joffin, N., Rutkowski, J. M., Kim, M., Zhang, F., Towler, D. A., & Scherer, P. E. (2018). An Endothelial-to-Adipocyte Extracellular Vesicle Axis Governed by Metabolic State. Cell, 175(3), 695-708.e613. doi:10.1016/j.cell.2018.09.005 Cunha, E. R. K., Ying, W., & Olefsky, J. M. (2024). Exosome-Mediated Impact on Systemic Metabolism. Annu Rev Physiol, 86, 225-253. doi:10.1146/annurev-physiol-042222-024535 Danecek, P., Bonfield, J. K., Liddle, J., Marshall, J., Ohan, V., Pollard, M. O., & Li, H. (2021). Twelve years of SAMtools and BCFtools. Gigascience, 10(2). doi:10.1093/gigascience/giab008 Dasgupta, D., Nakao, Y., Mauer, A. S., Thompson, J. M., Sehrawat, T. S., Liao, C. Y., & Malhi, H. (2020). IRE1A Stimulates Hepatocyte-Derived Extracellular Vesicles That Promote Inflammation in Mice With Steatohepatitis. Gastroenterology, 159(4), 1487-1503.e1417. doi:10.1053/j.gastro.2020.06.031 Deng, Z. B., Liu, Y., Liu, C., Xiang, X., Wang, J., Cheng, Z., & Zhang, H. G. (2009). Immature myeloid cells induced by a high-fat diet contribute to liver inflammation. Hepatology, 50(5), 1412-1420. doi:10.1002/hep.23148 Deng, Z. B., Poliakov, A., Hardy, R. W., Clements, R., Liu, C., Liu, Y., & Zhang, H. G. (2009). Adipose tissue exosome-like vesicles mediate activation of macrophage-induced insulin resistance. Diabetes, 58(11), 2498-2505. doi:10.2337/db09-0216 Deng, Z. B., Zhuang, X., Ju, S., Xiang, X., Mu, J., Wang, Q., & Zhang, H. G. (2013). Intestinal mucus-derived nanoparticle-mediated activation of Wnt/β-catenin signaling plays a role in induction of liver natural killer T cell anergy in mice. Hepatology, 57(3), 1250-1261. doi:10.1002/hep.26086 Dowker-Key, P. D., Jadi, P. K., Gill, N. B., Hubbard, K. N., Elshaarrawi, A., Alfatlawy, N. D., & Bettaieb, A. (2024). A Closer Look into White Adipose Tissue Biology and the Molecular Regulation of Stem Cell Commitment and Differentiation. Genes (Basel), 15(8). doi:10.3390/genes15081017 Eguchi, A., Lazic, M., Armando, A. M., Phillips, S. A., Katebian, R., Maraka, S., & Feldstein, A. E. (2016). Circulating adipocyte-derived extracellular vesicles are novel markers of metabolic stress. J Mol Med (Berl), 94(11), 1241-1253. doi:10.1007/s00109-016-1446-8 Engin, A. B., & Engin, A. (2024). MicroRNAs as Epigenetic Regulators of Obesity. Adv Exp Med Biol, 1460, 595-627. doi:10.1007/978-3-031-63657-8_20 Faccioli, N., Poitou, C., Clément, K., & Dubern, B. (2023). Current Treatments for Patients with Genetic Obesity. J Clin Res Pediatr Endocrinol, 15(2), 108-119. doi:10.4274/jcrpe.galenos.2023.2023-3-2 Fitzner, D., Schnaars, M., van Rossum, D., Krishnamoorthy, G., Dibaj, P., Bakhti, M., & Simons, M. (2011). Selective transfer of exosomes from oligodendrocytes to microglia by macropinocytosis. J Cell Sci, 124(Pt 3), 447-458. doi:10.1242/jcs.074088 Géminard, C., Nault, F., Johnstone, R. M., & Vidal, M. (2001). Characteristics of the interaction between Hsc70 and the transferrin receptor in exosomes released during reticulocyte maturation. J Biol Chem, 276(13), 9910-9916. doi:10.1074/jbc.M009641200 Gangadaran, P., Madhyastha, H., Madhyastha, R., Rajendran, R. L., Nakajima, Y., Watanabe, N., & Ahn, B. C. (2022). The emerging role of exosomes in innate immunity, diagnosis and therapy. Front Immunol, 13, 1085057. doi:10.3389/fimmu.2022.1085057 Gao, J., Li, X., Wang, Y., Cao, Y., Yao, D., Sun, L., & Zhan, X. (2020). Adipocyte-derived extracellular vesicles modulate appetite and weight through mTOR signalling in the hypothalamus. Acta Physiol (Oxf), 228(2), e13339. doi:10.1111/apha.13339 Gao, L., Wang, L., Dai, T., Jin, K., Zhang, Z., Wang, S., & Zhang, L. (2018). Tumor-derived exosomes antagonize innate antiviral immunity. Nat Immunol, 19(3), 233-245. doi:10.1038/s41590-017-0043-5 Gao, Y., Chen, Q., Wu, Z., & Yuan, L. (2025). Regulation of pancreatic β cells by exosomes from different sources. Diabetes Res Clin Pract, 224, 112222. doi:10.1016/j.diabres.2025.112222 