Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 化學工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/10087
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor劉懷勝(Hwai-Shen Liu)
dc.contributor.authorHui-Min Hsiehen
dc.contributor.author謝惠敏zh_TW
dc.date.accessioned2021-05-20T21:00:58Z-
dc.date.available2016-07-26
dc.date.available2021-05-20T21:00:58Z-
dc.date.copyright2011-07-26
dc.date.issued2011
dc.date.submitted2011-07-20
dc.identifier.citationAbadias, M., A. Benabarre, N. Teixido, J. Usall & I. Vinas (2001) Effect of freeze drying and protectants on viability of the biocontrol yeast Candida sake. International Journal of Food Microbiology, 65, 173-182.
Abdel-Megeed, A. 2004. Psychrophilic degradation of long chain alkanes. VDM Verlag Dr. Muller Aktiengesellschaft & Co. KG.
Aeckersberg, F., F. A. Rainey & F. Widdel (1998) Growth, natural relationships, cellular fatty acids and metabolic adaptation of sulfate-reducing bacteria that utilize long-chain alkanes under anoxic conditions. Archives of Microbiology, 170, 361-369.
Al-Araji, L., R. N. Z. R. A. Rahman, M. Basri, A. B. Salleh, N. M. Nasaruddin, K. Harikrishna, R. Y. Othman, L. S. Hoon, J. A. Harikrishna & N. Adnan (2007) Microbial Surfactant. Asia Pacific J. Molec. Biol. Biotechnol, 15, 99-105.
Allard, A.-S. & A. H. Neilson (1997) Bioremediation of organic waste sites: A critical review of microbiological aspects. International Biodeterioration & Biodegradation, 39, 253-285.
Alloway, B. & D. Ayres (1998) Chemical principles of environmental pollution. Water Air and Soil Pollution, 102, 209.
Alvarez, H. M. (2003) Relationship between [beta]-oxidation pathway and the hydrocarbon-degrading profile in actinomycetes bacteria. International Biodeterioration & Biodegradation, 52, 35-42.
Ashraf, W., A. Mihdhir & J. Colin Murrell (1994) Bacterial oxidation of propane. FEMS Microbiology Letters, 122, 1-6.
Atlas, R. & J. Bragg (2009) Bioremediation of marine oil spills: when and when not– the Exxon Valdez experience. Microbial Biotechnology, 2, 213-221.
Atlas, R. M. & R. Bartha (1992) Hydrocarbon biodegradation and oil spill bioremediation. Advances in Microbial Ecology, 12, 287-338.
Bartha, R. & R. M. Atlas (1977) The microbiology of aquatic oil spills. Advances in Applied Microbiology, 22, 225-266.
Bell, K., J. Philp, D. Aw & N. Christofi (1998) The genus Rhodococcus. Journal of Applied Microbiology, 85, 195-210.
Benoit, S., S. Taouji, A. Benachour & A. Hartke (2000) Resistance of Rhodococcus equi to acid pH. International Journal of Food Microbiology, 55, 295-298.
Berny, J. F. & G. Hennebert (1991) Viability and stability of yeast cells and filamentous fungus spores during freeze-drying: effects of protectants and cooling rates. Mycologia, 805-815.
Binazadeh, M., I. A. Karimi & Z. Li (2009) Fast biodegradation of long chain n-alkanes and crude oil at high concentrations with Rhodococcus sp. Moj-3449. Enzyme and Microbial Technology, 45, 195-202.
Boopathy, R. (2000) Factors limiting bioremediation technologies. Bioresource Technology, 74, 63-67.
Bossier, P. & W. Verstraete (1996) Triggers for microbial aggregation in activated sludge? Applied Microbiology and Biotechnology, 45, 1-6.
Bouchez-Naitali, M., D. Blanchet, V. Bardin & J. P. Vandecasteele (2001) Evidence for interfacial uptake in hexadecane degradation by Rhodococcus equi: the importance of cell flocculation. Microbiology, 147, 2537–2543.
Bouwer, E. J. & A. J. B. Zehnder (1993) Bioremediation of organic compounds--putting microbial metabolism to work. Trends in Biotechnology, 11, 360-367.
