Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
    • Advisor
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 電機工程學系
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/100973
Title: 基於物理引導神經運算子之三維空氣超音波預測與數位孿生建構
3D Airborne Ultrasound Wave Prediction and Digital Twin Construction via Physics-Informed Neural Operators
Authors: 洪國維
Guo-Wei Hong
Advisor: 劉浩澧
Hao-Li Liu
Keyword: 空氣超音波陣列,數位孿生深度學習物理引導神經算子超音波波動模擬三維聲場預測
Airborne Ultrasound Array,Digital TwinDeep LearningPhysics-Informed Neural Operator (PINO)Ultrasound Wave Simulation3D Acoustic Field Prediction
Publication Year : 2025
Degree: 碩士
Abstract: 空氣超音波陣列廣泛應用於非接觸式懸浮、物體辨識、指向性音響及觸覺合成等領域,然而這些應用的開發過程往往仰賴高成本且耗時的模擬與實驗,此外若欲結合人工智慧技術以提升系統效能,則需大量高品質資料作為訓練基礎,但資料的取得同樣面臨高昂代價與實作困難。為解決此一瓶頸,本研究提出一套基於物理引導神經算子(Physics-Informed Neural Operators, PINO)的數位孿生建構方法,針對空氣超音波陣列於三維非均質環境中的傳播行為進行模擬。我們於虛擬環境中建立傳感器陣列的數位對應模型,並訓練 PINO 模型以預測超音波在不同介質與空間分布下的三維時序聲場變化,該模型的結果能同時轉換成穩態聲場與感測器所接收之訊號,且其預測結果與真實物理行為高度一致。相較於傳統數值模擬方法,本研究所提出之 PINO 模型具備超過 20 倍的加速能力,並且能在相同硬體資源下模擬更大規模的三維場域,藉由此數位孿生平台,可快速進行多樣化的模擬實驗,亦可有效生成大量高品質資料,以支援 AI 模型之訓練與應用開發,進而大幅降低開發門檻與成本。
Airborne ultrasound arrays are widely utilized in applications such as non-contact levitation, object recognition, directional audio, and haptic feedback. However, the development of these applications often relies on high-cost and time-consuming simulations and experiments. Furthermore, integrating artificial intelligence to enhance system performance requires large volumes of high-quality training data, the acquisition of which is both expensive and labor-intensive. To address these challenges, this study proposes a digital twin construction framework based on Physics-Informed Neural Operators (PINO) to simulate the propagation behavior of airborne ultrasound arrays in three-dimensional heterogeneous environments. A digital counterpart of the sensor array is built within a virtual environment, and a PINO model is trained to predict the spatiotemporal evolution of the acoustic field across various media and spatial distributions. The model outputs both the steady-state sound field and the sensor-received signals, achieving high fidelity with realworld physical behavior. Compared to conventional numerical simulation methods, the proposed PINO model offers more than a 20-fold improvement in computational speed and enables the simulation of larger-scale 3D domains under the same hardware constraints. This digital twin platform facilitates rapid and diverse simulation experiments and enables the efficient generation of high-quality data to support AI model training and application development, thereby significantly reducing the development cost and complexity.
URI: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/100973
DOI: 10.6342/NTU202504525
Fulltext Rights: 未授權
metadata.dc.date.embargo-lift: N/A
Appears in Collections:電機工程學系

Files in This Item:
File SizeFormat 
ntu-114-1.pdf
  Restricted Access
62.26 MBAdobe PDF
Show full item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved