請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/100973完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 劉浩澧 | zh_TW |
| dc.contributor.advisor | Hao-Li Liu | en |
| dc.contributor.author | 洪國維 | zh_TW |
| dc.contributor.author | Guo-Wei Hong | en |
| dc.date.accessioned | 2025-11-26T16:18:42Z | - |
| dc.date.available | 2025-11-27 | - |
| dc.date.copyright | 2025-11-26 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2025-10-16 | - |
| dc.identifier.citation | [1] A. Marzo, T. Corkett, and B. W. Drinkwater, “Ultraino: An open phased-array system for narrowband airborne ultrasound transmission,” IEEE transactions on ultrasonics, ferroelectrics, and frequency control, vol. 65, no. 1, pp. 102–111, 2017.
[2] M. Ph Papaelias, C. Roberts, and C. L. Davis, “A review on non-destructive evaluation of rails: State-of-the-art and future development,” Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and rapid transit, vol. 222, no. 4, pp. 367–384, 2008. [3] H. Cowans, “Ndt overview: An introduction to phased array ultrasonic testing,” aug 2022. Accessed: 2025-07-19. [4] A. Matsubayashi, H. Oikawa, S. Mizutani, Y. Makino, and H. Shinoda, “Display of haptic shape using ultrasound pressure distribution forming cross-sectional shape,” in 2019 IEEE World Haptics Conference (WHC), pp. 419–424, IEEE, 2019. [5] R. D. Muelas-Hurtado and V. Contreras, “The resonant behavior of airborne standing-wave acoustic levitators based on arrays of ultrasonic transducers,” Ultrasonics, vol. 145, p. 107454, 2025. [6] K. Ohtani and M. Baba, “Shape recognition for transparent objects using ultrasonic sensor array,” in SICE Annual Conference 2007, pp. 1813–1818, IEEE, 2007. [7] S. Uhlig, I. Alkhasli, F. Schubert, C. Tschöpe, and M. Wolff, “A review of synthetic and augmented training data for machine learning in ultrasonic non-destructive evaluation,” Ultrasonics, vol. 134, p. 107041, 2023. [8] L. F. Richardson, “The approximate arithmetical solution by finite differences of physical problems involving differential equations, with an application to the stresses in a masonry dam,” Philosophical Transactions of the Royal Society A, vol. 210, pp. 307–357, 1911. [9] M. J. Turner, R. W. Clough, H. C. Martin, and L. J. Topp, “Stiffness and deflection analysis of complex structures,” Journal of the Aeronautical Sciences, vol. 23, no. 9, pp. 805–823, 1956. [10] S. A. Orszag, “Numerical methods for the simulation of turbulence,” Physics of Fluids Supplement II, vol. 12, pp. II–250–II–257, 1969. [11] J.-F. Aubry, O. Bates, C. Boehm, K. Butts Pauly, D. Christensen, C. Cueto, P. Gélat, L. Guasch, J. Jaros, Y. Jing, et al., “Benchmark problems for transcranial ultrasound simulation: Intercomparison of compressional wave models,” The Journal of the Acoustical Society of America, vol. 152, no. 2, pp. 1003–1019, 2022. [12] B. E. Treeby and B. T. Cox, “k-wave: Matlab toolbox for the simulation and reconstruction of photoacoustic wave fields,” Journal of biomedical optics, vol. 15, no. 2, pp. 021314–021314, 2010. [13] B. E. Treeby, E. S. Wise, F. Kuklis, J. Jaros, and B. Cox, “Nonlinear ultrasound simulation in an axisymmetric coordinate system using a k-space pseudospectral method,” The Journal of the Acoustical Society of America, vol. 148, no. 4, pp. 2288– 2300, 2020. [14] A. Stanziola, S. R. Arridge, B. T. Cox, and B. E. Treeby, “j-wave: An open-source differentiable wave simulator,” SoftwareX, vol. 22, p. 101338, 2023. [15] C. Cueto, O. Bates, G. Strong, J. Cudeiro, F. Luporini, Ò. C. Agudo, G. Gorman, L. Guasch, and M.