Bowen, W. R., R. W. Lovitt & C. J. Wright (2001) Atomic force microscopy study of the adhesion of Saccharomyces cerevisiae. Journal of Colloid and Interface Science, 237, 54-61.
Bozoglu, T., M. Ozilgen & U. Bakir (1987) Survival kinetics of lactic acid starter cultures during and after freeze drying. Enzyme and Microbial Technology, 9, 531-537.
Britton, L. N. 1984. Microbial degradation of organic compounds. Marcel Dekker New York.
Burke, M. J. (1986) The glassy state and survival of anhydrous biological systems. Membranes, Metabolism and Dry Organisms. , 358–363.
Busch, P. L. & W. Stumm (1968) Chemical interactions in the aggregation of bacteria bioflocculation in waste treatment. Environmental Science & Technology, 2, 49-53.
Calleja, G. B. 1984. Microbial aggregation. CRC Press, Boca Raton, Fla.
Camilli, R., C. M. Reddy, D. R. Yoerger, B. A. S. Van Mooy, M. V. Jakuba, J. C. Kinsey, C. P. McIntyre, S. P. Sylva & J. V. Maloney (2010) Tracking Hydrocarbon Plume Transport and Biodegradation at Deepwater Horizon. Science, 330, 201-204.
Carvalho, A. S., J. Silva, P. Ho, P. Teixeira, F. X. Malcata & P. Gibbs (2002) Survival of freeze-dried Lactobacillus plantarum and Lactobacillus rhamnosus during storage in the presence of protectants. Biotechnology Letters, 24, 1587-1591.
--- (2004) Relevant factors for the preparation of freeze-dried lactic acid bacteria. International Dairy Journal, 14, 835-847.
Carvalho, C. C. C. R. & M. M. R. Fonseca (2005a) Degradation of hydrocarbons and alcohols at different temperatures and salinities by Rhodococcus erythropolis DCL14. FEMS Microbiology Ecology, 51, 389-399.
--- (2005b) The remarkable Rhodococcus erythropolis. Applied Microbiology and Biotechnology, 67, 715-726.
Carvalho, C. C. C. R., B. Parreno-Marchante, G. Neumann, M. M. R. da Fonseca & H. J. Heipieper (2005) Adaptation of Rhodococcus erythropolis DCL14 to growth on n-alkanes, alcohols and terpenes. Applied Microbiology and Biotechnology, 67, 383-388.
Carvalho, C. C. C. R. d. & M. M. R. d. Fonseca (2004) Solvent toxicity in organic-aqueous systems analysed by multivariate analysis. Bioprocess and Biosystems Engineering, 26, 361-375.
Castro, H., P. Teixeira & R. Kirby (1995) Storage of lyophilized cultures of Lactobacillus bulgaricus under different relative humidities and atmospheres. Applied Microbiology and Biotechnology, 44, 172-176.
Champagne, C., N. Gardner, E. Brochu & Y. Beaulieu (1991) The Freeze-drying of lactic acid bacterial. A review. Canadian Institute of Food Science and Technology Journal, 24, 118-128.
Chang, Y. I. & C. Y. Su (2003) Flocculation behavior of Sphingobium chlorophenolicum in degrading pentachlorophenol at different life stages. Biotechnology and Bioengineering, 82, 843-850.
Collins, M., M. Goodfellow & D. Minnikin (1982) A survey of the structures of mycolic acids in Corynebacterium and related taxa. Microbiology, 128, 129-149.
Coon, M. J. (2005) Omega oxygenases: nonheme-iron enzymes and P450 cytochromes. Biochemical and Biophysical Research Communications, 338, 378-385.
Costa, E., J. Usall, N. Teixido, R. Torres & I. Vinas (2002) Effect of package and storage conditions on viability and efficacy of the freeze dried biocontrol agent Pantoea agglomerans strain CPA 2. Journal of Applied Microbiology, 92, 873-878.
Cravo-Laureau, C., V. Grossi, D. Raphel, R. Matheron & A. Hirschler-Rea (2005) Anaerobic n-alkane metabolism by a sulfate-reducing bacterium, Desulfatibacillum aliphaticivorans strain CV2803T. Applied and Environmental Microbiology, 71, 3458–3467.
De Valdez, G. F., G. S. de Giori, A. P. de Ruiz Holgado & G. Oliver (1983) Comparative study of the efficiency of some additives in protecting lactic acid bacteria against freeze-drying. Cryobiology, 20, 560-566.
Deng, S., R. Bai, X. Hu & Q. Luo (2003) Characteristics of a bioflocculant produced by Bacillus mucilaginosus and its use in starch wastewater treatment. Applied Microbiology and Biotechnology, 60, 588-593.
Desai, J. D. & I. M. Banat (1997) Microbial production of surfactants and their commercial potential. Microbiology and Molecular Biology Reviews, 61, 47–64.
Eastcott, L., W. Y. Shiu & D. Mackay (1988) Environmentally relevant physical-chemical properties of hydrocarbons: a review of data and development of simple correlations. Oil and Chemical Pollution, 4, 191-216.
Efiuvwevwere, B., L. Gorris, E. Smid & E. Kets (1999) Mannitol-enhanced survival of Lactococcus lactis subjected to drying. Applied Microbiology and Biotechnology, 51, 100-104.
Ehrenreich, P., A. Behrends, J. Harder & F. Widdel (2000) Anaerobic oxidation of alkanes by newly isolated denitrifying bacteria. Archives of Microbiology, 173, 58-64.
Fiechter, A. (1992) Biosurfactants: moving towards industrial application. Trends in Biotechnology, 10, 208-217.
Finnerty, W. R. (1992) The biology and genetics of the genus Rhodococcus. Annual Reviews in Microbiology, 46, 193-218.
--- (1994) Biosurfactants in environmental biotechnology. Current Opinion in Biotechnology, 5, 291-295.
Fraaije, M. W., N. M. Kamerbeek, W. J. H. van Berkel & D. B. Janssen (2002) Identification of a Baeyer–Villiger monooxygenase sequence motif. FEBS Letters, 518, 43-47.
Fritsche, W. & M. Hofrichter (2000) Aerobic degradation by microorganisms. 145-155.
Fujita, M., M. Ike, S. Tachibana, G. Kitada, S. M. Kim & Z. Inoue (2000) Characterization of a bioflocculant produced by Citrobacter sp. TKF04 from acetic and propionic acids. Journal of Bioscience and Bioengineering, 89, 40-46.
Gibson, D. T. 1984. Microbial degradation of organic compounds. Marcel Dekker New York.
Gilliland, S. & M. Speck (1969) Biological response of Lactic streptococci and Lactobacilli to catalase. Applied and Environmental Microbiology, 17, 797-800.
Goldberg, I. & L. Eschar (1977) Stability of lactic acid bacteria to freezing as related to their fatty acid composition. Applied and Environmental Microbiology, 33, 489-496.
Golwer, A. (1983) Underground purification capacity. Ground Water in Water Resource Planning, 2, 1063-1072.
Gong, X.-Y., Z.-K. Luan, Y.-S. Pei & S.-G. Wang (2003) Culture Conditions for Flocculant Production by Paenibacillus polymyxa BY-28. Journal of Environmental Science and Health, Part A: Toxic/Hazardous Substances and Environmental Engineering, 38, 657 - 669.
Goodfellow, M. (1987) The toxonomic status of Rhodococcus equi. Veterinary Microbiology, 14, 205-209.
--- (1989) Genus Rhodococcus. Bergey's Manual of Systematic Bacteriology, 4, 2362-2371.
Goodfellow, M., G. Alderson & J. Chun (1998) Rhodococcal systematics: problems and developments. Antonie van Leeuwenhoek, 74, 3-20.
Gurtler, V., B. C. Mayall & R. Seviour (2004) Can whole genome analysis refine the taxonomy of the genus Rhodococcus? FEMS Microbiology Reviews, 28, 377-403.
Hanafusa, J. (1985) The hydration water and protein with cryoprotectant. Fundamentals and Applications of Freeze Dried to Biological Materials, Drugs and Food Stuffs, 59.
