請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/100973| 標題: | 基於物理引導神經運算子之三維空氣超音波預測與數位孿生建構 3D Airborne Ultrasound Wave Prediction and Digital Twin Construction via Physics-Informed Neural Operators |
| 作者: | 洪國維 Guo-Wei Hong |
| 指導教授: | 劉浩澧 Hao-Li Liu |
| 關鍵字: | 空氣超音波陣列,數位孿生深度學習物理引導神經算子超音波波動模擬三維聲場預測 Airborne Ultrasound Array,Digital TwinDeep LearningPhysics-Informed Neural Operator (PINO)Ultrasound Wave Simulation3D Acoustic Field Prediction |
| 出版年 : | 2025 |
| 學位: | 碩士 |
| 摘要: | 空氣超音波陣列廣泛應用於非接觸式懸浮、物體辨識、指向性音響及觸覺合成等領域,然而這些應用的開發過程往往仰賴高成本且耗時的模擬與實驗,此外若欲結合人工智慧技術以提升系統效能,則需大量高品質資料作為訓練基礎,但資料的取得同樣面臨高昂代價與實作困難。為解決此一瓶頸,本研究提出一套基於物理引導神經算子(Physics-Informed Neural Operators, PINO)的數位孿生建構方法,針對空氣超音波陣列於三維非均質環境中的傳播行為進行模擬。我們於虛擬環境中建立傳感器陣列的數位對應模型,並訓練 PINO 模型以預測超音波在不同介質與空間分布下的三維時序聲場變化,該模型的結果能同時轉換成穩態聲場與感測器所接收之訊號,且其預測結果與真實物理行為高度一致。相較於傳統數值模擬方法,本研究所提出之 PINO 模型具備超過 20 倍的加速能力,並且能在相同硬體資源下模擬更大規模的三維場域,藉由此數位孿生平台,可快速進行多樣化的模擬實驗,亦可有效生成大量高品質資料,以支援 AI 模型之訓練與應用開發,進而大幅降低開發門檻與成本。 Airborne ultrasound arrays are widely utilized in applications such as non-contact levitation, object recognition, directional audio, and haptic feedback. However, the development of these applications often relies on high-cost and time-consuming simulations and experiments. Furthermore, integrating artificial intelligence to enhance system performance requires large volumes of high-quality training data, the acquisition of which is both expensive and labor-intensive. To address these challenges, this study proposes a digital twin construction framework based on Physics-Informed Neural Operators (PINO) to simulate the propagation behavior of airborne ultrasound arrays in three-dimensional heterogeneous environments. A digital counterpart of the sensor array is built within a virtual environment, and a PINO model is trained to predict the spatiotemporal evolution of the acoustic field across various media and spatial distributions. The model outputs both the steady-state sound field and the sensor-received signals, achieving high fidelity with realworld physical behavior. Compared to conventional numerical simulation methods, the proposed PINO model offers more than a 20-fold improvement in computational speed and enables the simulation of larger-scale 3D domains under the same hardware constraints. This digital twin platform facilitates rapid and diverse simulation experiments and enables the efficient generation of high-quality data to support AI model training and application development, thereby significantly reducing the development cost and complexity. |
| URI: | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/100973 |
| DOI: | 10.6342/NTU202504525 |
| 全文授權: | 未授權 |
| 電子全文公開日期: | N/A |
| 顯示於系所單位: | 電機工程學系 |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-114-1.pdf 未授權公開取用 | 62.26 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