Gardiner, C., Ferreira, Y. J., Dragovic, R. A., Redman, C. W., & Sargent, I. L. (2013). Extracellular vesicle sizing and enumeration by nanoparticle tracking analysis. J Extracell Vesicles, 2. doi:10.3402/jev.v2i0.19671 Gesta, S., Tseng, Y. H., & Kahn, C. R. (2007). Developmental origin of fat: tracking obesity to its source. Cell, 131(2), 242-256. doi:10.1016/j.cell.2007.10.004 Glatz, J. F., & Luiken, J. J. (2017). From fat to FAT (CD36/SR-B2): Understanding the regulation of cellular fatty acid uptake. Biochimie, 136, 21-26. doi:10.1016/j.biochi.2016.12.007 Grabner, G. F., Xie, H., Schweiger, M., & Zechner, R. (2021). Lipolysis: cellular mechanisms for lipid mobilization from fat stores. Nat Metab, 3(11), 1445-1465. doi:10.1038/s42255-021-00493-6 Ha, J., Guan, K. L., & Kim, J. (2015). AMPK and autophagy in glucose/glycogen metabolism. Mol Aspects Med, 46, 46-62. doi:10.1016/j.mam.2015.08.002 Hagberg, C. E., & Spalding, K. L. (2024). White adipocyte dysfunction and obesity-associated pathologies in humans. Nat Rev Mol Cell Biol, 25(4), 270-289. doi:10.1038/s41580-023-00680-1 He, R., & Chen, Y. (2024). The Role of Adipose Tissue-derived Exosomes in Chronic Metabolic Disorders. Curr Med Sci, 44(3), 463-474. doi:10.1007/s11596-024-2902-2 Huang, C. H., Hsiao, S. Y., Lin, Y. H., & Tsai, G. J. (2022). Effects of Fermented Citrus Peel on Ameliorating Obesity in Rats Fed with High-Fat Diet. Molecules (Basel, Switzerland), 27(24). doi:10.3390/molecules27248966 Hubal, M. J., Nadler, E. P., Ferrante, S. C., Barberio, M. D., Suh, J. H., Wang, J., & Freishtat, R. J. (2017). Circulating adipocyte-derived exosomal MicroRNAs associated with decreased insulin resistance after gastric bypass. Obesity (Silver Spring), 25(1), 102-110. doi:10.1002/oby.21709 Ibrahim, M. M. (2010). Subcutaneous and visceral adipose tissue: structural and functional differences. Obes Rev, 11(1), 11-18. doi:10.1111/j.1467-789X.2009.00623.x Javeed, N. (2019). Shedding Perspective on Extracellular Vesicle Biology in Diabetes and Associated Metabolic Syndromes. Endocrinology, 160(2), 399-408. doi:10.1210/en.2018-01010 Keaver, L., Webber, L., Dee, A., Shiely, F., Marsh, T., Balanda, K., & Perry, I. J. (2013). Application of the UK foresight obesity model in Ireland: the health and economic consequences of projected obesity trends in Ireland. PLOS ONE, 8(11), e79827. doi:10.1371/journal.pone.0079827 Kim, Y. J., Yoon, D. S., & Jung, U. J. (2021). Efficacy of nobiletin in improving hypercholesterolemia and nonalcoholic fatty liver disease in high-cholesterol diet-fed mice. Nutr Res Pract, 15(4), 431-443. doi:10.4162/nrp.2021.15.4.431 Kita, S., Maeda, N., & Shimomura, I. (2019). Interorgan communication by exosomes, adipose tissue, and adiponectin in metabolic syndrome. J Clin Invest, 129(10), 4041-4049. doi:10.1172/jci129193 Kobayashi, Y., Eguchi, A., Tempaku, M., Honda, T., Togashi, K., Iwasa, M., & Taguchi, O. (2018). Circulating extracellular vesicles are associated with lipid and insulin metabolism. Am J Physiol Endocrinol Metab, 315(4), E574-e582. doi:10.1152/ajpendo.00160.2018 Kozomara, A., Birgaoanu, M., & Griffiths-Jones, S. (2019). miRBase: from microRNA sequences to function. Nucleic Acids Res, 47(D1), D155-d162. doi:10.1093/nar/gky1141 Krylova, S. V., & Feng, D. (2023). The Machinery of Exosomes: Biogenesis, Release, and Uptake. Int J Mol Sci, 24(2). doi:10.3390/ijms24021337 Laulagnier, K., Motta, C., Hamdi, S., Roy, S., Fauvelle, F., Pageaux, J. F., & Record, M. (2004). Mast cell- and dendritic cell-derived exosomes display a specific lipid composition and an unusual membrane organization. Biochem J, 380(Pt 1), 161-171. doi:10.1042/bj20031594 LeBleu, V. S., & Kalluri, R. (2019). Exosomes Exercise Inhibition of Anti-Tumor Immunity during Chemotherapy. Immunity, 50(3), 547-549. doi:10.1016/j.immuni.2019.02.019 Lee, Y. S., Cha, B. Y., Choi, S. S., Choi, B. K., Yonezawa, T., Teruya, T., & Woo, J. T. (2013). Nobiletin improves obesity and insulin