Harayama, S., H. Kishira, Y. Kasai & K. Shutsubo (1999) Petroleum biodegradation in marine environments. Journal of Molecular Microbiology and Biotechnology, 1, 63-70.
Heipieper, H. J., F. J. Weber, J. Sikkema, H. Keweloh & J. A. M. de Bont (1994) Mechanisms of resistance of whole cells to toxic organic solvents. Trends in Biotechnology, 12, 409-415.
Hommel, R. K. (1990) Formation and physiological role of biosurfactants produced by hydrocarbon-utilizing microorganisms. Biodegradation, 1, 107-119.
Hua, Z., J. Chen, S. Lun & X. Wang (2003) Influence of biosurfactants produced by Candida antarctica on surface properties of microorganism and biodegradation of n-alkanes. Water Research, 37, 4143-4150.
Huang, L., T. Ma, D. Li, F. Liang, R. L. Liu & G. Li (2008) Optimization of nutrient component for diesel oil degradation by Rhodococcus erythropolis. Marine Pollution Bulletin, 56, 1714-1718.
Huesemann, M. H. (1995) Predictive model for estimating the extent of petroleum hydrocarbon biodegradation in contaminated soils. Environmental Science & Technology, 29, 7-18.
Israeli, E., B. T. Shaffer & B. Lighthart (1993) Protection of freeze-dried Escherichia coli by trehalose upon exposure to environmental conditions. Cryobiology, 30, 519-523.
Iwabuchi, N., M. Sunairi, H. Anzai, H. Morisaki & M. Nakajima (2003) Relationships among colony morphotypes, cell-surface properties and bacterial adhesion to substrata in Rhodococcus. Colloids and Surfaces B: Biointerfaces, 30, 51-60.
Kakii, K., M. Hasumi, T. Shirakashi & M. Kuriyama (1990) Involvement of Ca2+ in the flocculation of Kluyvera cryocrescens KA-103. Journal of Fermentation and Bioengineering, 69, 224-227.
Kim, I. S., J. M. Foght & M. R. Gray (2002) Selective transport and accumulation of alkanes by Rhodococcus erythropolis S+ 14He. Biotechnology and Bioengineering, 80, 650-659.
Korda, A., P. Santas, A. Tenente & R. Santas (1997) Petroleum hydrocarbon bioremediation: sampling and analytical techniques, in situ treatments and commercial microorganisms currently used. Applied Microbiology and Biotechnology, 48, 677-686.
Kurane, R., K. Hatamochi, T. Kakuno, M. Kiyohara, K. Kawaguchi, Y. Mizuno, M. Hirano & Y. Taniguchi (1994) Purification and characterization of lipid bioflocculant produced by Rhodococcus erythropolis. Bioscience, Biotechnology, and Biochemistry, 58, 1977-1982.
Lang, S. & J. C. Philp (1998) Surface-active lipids in rhodococci. Antonie van Leeuwenhoek, 74, 59-70.
Larkin, M. J., L. A. Kulakov & C. C. R. Allen (2005) Biodegradation and Rhodococcus-masters of catabolic versatility. Current Opinion in Biotechnology, 16, 282-290.
Leahy, J. G. & R. R. Colwell (1990) Microbial degradation of hydrocarbons in the environment. Microbiology and Molecular Biology Reviews, 54, 305-315.
Lee, M., M. Kim, I. Singleton, M. Goodfellow & S. T. Lee (2006) Enhanced biodegradation of diesel oil by a newly identified Rhodococcus baikonurensis EN3 in the presence of mycolic acid. Journal of Applied Microbiology, 100, 325-333.
Leslie, S. B., E. Israeli, B. Lighthart, J. H. Crowe & L. M. Crowe (1995) Trehalose and sucrose protect both membranes and proteins in intact bacteria during drying. Applied and Environmental Microbiology, 61, 3592–3597.
Liu, C., W. Chang & H. Liu (2009) Bioremediation of n-alkanes and the formation of biofloccules by Rhodococcus erythropolis NTU-1 under various saline conditions and sea water. Biochemical Engineering Journal, 45, 69-75.