-X. Tang, “Stride: a flexible platform for high-performance ultrasound computed tomography,” arXiv preprint arXiv:2110.03345, 2021. [16] S. Pichardo, C. Moreno-Hernández, R. A. Drainville, V. Sin, L. Curiel, and K. Hynynen, “A viscoelastic model for the prediction of transcranial ultrasound propagation: Application for the estimation of shear acoustic properties in the human skull,” Physics in Medicine & Biology, vol. 62, no. 17, p. 6938, 2017. [17] Pogo Software, “Pogo: Gpu-accelerated finite element solver for elastodynamic problems.” https://www.pogo.software/about.html. Accessed: 2025-08-24. [18] M. Garland, S. Le Grand, J. Nickolls, J. Anderson, J. Hardwick, S. Morton, E. Phillips, Y. Zhang, and V. Volkov, “Parallel computing experiences with cuda,” IEEE micro, vol. 28, no. 4, pp. 13–27, 2008. [19] R. Courant, K. Friedrichs, and H. Lewy, “Über die partiellen differenzengleichungen der mathematischen physik,” Mathematische Annalen, vol. 100, pp. 32–74, 1928. [20] N. Mehtaj and S. Banerjee, “Scientific machine learning for elastic and acoustic wave propagation: Neural operator and physics-guided neural network,” Sensors, vol. 25, no. 12, 2025. [21] S. A. Faroughi, N. M. Pawar, C. Fernandes, M. Raissi, S. Das, N. K. Kalantari, and S. Kourosh Mahjour, “Physics-guided, physics-informed, and physics-encoded neural networks and operators in scientific computing: Fluid and solid mechanics,” Journal of Computing and Information Science in Engineering, vol. 24, p. 040802, 01 2024. [22] M. Raissi, P. Perdikaris, and G. Karniadakis, “Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations,” Journal of Computational Physics, vol. 378, pp. 686–707, 2019. [23] L. Lu, P. Jin, G. Pang, Z. Zhang, and G. E. Karniadakis, “Learning nonlinear operators via deeponet based on the universal approximation theorem of operators,” Nature Machine Intelligence, vol. 3, pp. 218–229, March 2021. Received: 14 April 2020; Accepted: 25 January 2021; Published: 18 March 2021. [24] Z. Li, H. Zheng, N. Kovachki, D. Jin, H. Chen, B. Liu, K. Azizzadenesheli, and A. Anandkumar, “Physics-informed neural operator for learning partial differential equations,” ACM / IMS Journal of Data Science, vol. 1, pp. 1–27, May 2024. [25] W. Peng, S. Qin, S. Yang, J. Wang, X. Liu, and L. L. Wang, “Fourier neural operator for real-time simulation of 3d dynamic urban microclimate,” Building and Environment, vol. 248, p. 111063, 2024. [26] G. Wen, Z. Li, Q. Long, K. Azizzadenesheli, A. Anandkumar, and S. M. Benson, “Real-time high-resolution co 2 geological storage prediction using nested fourier neural operators,” Energy & Environmental Science, vol. 16, no. 4, pp. 1732–1741, 2023. [27] T. Kurth, S. Subramanian, P. Harrington, J. Pathak, M. Mardani, D. Hall, A. Miele, K. Kashinath, and A. Anandkumar, “Fourcastnet: Accelerating global highresolution weather forecasting using adaptive fourier neural operators,” in Proceedings of the platform for advanced scientific computing conference, pp. 1–11, 2023. [28] Z. Li, N. Kovachki, C. Choy, B. Li, J. Kossaifi, S. Otta, M. A. Nabian, M. Stadler, C. Hundt, K. Azizzadenesheli, et al., “Geometry-informed neural operator for large-scale 3d pdes,” Advances in Neural Information Processing Systems, vol. 36, pp. 35836–35854, 2023. [29] S. Guan, K.