resistance in high-fat diet-induced obese mice. J Nutr Biochem, 24(1), 156-162. doi:10.1016/j.jnutbio.2012.03.014 Lin, X., & Li, H. (2021). Obesity: Epidemiology, Pathophysiology, and Therapeutics. Front Endocrinol (Lausanne), 12, 706978. doi:10.3389/fendo.2021.706978 Lin, Y. K., Pan, Y. F., Jiang, T. Y., Chen, Y. B., Shang, T. Y., Xu, M. Y., & Dong, L. W. (2025). Blocking the SIRPα-CD47 axis promotes macrophage phagocytosis of exosomes derived from visceral adipose tissue and improves inflammation and metabolism in mice. J Biomed Sci, 32(1), 31. doi:10.1186/s12929-025-01124-y Liu, S., Yu, J., Wang, L., Zhang, X., Wang, F., & Zhu, Y. (2024). Weight-adjusted waist index as a practical predictor for diabetes, cardiovascular disease, and non-accidental mortality risk. Nutr Metab Cardiovasc Dis, 34(11), 2498-2510. doi:10.1016/j.numecd.2024.06.012 Lumeng, C. N., Deyoung, S. M., & Saltiel, A. R. (2007). Macrophages block insulin action in adipocytes by altering expression of signaling and glucose transport proteins. Am J Physiol Endocrinol Metab, 292(1), E166-174. doi:10.1152/ajpendo.00284.2006 Müller, G., Jung, C., Straub, J., Wied, S., & Kramer, W. (2009). Induced release of membrane vesicles from rat adipocytes containing glycosylphosphatidylinositol-anchored microdomain and lipid droplet signalling proteins. Cell Signal, 21(2), 324-338. doi:10.1016/j.cellsig.2008.10.021 Machado, S. A., Pasquarelli-do-Nascimento, G., da Silva, D. S., Farias, G. R., de Oliveira Santos, I., Baptista, L. B., & Magalhães, K. G. (2022). Browning of the white adipose tissue regulation: new insights into nutritional and metabolic relevance in health and diseases. Nutr Metab (Lond), 19(1), 61. doi:10.1186/s12986-022-00694-0 Malik, S., Bhatia, J., Suchal, K., Gamad, N., Dinda, A. K., Gupta, Y. K., & Arya, D. S. (2015). Nobiletin ameliorates cisplatin-induced acute kidney injury due to its anti-oxidant, anti-inflammatory and anti-apoptotic effects. Exp Toxicol Pathol, 67(7-8), 427-433. doi:10.1016/j.etp.2015.04.008 Maltais-Payette, I., Bourgault, J., Gauthier, M. F., Biertho, L., Marceau, S., Julien, F., & Tchernof, A. (2025). Associations between circulating amino acids and metabolic dysfunction-associated steatotic liver disease in individuals living with severe obesity. Physiol Rep, 13(3), e70171. doi:10.14814/phy2.70171 Maréchal, L., Laviolette, M., Rodrigue-Way, A., Sow, B., Brochu, M., Caron, V., & Tremblay, A. (2018). The CD36-PPARγ Pathway in Metabolic Disorders. Int J Mol Sci, 19(5). doi:10.3390/ijms19051529 McKenzie, B. L., Pinho-Gomes, A. C., & Woodward, M. (2024). Addressing the global obesity burden: a gender-responsive approach to changing food environments is needed. Proc Nutr Soc, 83(4), 271-279. doi:10.1017/s0029665124000120 Meloni, A. R., DeYoung, M. B., Lowe, C., & Parkes, D. G. (2013). GLP-1 receptor activated insulin secretion from pancreatic β-cells: mechanism and glucose dependence. Diabetes Obes Metab, 15(1), 15-27. doi:10.1111/j.1463-1326.2012.01663.x Michael, B., Yano, B., Sellers, R. S., Perry, R., Morton, D., Roome, N., & Pitsch, S. (2007). Evaluation of organ weights for rodent and non-rodent toxicity studies: a review of regulatory guidelines and a survey of current practices. Toxicol Pathol, 35(5), 742-750. doi:10.1080/01926230701595292 Miyata, Y., Tanaka, H., Shimada, A., Sato, T., Ito, A., Yamanouchi, T., & Kosano, H. (2011). Regulation of adipocytokine secretion and adipocyte hypertrophy by polymethoxyflavonoids, nobiletin and tangeretin. Life Sci, 88(13-14), 613-618. doi:10.1016/j.lfs.2011.01.024 Mohammadi, S., Moghadam, M. D., Nasiriasl, M., Akhzari, M., & Barazesh, M. (2024). Insights into the Therapeutic and Pharmacological Properties of Resveratrol as a Nutraceutical Antioxidant Polyphenol in Health Promotion and Disease Prevention. Curr Rev Clin Exp Pharmacol, 19(4), 327-354. doi:10.2174/0127724328268507231218051058 Morrison, C. D., Huypens, P., Stewart, L. K., & Gettys, T. W. (2009). Implications