Liu, C. W. & H. S. Liu (2010) Rhodococcus erythropolis strain NTU-1 efficiently degrades and traps diesel and crude oil in batch and fed-batch bioreactors. Process Biochemistry, 46, 202–209.
Logan, B. E. & J. R. Hunt (1988) Bioflocculation as a microbial response to substrate limitations. Biotechnology and Bioengineering, 31, 91-101.
Ly, M. H., M. Naitali-Bouchez, T. Meylheuc, M. N. Bellon-Fontaine, T. M. Le, J. M. Belin & Y. Wache (2006) Importance of bacterial surface properties to control the stability of emulsions. International Journal of Food Microbiology, 112, 26-34.
Madsen, E. (1991) Determining in situ bioremediation, facts and challenges. Environ. Sci. Technol, 25, 1663-1673.
Malik, A., M. Sakamoto, T. Ono & K. Kakii (2003) Coaggregation between Acinetobacter johnsonii S35 and Microbacterium esteraromaticum strains isolated from sewage activated sludge. Journal of Bioscience and Bioengineering, 96, 10-15.
McKenna, E. & R. Kallio (1971a) Microbial metabolism of the isoprenoid alkane pristane. Proceedings of the National Academy of Sciences of the United States of America, 68, 1552-1554.
--- (1971b) Microbial metabolism of the isoprenoid alkane pristane. Proceedings of the National Academy of Sciences of the United States of America, 68, 1552.
Morgan, C., N. Herman, P. White & G. Vesey (2006) Preservation of micro-organisms by drying; a review. Journal of Microbiological Methods, 66, 183-193.
Morgan, P. & R. Watkinson (1994) Biodegradation of components of petroleum. Biochemistry of Microbial Degradation, 1-31.
Moriche, T. 1970. Nature and action of protective solutes in freeze-drying of bacteria. In Proceedings of the 1st International Conference on Culture Collections, 121-125. Tokyo: University Park Press.
Mulligan, C. N. (2005) Environmental applications for biosurfactants. Environmental Pollution, 133, 183-198.
Nakata, K. & R. Kurane (1999) Production of an extracellular polysaccharide bioflocculant by Klebsiella pneumoniae. Bioscience, Biotechnology, and Biochemistry, 63, 2064-2068.
Neu, T. R. (1996) Significance of bacterial surface-active compounds in interaction of bacteria with interfaces. Microbiology and Molecular Biology Reviews, 60, 151–166.
Nhi-Cong, L. T., A. Mikolasch, H. P. Klenk & F. Schauer (2009) Degradation of the multiple branched alkane 2, 6, 10, 14-tetramethyl-pentadecane (pristane) in Rhodococcus ruber and Mycobacterium neoaurum. International Biodeterioration & Biodegradation, 63, 201-207.
Niescher, S., V. Wray, S. Lang, S. R. Kaschabek & M. Schlomann (2006) Identification and structural characterisation of novel trehalose dinocardiomycolates from n-alkane-grown Rhodococcus opacus 1CP. Applied Microbiology and Biotechnology, 70, 605-611.
Olofsson, A. C., A. Zita & M. Hermansson (1998) Floc stability and adhesion of green-fluorescent-protein-marked bacteria to flocs in activated sludge. Microbiology, 144, 519-528.
Palmfeldt, J. & B. Hahn-Hagerdal (2000) Influence of culture pH on survival of Lactobacillus reuteri subjected to freeze-drying. International Journal of Food Microbiology, 55, 235-238.
Pembrey, R. S., K. C. Marshall & R. P. Schneider (1999) Cell surface analysis techniques: what do cell preparation protocols do to cell surface properties? Applied and Environmental Microbiology, 65, 2877–2894.
Peng, F., Z. Liu, L. Wang & Z. Shao (2007) An oil degrading bacterium: Rhodococcus erythropolis strain 3C 9 and its biosurfactants. Journal of Applied Microbiology, 102, 1603-1611.
Pirnik, M., R. Atlas & R. Bartha (1974) Hydrocarbon metabolism by Brevibacterium erythrogenes: normal and branched alkanes. Journal of Bacteriology, 119, 868-878.