-T. Hsu, and P. V. Chitnis, “Fourier neural operator network for fast photoacoustic wave simulations,” Algorithms, vol. 16, no. 2, p. 124, 2023. [30] Y. Yang, A. F. Gao, K. Azizzadenesheli, R. W. Clayton, and Z. E. Ross, “Rapid seismic waveform modeling and inversion with neural operators,” IEEE Transactions on Geoscience and Remote Sensing, vol. 61, pp. 1–12, 2023. [31] NVIDIA Corporation, “Nvidia omniverse 官方網站(繁體中文).” https://www. nvidia.com/zh-tw/omniverse/, 2024. Accessed: 2025-07-18. [32] NVIDIA Corporation, “Nvidia omniverse digital twins.” https://docs. omniverse.nvidia.com/digital-twins/latest/index.html, 2024. Accessed: 2025-07-18. [33] J. Tremblay, T. To, B. Sundaralingam, Y. Xiang, D. Fox, and S. Birchfield, “Deep object pose estimation for semantic robotic grasping of household objects,” 2018. [34] S. I. Nikolenko et al., Synthetic data for deep learning, vol. 174. Springer, 2021. [35] NVIDIA Corporation, “Digital twins for fluid simulation.” https://build. nvidia.com/nvidia/digital-twins-for-fluid-simulation, 2024. Accessed: 2025-07-18. [36] N. Kovachki, Z. Li, B. Liu, K. Azizzadenesheli, K. Bhattacharya, A. Stuart, and A. Anandkumar, “Neural operator: learning maps between function spaces with applications to pdes,” J. Mach. Learn. Res., vol. 24, Jan. 2023. [37] S. Liu, Y. Yu, T. Zhang, H. Liu, X. Liu, and D. Meng, “Architectures, variants, and performance of neural operators: A comparative review,” Neurocomputing, vol. 648, p. 130518, 2025. [38] Z. Li, N. B. Kovachki, K. Azizzadenesheli, B. Liu, K. Bhattacharya, A. Stuart, and A. Anandkumar, “Fourier neural operator for parametric partial differential equations,” in International Conference on Learning Representations, 2021. [39] Z. Hao, Z. Wang, H. Su, C. Ying, Y. Dong, S. Liu, Z. Cheng, J. Song, and J. Zhu, “Gnot: a general neural operator transformer for operator learning,” in Proceedings of the 40th International Conference on Machine Learning, ICML’23, JMLR.org, 2023. [40] K. Zhang, Y. Zuo, H. Zhao, X. Ma, J. Gu, J. Wang, Y. Yang, C. Yao, and J. Yao, “Fourier neural operator for solving subsurface oil/water two-phase flow partial differential equation,” Spe Journal, vol. 27, no. 03, pp. 1815–1830, 2022. [41] A. Tran, A. Mathews, L. Xie, and C. S. Ong, “Factorized fourier neural operators,” in The Eleventh International Conference on Learning Representations, 2023. [42] Y. Yang, A. F. Gao, J. C. Castellanos, Z. E. Ross, K. Azizzadenesheli, and R. W. Clayton, “Seismic wave propagation and inversion with neural operators,” The Seismic Record, vol. 1, pp. 126–134, 11 2021. [43] Q. Kong and A. Rodgers, “Feasibility of using fourier neural operators for 3d elastic seismic simulations,” tech. rep., Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States), 09 2023. [44] F. Lehmann, F. Gatti, M. Bertin, and D. Clouteau, “3d elastic wave propagation with a factorized fourier neural operator (f-fno),” Computer Methods in Applied Mechanics and Engineering, vol. 420, p. 116718, 2024. [45] NVIDIA Corporation, “Isaac sim on omniverse.” https://developer.nvidia. com/isaac-sim, 2024. Accessed: 2025-07-10. [46] S. Qin, D. Zhan, D. Geng, W. Peng, G. Tian, Y. Shi, N. Gao, X. Liu, and L. L. Wang, “Modeling multivariable high-resolution 3d urban microclimate using localized fourier neural operator,” Building and Environment, vol. 273, p. 112668, 2025. [47] K. Michałowska, S. Goswami, G. E. Karniadakis, and S. Riemer-Sørensen, “Neural operator learning for long-time integration in dynamical systems with recurrent neural networks,” in 2024 International Joint Conference on Neural Networks (IJCNN), pp. 1–8, IEEE, 2024. [48] M. McCabe, P. Harrington, S. Subramanian, and J. Brown, “Towards stability of autoregressive neural operators,” arXiv preprint arXiv:2306.10619, 2023. [49] P. Lippe, B. Veeling, P. Perdikaris, R. Turner, and J. Brandstetter, “Pde-refiner: Achieving accurate long rollouts with neural pde solvers,” Advances in Neural Information Processing Systems, vol. 36, pp. 67398–67433, 2023. [50] C.-F. Li, M.-Y. Yang, G.-W. Hong, and H.-L. Liu, “Design and implementation of a fpga-based airborne ultrasound sensing and radiation phased array device,” in 2024 IEEE Ultrasonics, Ferroelectrics, and Frequency Control Joint Symposium (UFFCJS), pp. 1–4, IEEE, 2024. [51] B. Bonev, T. Kurth, C. Hundt, J. Pathak, M. Baust, K. Kashinath, and A. Anandkumar, “Spherical fourier neural operators: Learning stable dynamics on the sphere,” in International conference on machine learning, pp. 2806–2823, PMLR, 2023. [52] C.-S. Gong, G.-W. Hong, and H.-L. Liu, “High-fidelity airborne ultrasound array simulator realized by physics-informed neural operators,” IEEE Sensors Letters, 2025. Submitted. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/100973 | - |
| dc.description.abstract | 空氣超音波陣列廣泛應用於非接觸式懸浮、物體辨識、指向性音響及觸覺合成等領域,然而這些應用的開發過程往往仰賴高成本且耗時的模擬與實驗,此外若欲結合人工智慧技術以提升系統效能,則需大量高品質資料作為訓練基礎,但資料的取得同樣面臨高昂代價與實作困難。為解決此一瓶頸,本研究提出一套基於物理引導神經算子(Physics-Informed Neural Operators, PINO)的數位孿生建構方法,針對空氣超音波陣列於三維非均質環境中的傳播行為進行模擬。我們於虛擬環境中建立傳感器陣列的數位對應模型,並訓練 PINO 模型以預測超音波在不同介質與空間分布下的三維時序聲場變化,該模型的結果能同時轉換成穩態聲場與感測器所接收之訊號,且其預測結果與真實物理行為高度一致。相較於傳統數值模擬方法,本研究所提出之 PINO 模型具備超過 20 倍的加速能力,並且能在相同硬體資源下模擬更大規模的三維場域,藉由此數位孿生平台,可快速進行多樣化的模擬實驗,亦可有效生成大量高品質資料,以支援 AI 模型之訓練與應用開發,進而大幅降低開發門檻與成本。 | zh_TW |
| dc.description.abstract | Airborne ultrasound arrays are widely utilized in applications such as non-contact levitation, object recognition, directional audio, and haptic feedback. However, the development of these applications often relies on high-cost and time-consuming simulations and experiments. Furthermore, integrating artificial intelligence to enhance system performance requires large volumes of high-quality training data, the acquisition of which is both expensive and labor-intensive. To address these challenges, this study proposes a digital twin construction framework based on Physics-Informed Neural Operators (PINO) to simulate the propagation behavior of airborne ultrasound arrays in three-dimensional heterogeneous environments. A digital counterpart of the sensor array is built within a virtual environment, and a PINO model is trained to predict the spatiotemporal evolution of the acoustic field across various media and spatial distributions. The model outputs both the steady-state sound field and the sensor-received signals, achieving high fidelity with realworld physical behavior. Compared to conventional numerical simulation methods, the proposed PINO model offers more than a 20-fold improvement in computational speed and enables the simulation of larger-scale 3D domains under the same hardware constraints. This digital twin platform facilitates rapid and diverse simulation experiments and enables the efficient generation of high-quality data to support AI model training and application development, thereby significantly reducing the development cost and complexity. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-11-26T16:18:42Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-11-26T16:18:42Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 口試委員審定書 i
致謝 ii 摘要 iii Abstract iv 目次 v 圖次 ix 表次 xiv 第一章 緒論 1 1.1 空氣超音波陣列 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 空氣超音波陣列的應用 . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.3 現有的超音波模擬工具 . . . . . . . . . . . . . . . . . . . . . . . . . 5 1.4 新興的物理模擬方法 SciML . . . . . . . . . . . . . . . . . . . . . . 8 1.5 數位孿生(Digital Twin) . . . . . . . . . . . . . . . . . . . . . . . . 11 1.6 神經運算子(Neural Operator) . . . . . . . . . . . . . . . . . . . . 13 1.6.1 Fourier Neural Operator(FNO) . . . . . . . . . . . . . . . . . . 14 1.6.2 Factorized Fourier Neural Operator(F-FNO) . . . . . . . . . . . 15 1.6.3 Physics-Informed Neural Operator(PINO) . . . . . . . . . . . . 16 1.7 基於神經運算子的波傳模擬——相關文獻回顧 . . . . . . . . . . . . 18 1.7.1 Yang’s Work (2021) . . . . . . . . . . . . . . . . . . . . . . . . . . 18 1.7.2 Kong’s Work (2023) . . . . . . . . . . . . . . . . . . . . . . . . . 19 1.7.3 Lehmann’s work (2024) . . . . . . . . . . . . . . . . . . . . . . . . 20 1.8 研究目的與論文架構 . . . . . . . . . . . . . . . . . . . . . . . . . . 22 第二章 方法與理論 23 2.1 系統總覽 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 2.2 Physics-Informed Neural Operator 三維聲場預測 . . . . . . . . . . . . 25 2.2.1 模型輸入特徵與物理意涵 . . . . . . . . . . . . . . . . . . . . . . 26 2.2.1.1 空間與時間離散化設定 . . . . . . . . . . . . . . . . 26 2.2.1.2 發射參數轉換初始聲場 . . . . . . . . . . . . . . . . 27 2.2.1.3 密度與聲速場的三維張量建構 . . . . . . . . . . . . 29 2.2.2 訓練資料蒐集與處理 . . . . . . . . . . . . . . . . . . . . . . . . 30 2.2.3 模型架構設計與超參數設定 . . . . . . . . . . . . . . . . . . . . 32 2.3 區塊式模擬(Patch-Based Simulation) . . . . . . . . . . . . . . . . 37 2.3.1 訓練時的區塊劃分處理 . . . . . . . . . . . . . . . . . . . . . . . 37 2.3.2 推論時的區塊劃分與拼接處理 . . . . . . . . . . . . . . . . . . . 39 2.4 時序預測誤差抑制策略 . . . . . . . . . . . . . . . . . . . . . . . . . 41 2.4.1 資料增強(Data Augmentation) . . . . . . . . . . . . . . . . . . 41 2.4.2 多步預測(Multi-step Prediction) . . . . . . . . . . . . . . . . . 43 2.4.3 後處理模型(Refinement Model) . . . . . . . . . . . . . . . . . 44 2.5 模型預測結果之後處理與應用 . . . . . . . . . . . . . . . . . . . . . 45 2.5.1 穩態聲場重建 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 2.5.2 模擬感測器訊號的時間序列擷取與校正 . . . . . . . . . . . . . . 46 2.6 Omniverse 數位孿生模擬平台整合 . . . . . . . . . . . . . . . . . . . 49 2.7 實驗設備與規劃 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 2.7.1 實驗設備與運算資源規格 . . . . . . . . . . . . . . . . . . . . . . 50 2.7.2 實驗規劃 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 第三章 實驗設置與結果 55 3.1 實驗目的 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 3.1.1 模擬情境與場域說明 . . . . . . . . . . . . . . . . . . . . . . . . 55 3.1.2 模型評估與誤差計算方法 . . . . . . . . . . . . . . . . . . . . . . 57 3.2 模型架構參數影響與最佳化 . . . . . . . . . . . . . . . . . . . . . . 