of crosstalk between leptin and insulin signaling during the development of diet-induced obesity. Biochim Biophys Acta, 1792(5), 409-416. doi:10.1016/j.bbadis.2008.09.005 Mutt, S. J., & Herzig, K. H. (2020). Adipocyte-derived extracellular vesicles as new communication signals in the regulation of food intake. Acta Physiol (Oxf), 228(2), e13411. doi:10.1111/apha.13411 Nohara, K., Nemkov, T., D'Alessandro, A., Yoo, S. H., & Chen, Z. (2019). Coordinate Regulation of Cholesterol and Bile Acid Metabolism by the Clock Modifier Nobiletin in Metabolically Challenged Old Mice. Int J Mol Sci, 20(17). doi:10.3390/ijms20174281 Obradovic, M., Sudar-Milovanovic, E., Soskic, S., Essack, M., Arya, S., Stewart, A. J., & Isenovic, E. R. (2021). Leptin and Obesity: Role and Clinical Implication. Front Endocrinol (Lausanne), 12, 585887. doi:10.3389/fendo.2021.585887 Ohno, S., Ishikawa, A., & Kuroda, M. (2013). Roles of exosomes and microvesicles in disease pathogenesis. Adv Drug Deliv Rev, 65(3), 398-401. doi:10.1016/j.addr.2012.07.019 Paliyath, G. (2001). Biologically-Active Phytochemicals in Food. Trends in Food Science & Technology, 12(9), 347-348. doi:https://doi.org/10.1016/S0924-2244(02)00008-0 Pardo, F., Villalobos-Labra, R., Sobrevia, B., Toledo, F., & Sobrevia, L. (2018). Extracellular vesicles in obesity and diabetes mellitus. Mol Aspects Med, 60, 81-91. doi:10.1016/j.mam.2017.11.010 Paumelle, R., Haas, J. T., Hennuyer, N., Baugé, E., Deleye, Y., Mesotten, D., & Staels, B. (2019). Hepatic PPARα is critical in the metabolic adaptation to sepsis. J Hepatol, 70(5), 963-973. doi:10.1016/j.jhep.2018.12.037 Peng, Q., Zhang, Y., Zhu, M., Bao, F., Deng, J., & Li, W. (2024). Polymethoxyflavones from citrus peel: advances in extraction methods, biological properties, and potential applications. Crit Rev Food Sci Nutr, 64(16), 5618-5630. doi:10.1080/10408398.2022.2156476 Petersen, M. C., Vatner, D. F., & Shulman, G. I. (2017). Regulation of hepatic glucose metabolism in health and disease. Nat Rev Endocrinol, 13(10), 572-587. doi:10.1038/nrendo.2017.80 Pomatto, M. A. C., Gai, C., Deregibus, M. C., Tetta, C., & Camussi, G. (2018). Noncoding RNAs Carried by Extracellular Vesicles in Endocrine Diseases. Int J Endocrinol, 2018, 4302096. doi:10.1155/2018/4302096 Potue, P., Wunpathe, C., Maneesai, P., Kukongviriyapan, U., Prachaney, P., & Pakdeechote, P. (2019). Nobiletin alleviates vascular alterations through modulation of Nrf-2/HO-1 and MMP pathways in l-NAME induced hypertensive rats. Food Funct, 10(4), 1880-1892. doi:10.1039/c8fo02408a Poulios, E., Koukounari, S., Psara, E., Vasios, G. K., Sakarikou, C., & Giaginis, C. (2024). Anti-obesity Properties of Phytochemicals: Highlighting their Molecular Mechanisms against Obesity. Curr Med Chem, 31(1), 25-61. doi:10.2174/0929867330666230517124033 Qi, L., Matsuo, K., Pereira, A., Lee, Y. T., Zhong, F., He, Y., & Stahl, A. (2023). Human iPSC-Derived Proinflammatory Macrophages cause Insulin Resistance in an Isogenic White Adipose Tissue Microphysiological System. Small, 19(34), e2203725. doi:10.1002/smll.202203725 Qiu, H., Song, E., Hu, Y., Li, T., Ku, K. C., Wang, C., & Xu, A. (2022). Hepatocyte-Secreted Autotaxin Exacerbates Nonalcoholic Fatty Liver Disease Through Autocrine Inhibition of the PPARα/FGF21 Axis. Cell Mol Gastroenterol Hepatol, 14(5), 1003-1023. doi:10.1016/j.jcmgh.2022.07.012 Röszer, T. (2024). MicroRNA Profile of Mouse Adipocyte-Derived Extracellular Vesicles. Cells, 13(15). doi:10.3390/cells13151298 Rajkumar, K. V., Lakshmanan, G., & Sekar, D. (2020). Identification of miR-802-5p and its involvement in type 2 diabetes mellitus. World J Diabetes, 11(12), 567-571. doi:10.4239/wjd.v11.i12.567 Rakhshandehroo, M., Knoch, B., Müller, M., & Kersten, S. (2010). Peroxisome proliferator-activated receptor alpha target genes. PPAR Res, 2010. doi:10.1155/2010/612089 Rauckhorst, A. J., Sheldon, R. D., Pape, D. J., Ahmed, A., Falls-Hubert, K. C., Merrill, R. A., & Taylor, E. B. (2025). A hierarchical hepatic de novo lipogenesis substrate supply network utilizing pyruvate, acetate, and ketones. Cell Metab, 37(1), 255-273.e256. doi:10.1016/j.cmet.2024.10.013 Robinson, M. D., McCarthy, D. J., & Smyth, G. K. (2010). edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics, 26(1), 139-140. doi:10.1093/bioinformatics/btp616 Rubino, F., Cummings, D. E., Eckel, R. H., Cohen, R. V., Wilding, J. P. H., Brown, W. A., & Mingrone, G. (2025). Definition and diagnostic criteria of clinical obesity. Lancet Diabetes Endocrinol, 13(3), 221-262. doi:10.1016/s2213-8587(24)00316-4 Rutkowski, J. M., Stern, J. H., & Scherer, P. E. (2015). The cell biology of fat expansion. J Cell Biol, 208(5), 501-512. doi:10.1083/jcb.201409063 Saito, T., Abe, D., & Sekiya, K. (2007). Nobiletin enhances differentiation and lipolysis of 3T3-L1 adipocytes. Biochem Biophys Res Commun, 357(2), 371-376. doi:10.1016/j.bbrc.2007.03.169 Saponaro, C., Gaggini, M., Carli, F., & Gastaldelli, A. (2015). The Subtle Balance between Lipolysis and Lipogenesis: A Critical Point in Metabolic Homeostasis. Nutrients, 7(11), 9453-9474. doi:10.3390/nu7115475 Sciorati, C., Clementi, E., Manfredi, A. A., & Rovere-Querini, P. (2015). Fat deposition and accumulation in the damaged and inflamed skeletal muscle: cellular and molecular players. Cell Mol Life Sci, 72(11), 2135-2156. doi:10.1007/s00018-015-1857-7 Sellers, R. S., Morton, D., Michael, B., Roome, N., Johnson, J. K., Yano, B. L., & Schafer, K. (2007). Society of Toxicologic Pathology position paper: organ weight recommendations for toxicology studies. Toxicol Pathol, 35(5), 751-755. doi:10.1080/01926230701595300 Siddiqui, S. A., Azmy Harahap, I., Suthar, P., Wu, Y. S., Ghosh, N., & Castro-Muñoz, R. (2023). A Comprehensive Review of Phytonutrients as a Dietary Therapy for Obesity. Foods, 12(19). doi:10.3390/foods12193610 Su, D., Liu, H., Qi, X., Dong, L., Zhang, R., & Zhang, J. (2019). Citrus peel flavonoids improve lipid metabolism by inhibiting miR-33 and miR-122 expression in HepG2 cells. Biosci Biotechnol Biochem, 83(9), 1747-1755. doi:10.1080/09168451.2019.1608807 Tang, H., Yu, R., Liu, S., Huwatibieke, B., Li, Z., & Zhang, W. (2016). Irisin Inhibits Hepatic Cholesterol Synthesis via AMPK-SREBP2 Signaling. EBioMedicine, 6, 139-148. doi:10.1016/j.ebiom.2016.02.041 Tomas, M., Wen, Y., Liao, W., Zhang, L., Zhao, C., McClements, D. J., & Capanoglu, E. (2025). Recent progress in promoting the bioavailability of polyphenols in plant-based foods. Crit Rev Food Sci Nutr, 65(12), 2343-2364. doi:10.1080/10408398.2024.2336051 Trayhurn, P. (2014). Hypoxia and adipocyte physiology: implications for adipose tissue dysfunction in obesity. Annu Rev Nutr, 34, 207-236. doi:10.1146/annurev-nutr-071812-161156 Tung, Y. C., Li, S., Huang, Q., Hung, W. L., Ho, C. T., Wei, G. J., & Pan, M. H. (2016). 5-Demethylnobiletin and 5-Acetoxy-6,7,8,3',4'-pentamethoxyflavone Suppress Lipid Accumulation by Activating the LKB1-AMPK Pathway in 3T3-L1 Preadipocytes and High Fat Diet-Fed C57BL/6 Mice. J Agric Food Chem, 64(16), 3196-3205. doi:10.1021/acs.jafc.6b00706 Vingtdeux, V., Giliberto, L., Zhao, H., Chandakkar, P., Wu, Q., Simon, J. E., & Marambaud, P. (2010). AMP-activated protein kinase signaling activation by resveratrol modulates amyloid-beta peptide metabolism. J Biol Chem, 285(12), 9100-9113. doi:10.1074/jbc.M109.060061 Vishnoi, A., & Rani, S. (2023). miRNA Biogenesis and Regulation of Diseases: An Updated Overview. Methods Mol Biol, 2595, 1-12. doi:10.1007/978-1-0716-2823-2_1 Vlassov, A. V., Magdaleno, S., Setterquist, R., & Conrad, R. (2012). Exosomes: current knowledge of their composition, biological functions, and diagnostic and therapeutic potentials. Biochim Biophys Acta, 1820(7), 940-948. doi:10.1016/j.bbagen.2012.03.017 Wang, L., Feng, Z., Wang, X., Wang, X., & Zhang, X. (2010). DEGseq: an R package for identifying differentially expressed