59 3.2.1 潛在特徵數量(Latent Features)的影響 . . . . . . . . . . . . . . 59 3.2.2 傅立葉層數(Fourier Layers)的影響 . . . . . . . . . . . . . . . 61 3.2.3 保留模態數(Retained Modes)的影響 . . . . . . . . . . . . . . 62 3.3 模型輸入與輸出聲場數量的影響 . . . . . . . . . . . . . . . . . . . . 64 3.3.1 輸入聲場數量的影響 . . . . . . . . . . . . . . . . . . . . . . . . 64 3.3.2 輸出聲場數量的影響 . . . . . . . . . . . . . . . . . . . . . . . . 65 3.4 區塊模擬方法的效能評估 . . . . . . . . . . . . . . . . . . . . . . . . 68 3.4.1 區塊化與非區塊化方法的比較 . . . . . . . . . . . . . . . . . . . 68 3.4.2 高斯函數參數的影響 . . . . . . . . . . . . . . . . . . . . . . . . 70 3.5 誤差抑制策略的效果分析 . . . . . . . . . . . . . . . . . . . . . . . . 72 3.5.1 資料增強的效果 . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 3.5.2 後處理模型的效果 . . . . . . . . . . . . . . . . . . . . . . . . . . 74 3.6 三維場模型結果分析 . . . . . . . . . . . . . . . . . . . . . . . . . . 75 3.6.1 三維均質場結果分析 . . . . . . . . . . . . . . . . . . . . . . . . 76 3.6.2 三維非均質場結果分析 . . . . . . . . . . . . . . . . . . . . . . . 80 3.7 穩態聲場轉換結果 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 3.7.1 聚焦聲場(Focus field) . . . . . . . . . . . . . . . . . . . . . . . 83 3.7.2 雙陷阱聲場(Twin-trap field)與旋渦場(Vortex field) . . . . . 86 3.8 感測器訊號轉換結果 . . . . . . . . . . . . . . . . . . . . . . . . . . 88 3.8.1 無反射物 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 3.8.2 鋁製鐵板 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 3.8.3 木頭方塊 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90 3.8.4 保麗龍圓柱體 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92 3.8.5 鋁製圓柱體 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94 3.9 Omniverse 互動模擬介面原型 . . . . . . . . . . . . . . . . . . . . . . 96 第四章 結論與未來展望 100 4.1 結論 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100 4.2 未來展望 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101 參考文獻 103 附錄 A — 實作演示影片 110 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 空氣超音波陣列 | - |
| dc.subject | 數位孿生 | - |
| dc.subject | 深度學習 | - |
| dc.subject | 物理引導神經算子 | - |
| dc.subject | 超音波波動模擬 | - |
| dc.subject | 三維聲場預測 | - |
| dc.subject | Airborne Ultrasound Array | - |
| dc.subject | Digital Twin | - |
| dc.subject | Deep Learning | - |
| dc.subject | Physics-Informed Neural Operator (PINO) | - |
| dc.subject | Ultrasound Wave Simulation | - |
| dc.subject | 3D Acoustic Field Prediction | - |
| dc.title | 基於物理引導神經運算子之三維空氣超音波預測與數位孿生建構 | zh_TW |
| dc.title | 3D Airborne Ultrasound Wave Prediction and Digital Twin Construction via Physics-Informed Neural Operators | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 114-1 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 龔存雄;沈哲州 | zh_TW |
| dc.contributor.oralexamcommittee | Cihun-Siyong Gong;Che-Chou Shen | en |
| dc.subject.keyword | 空氣超音波陣列,數位孿生深度學習物理引導神經算子超音波波動模擬三維聲場預測 | zh_TW |
| dc.subject.keyword | Airborne Ultrasound Array,Digital TwinDeep LearningPhysics-Informed Neural Operator (PINO)Ultrasound Wave Simulation3D Acoustic Field Prediction | en |
| dc.relation.page | 110 | - |
| dc.identifier.doi | 10.6342/NTU202504525 | - |
| dc.rights.note | 未授權 | - |
| dc.date.accepted | 2025-10-17 | - |
| dc.contributor.author-college | 電機資訊學院 | - |
| dc.contributor.author-dept | 電機工程學系 | - |
| dc.date.embargo-lift | N/A | - |
| 顯示於系所單位: | 電機工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-114-1.pdf 未授權公開取用 | 62.26 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