genes from RNA-seq data. Bioinformatics, 26(1), 136-138. doi:10.1093/bioinformatics/btp612 Wen, Z., Li, J., Fu, Y., Zheng, Y., Ma, M., & Wang, C. (2020). Hypertrophic Adipocyte-Derived Exosomal miR-802-5p Contributes to Insulin Resistance in Cardiac Myocytes Through Targeting HSP60. Obesity (Silver Spring), 28(10), 1932-1940. doi:10.1002/oby.22932 Xu, H., Barnes, G. T., Yang, Q., Tan, G., Yang, D., Chou, C. J., & Chen, H. (2003). Chronic inflammation in fat plays a crucial role in the development of obesity-related insulin resistance. J Clin Invest, 112(12), 1821-1830. doi:10.1172/jci19451 Xu, H., Zhong, X., Wang, T., Wu, S., Guan, H., & Wang, D. (2023). (-)-Epigallocatechin-3-Gallate Reduces Perfluorodecanoic Acid-Exacerbated Adiposity and Hepatic Lipid Accumulation in High-Fat Diet-Fed Male C57BL/6J Mice. Molecules (Basel, Switzerland), 28(23). doi:10.3390/molecules28237832 Xu, J. Q., Jiang, M. X., Xu, Y. J., & Dong, S. J. (2024). [Research progress in the regulation of functional homeostasis of adipose tissue by exosomal miRNA]. Sheng Li Xue Bao, 76(5), 791-800. Yang, Y., Li, S., Ren, Q., Qiu, Y., Pan, M., Liu, G., & Li, S. (2024). The interaction between triglyceride-glucose index and visceral adiposity in cardiovascular disease risk: findings from a nationwide Chinese cohort. Cardiovasc Diabetol, 23(1), 427. doi:10.1186/s12933-024-02518-2 Zeng, S., Wu, F., Chen, M., Li, Y., You, M., Zhang, Y., & Chen, Y. (2022). Inhibition of Fatty Acid Translocase (FAT/CD36) Palmitoylation Enhances Hepatic Fatty Acid β-Oxidation by Increasing Its Localization to Mitochondria and Interaction with Long-Chain Acyl-CoA Synthetase 1. Antioxid Redox Signal, 36(16-18), 1081-1100. doi:10.1089/ars.2021.0157 Zhang, J., & Li, Y. (2014). Fibroblast growth factor 21, the endocrine FGF pathway and novel treatments for metabolic syndrome. Drug Discov Today, 19(5), 579-589. doi:10.1016/j.drudis.2013.10.021 Zhang, N., Yang, Z., Xiang, S. Z., Jin, Y. G., Wei, W. Y., Bian, Z. Y., & Tang, Q. Z. (2016). Nobiletin attenuates cardiac dysfunction, oxidative stress, and inflammatory in streptozotocin: induced diabetic cardiomyopathy. Mol Cell Biochem, 417(1-2), 87-96. doi:10.1007/s11010-016-2716-z Zhang, Y., & Chua, S., Jr. (2017). Leptin Function and Regulation. Compr Physiol, 8(1), 351-369. doi:10.1002/cphy.c160041 Zhao, R., Zhao, T., He, Z., Cai, R., & Pang, W. (2021). Composition, isolation, identification and function of adipose tissue-derived exosomes. Adipocyte, 10(1), 587-604. doi:10.1080/21623945.2021.1983242 | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/100996 | - |
| dc.description.abstract | 全球肥胖盛行率持續攀升,對健康造成嚴重威脅,並引發多種代謝異常,其中非酒精性脂肪肝為常見併發症。川陳皮素 (Nobiletin) 為一種來源於柑橘類水果的類黃酮,因其具備抗氧化、抗發炎及改善代謝症候群與肥胖的潛力而備受關注。然而,川陳皮素的生物利用度有限,且其是否能透過調控細胞外囊泡 (Extracellular Vesicles, ELVs) 中特定微核醣核酸 (miRNA) 以改善高脂飲食誘發的代謝疾病,尚待進一步探討。本研究旨在闡明川陳皮素調控脂肪細胞來源 ELVs 中 miRNA,進而改善肥胖小鼠肝臟脂質代謝之機制。在體外實驗中,本研究證實川陳皮素(120 μM) 能有效抑制 3T3-L1 脂肪細胞的脂質堆積,且無明顯細胞毒性。進一步從未分化前脂肪細胞 (pre-ELVs)、分化成熟脂肪細胞 (ob-ELVs) 及經川陳皮素處理之脂肪細胞 (Nob-ELVs) 分別萃取 ELVs,並透過奈米粒子追蹤分析、穿透式電子顯微鏡及西方墨點法確認其尺寸 (40-160 nm)、碟狀結構及特異性蛋白標記 (CD63、CD9、TSG101),確保 ELVs 成功分離及具內化能力。探討 ELVs 對脂質代謝之影響時發現,pre-ELVs 與 ob-ELVs 未能顯著抑制 3T3-L1 細胞脂質累積,惟 Nob-ELVs 在不影響細胞存活率下,顯著降低約 40% 脂質堆積。miRNA 微陣列分析顯示三組 ELVs 之 miRNA 表現模式存在顯著差異,尤以 ob-ELVs 中 miR-802-5p 表達顯著高於 pre-ELVs 與 Nob-ELVs,且 Nob-ELVs 顯著下調該 miRNA,暗示川陳皮素可能透過調節 ELVs 中 miRNA 組成,影響受體細胞生理功能。此外,本研究建立高脂飲食 (HFD) 誘導之 C57BL/6J 小鼠肥胖模型,並腹腔注射不同 ELVs 持續 10 週。結果顯示,HFD + ob-ELVs 組體重變化與 HFD 組相當;相較於 HFD 組,HFD + pre-ELVs 及 HFD + Nob-ELVs 組小鼠體重增加顯著受抑制,且食物轉換效率獲得改善。血液生化分析顯示,Nob-ELVs 顯著改善 HFD 誘發之總膽固醇、高密度脂蛋白膽固醇及低密度脂蛋白膽固醇異常;pre-ELVs 則對三酸甘油酯有正面影響;ob-ELVs 對血脂指標無顯著改善。組織學檢查發現,HFD + pre-ELVs 及 HFD + Nob-ELVs 組顯著減少內臟脂肪堆積及肝臟脂肪空泡之數量與大小,而 HFD + ob-ELVs 組則與 HFD 組相似。肝臟脂質代謝相關蛋白分析顯示,pre-ELVs 主要透過提升 AMPK 與 PPARα 表現促進脂質氧化;Nob-ELVs 則透過上調 SIRT1、PPARα 及 FGF21 等脂質氧化相關蛋白,同時下調 ACC、FASN 及 CD36 等脂肪酸合成與攝取蛋白,從而減少肝臟脂質累積並改善脂質代謝異常。值得注意的是,ob-ELVs 在活化 AMPK 方面無效,且對 FASN 與 CD36 調控與 HFD 組無顯著差異。本研究首次證實川陳皮素可誘導 3T3-L1 脂肪細胞釋放之 ELVs,其 miRNA 組成顯著改變,且能有效抑制脂肪細胞內脂質積累。在肥胖小鼠模型中,Nob-ELVs 展現全面改善肝臟脂質代謝異常之潛力,其分子機制涉及促進脂質氧化及抑制脂肪酸合成與攝取。此發現為基於川陳皮素調控 ELVs 之抗肥胖創新策略提供了重要理論基礎。 | zh_TW |
| dc.description.abstract | The global incidence of obesity is rising, presenting significant health challenges and leading to a range of metabolic disorders, among which non-alcoholic fatty liver disease (NAFLD) is a common complication. Nobiletin, a flavonoid compound extracted from citrus fruits, has attracted considerable interest due to its antioxidant and anti-inflammatory properties, as well as its potential to ameliorate metabolic syndrome and obesity. However, nobiletin’s limited bioavailability and its ability to modulate high-fat diet-induced metabolic disorders through the regulation of specific microRNAs (miRNAs) within extracellular vesicles (ELVs) remain poorly understood. This investigation aims to elucidate the mechanisms by which nobiletin modulates miRNA profiles in ELVs derived from adipocytes to enhance hepatic lipid metabolism in obese murine models. In vitro assays demonstrated that nobiletin, at a concentration of 120 μM, effectively inhibited lipid accumulation in 3T3-L1 adipocytes without inducing cytotoxic effects. ELVs were isolated from undifferentiated pre-adipocytes (pre-ELVs), fully differentiated mature adipocytes (ob-ELVs), and nobiletin-treated adipocytes (Nob-ELVs). Characterisation via nanoparticle tracking analysis, transmission electron microscopy, and Western blotting confirmed the ELVs’ size range (40–160 nm), characteristic disc-shaped morphology, and expression of specific protein markers (CD63, CD9, TSG101), thereby validating successful isolation and internalisation capacity. Functional assays assessing the impact of ELVs on lipid metabolism revealed that pre-ELVs and ob-ELVs did not significantly reduce lipid accumulation in 3T3-L1 cells. In contrast, Nob-ELVs induced a substantial reduction in lipid accumulation of approximately 40%, without compromising cell viability. miRNA microarray profiling identified distinct expression patterns among the three ELV groups, notably with miR-802-5p exhibiting significantly elevated levels in ob-ELVs compared to pre-ELVs and Nob-ELVs. The marked downregulation of miR-802-5p in Nob-ELVs suggests that nobiletin may modulate recipient cell physiology through alterations in the miRNA cargo of ELVs. In vivo, a high-fat diet (HFD)-induced obesity model was established in C57BL/6J mice, which received intraperitoneal injections of the respective ELVs over a 10-week period. Body weight trajectories in the HFD + ob-ELVs cohort paralleled those of the HFD control group. Conversely, mice treated with HFD + pre-ELVs and HFD + Nob-ELVs exhibited significantly attenuated weight gain and improved food conversion efficiency compared to HFD controls. Biochemical analyses revealed that Nob-ELVs significantly ameliorated HFD-induced dyslipidaemia, improving total cholesterol, high-density lipoprotein cholesterol, and low-density lipoprotein cholesterol levels; pre-ELVs favourably influenced triglyceride concentrations; ob-ELVs did not produce significant improvements in lipid profiles. Histopathological evaluation demonstrated that the HFD + pre-ELVs and HFD + Nob-ELVs groups had markedly reduced visceral adiposity and diminished hepatic lipid vacuole number and size, whereas the HFD + ob-ELVs group resembled the HFD control. Assessment of hepatic lipid metabolism-related proteins indicated that pre-ELVs primarily enhanced lipid oxidation through the upregulation of AMPK and PPARα expression. Nob-ELVs further increased the levels of lipid oxidation-associated proteins, including SIRT1, PPARα, and FGF21, while simultaneously downregulating proteins involved in fatty acid synthesis and uptake, such as ACC, FASN, and CD36. This resulted in the mitigation of hepatic lipid accumulation and the correction of lipid metabolic disturbances. Notably, ob-ELVs failed to activate AMPK and did not significantly alter FASN or CD36 expression compared with the HFD group. This study provides the first evidence that nobiletin induces 3T3-L1 adipocytes to secrete extracellular vesicles (ELVs) with significantly altered miRNA profiles, which effectively suppress lipid accumulation within adipocytes. In an obese mouse model, Nob-ELVs demonstrated comprehensive efficacy in ameliorating hepatic lipid metabolic dysfunction through mechanisms involving the promotion of lipid oxidation and the inhibition of fatty acid synthesis and uptake. These findings offer a crucial theoretical foundation for the development of novel anti-obesity interventions based on nobiletin-regulated ELVs. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-11-26T16:24:05Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-11-26T16:24:05Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 口試委員會審定書 I
謝誌 II 中文摘要 IV Abstract VI 目次 VIII 附圖目次 XI 附表目次 XII 圖次 XIII 表次 XIV 縮寫表 XV 第一章、文獻回顧 1 第一節、 肥胖 (Obesity) 1 (一) 肥胖之成因與其盛行率 1 (二) 肥胖定義 1 第二節、 脂肪組織 (Adipose tissue) 2 (一) 白色脂肪組織 (White adipose tissue, WAT) 的生理功能 2 (二) 脂質代謝相關路徑:脂質生成與脂解作用 3 (三) 脂肪組織的信號傳遞功能 4 第三節、 外泌體 (Exosomes) 5 (一) 外泌體的生理功能 5 (二) 外泌體與肥胖的關係 7 (三) miRNA 的生理功能 8 (四) miRNA 與肥胖的關係 9 第四節、 目前預防及治療肥胖的方法 10 第五節、 川陳皮素及其類似物之生理活性 11 第二章、實驗目的與架構 13 第一節、 研究目的 13 第二節、 實驗架構 14 第三章、材料與方法 16 第一節、 實驗材料 16 (一) 儀器設備 16 (二) 藥品試劑 17 (三) 抗體 18 第二節、 細胞實驗 (in vitro) 方法 20 (一) 樣品配製 (Sample preparation) 20 (二) 細胞培養 (Cell culture) 20 (三) 細胞分化 (Preadipocyte differentiation) 22 (四) 油紅染色 (Oil red O stain) 23 (五) 細胞存活率 (MTT assay) 24 (六) 切向流過濾 (Tangential flow filtration) 25 (七) 奈米粒子追蹤分析 (Nanoparticle tracking analysis) 26 (八) 透射電子顯微鏡分析 (Transmission electron microscope) 27 (九) 外泌體攝取實驗 (Exosome uptake experiment) 28 (十) 總核糖核酸純化 (Purification of total RNA) 29 (十一) 微小核糖核酸微陣列 (miRNA microarray) 29 第三節、 動物實驗 (in vivo) 方法 31 (一) 動物品系 31 (二) 飼養環境 31 (三) 飼料配製 32 (四) 動物犧牲 33 (五) H&E染色 (Hematoxylin and eosin stain) 33 (六) 組織均質及蛋白質萃取 38 (七) 蛋白質定量 39 (八) 西方墨點法 (Western blot) 40 (九) 統計資料書寫方法 43 第四章、結果與討論 44 第一節、 細胞實驗 (in vitro) 44 (一) 川陳皮素具有抑制3T3-L1 脂肪細胞脂質堆積之能力 44 (二) 脂肪細胞來源之細胞外囊泡特性分析 47 (三) 經川陳皮素調節的 3T3-L1 細胞外囊泡具有抑制油脂堆積之效果 51 (四) 經川陳皮素調節的 3T3-L1 細胞外囊泡具有調節 miRNAs 組成之功效 55 第二節、 動物實驗 (in vivo) 59 (一) Nob-ELVs 減少小鼠在高脂飲食下的體重增加並改善食物轉換效率 59 (二) Nob-ELVs 改善高脂飲食誘導的血液生化指標異常 62 (三) Nob-ELVs 減少高脂飲食小鼠的內臟脂肪堆積 65 (四) Nob-ELVs 改善高脂飲食小鼠的肝臟脂質代謝 67 (五) Nob-ELVs 有效增加高脂飲食小鼠肝臓的脂質氧化 69 (六) Nob-ELVs 有效抑制高脂飲食小鼠肝臓的脂肪酸合成 73 第五章、結論 76 第六章、參考文獻 80 第七章、附錄 88 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 肥胖 | - |
| dc.subject | 川陳皮素 | - |
| dc.subject | 3T3-L1 | - |
| dc.subject | 脂肪細胞來源的細胞外囊泡 | - |
| dc.subject | miRNA | - |
| dc.subject | obesity | - |
| dc.subject | nobiletin | - |
| dc.subject | 3T3-L1 | - |
| dc.subject | adipocyte-derived extracellular vesicles | - |
| dc.subject | miRNA | - |
| dc.title | 川陳皮素調控脂肪細胞來源外泌體以改善高脂飲食誘導肥胖小鼠的脂質代謝異常 | zh_TW |
| dc.title | Nobiletin modulates adipocyte-derived exosomes to improve lipid metabolism disorder in high fat-diet-induced obese mice | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 114-1 | - |
| dc.description.degree | 博士 | - |
| dc.contributor.oralexamcommittee | 蔡帛蓉;何元順;黃步敏;張嘉哲;楊欣怡;羅翊禎 | zh_TW |
| dc.contributor.oralexamcommittee | Po-Jung Tsai;Yuan-Soon Ho;Bu-Miin Huang;Chia-Che Chang;Hsin-Yi Yang;Yi-Chen Lo | en |
| dc.subject.keyword | 肥胖,川陳皮素3T3-L1脂肪細胞來源的細胞外囊泡miRNA | zh_TW |
| dc.subject.keyword | obesity,nobiletin3T3-L1adipocyte-derived extracellular vesiclesmiRNA | en |
| dc.relation.page | 88 | - |
| dc.identifier.doi | 10.6342/NTU202504468 | - |
| dc.rights.note | 同意授權(限校園內公開) | - |
| dc.date.accepted | 2025-10-01 | - |
| dc.contributor.author-college | 生物資源暨農學院 | - |
| dc.contributor.author-dept | 食品科技研究所 | - |
| dc.date.embargo-lift | 2025-11-27 | - |
| 顯示於系所單位: | 食品科技研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-114-1.pdf 授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務) | 4.1 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