Ram, N. M., D. H. Bass, R. Falotico & M. Leahy (1993) A decision framework for selecting remediation technologies at hydrocarbon-contaminated sites. Soil and Sediment Contamination: An International Journal, 2, 167-189.
Ratledge, C. (1988) Products of hydrocarbon-microorganism interaction. Biodeterioration, 7, 219-236.
Riser-Roberts, E. 1998. Remediation of petroleum contaminated soils: biological, physical, and chemical processes. CRC.
Rojo, F. (2009) Degradation of alkanes by bacteria. Environmental Microbiology, 11, 2477-2490.
Rontani, J. F., J. C. Bertrand, F. Blanc & G. Giusti (1986) Gas chromatography and gas chromatography/mass spectrometry applied to the determination of a new pathway of pristane degradation by a marine mixed bacterial population. Marine Chemistry, 18, 9-16.
Rosenberg, E. & E. Ron (1999) High-and low-molecular-mass microbial surfactants. Applied Microbiology and Biotechnology, 52, 154-162.
Rosenberg, M. (2006) Microbial adhesion to hydrocarbons: twenty-five years of doing MATH. FEMS Microbiology Letters, 262, 129-134.
Rosenberg, M., M. Barki, R. Bar-Ness, S. Goldberg & R. J. Doyle (1991) Microbial adhesion to hydrocarbons (math). Biofouling: The Journal of Bioadhesion and Biofilm Research, 4, 121 - 128.
Rudge, R. 1991. Maintenance of bacteria by freeze-drying. In Maintenance of Microorganisms, 31–44. London: Academic Press.
Rudolph, A. S. & J. H. Crowe (1985) Membrane stabilization during freezing: the role of two natural cryoprotectants, trehalose and proline. Cryobiology, 22, 367-377.
Rueter, P., R. Rabus, H. Wilkest, F. Aeckersberg, F. A. Rainey, H. W. Jannasch & F. Widdel (1994) Anaerobic oxidation of hydrocarbons in crude oil by new types of sulphate-reducing bacteria. Nature, 372, 455-458.
Sannasi, P., J. Kader, O. Othman & S. Salmijah (2009) Physical growth and biomass characterization of bacterial cells exposed to Cd (II), Cr (VI), Cu (II), Ni (II), and Pb (II). Journal of Environmental Research and Development, 4, 8-18.
Sayavedra Soto, L. A., W. N. Chang, T. K. Lin, C. L. Ho & H. S. Liu (2006) Alkane Utilization by Rhodococcus Strain NTU- 1 Alone and in Its Natural Association with Bacillus fusiformis L 1 and Ochrobactrum sp. Biotechnology Progress, 22, 1368-1373.
Selmer Olsen, E., S. E. Birkeland & T. Sorhaug (1999) Effect of protective solutes on leakage from and survival of immobilized Lactobacillus subjected to drying, storage and rehydration. Journal of Applied Microbiology, 87, 429-437.
Sinha, R., A. Shukla, M. LAL & B. Ranganathan (1982) Rehydration of Freeze Dried Cultures of Lactic Streptococci. Journal of Food Science, 47, 668-669.
So, C. M., C. D. Phelps & L. Young (2003) Anaerobic transformation of alkanes to fatty acids by a sulfate-reducing bacterium, strain Hxd3. Applied and Environmental Microbiology, 69, 3892–3900.
So, C. M. & L. Young (1999) Isolation and characterization of a sulfate-reducing bacterium that anaerobically degrades alkanes. Applied and Environmental Microbiology, 65, 2969–2976.
Souzu, H. (1999) Basic aspects and industrial strategies for the preservation of microorganisms by freezing and drying. Drugs and the Pharmaceutical Sciences, 96, 231-265.
Tago, Y. & K. Aida (1977) Exocellular mucopolysaccharide closely related to bacterial floc formation. Applied and Environmental Microbiology, 34, 308-314.
Takagi, H. & K. Kadowaki (1985) Purification and chemical properties of a flocculant produced by Paecilomyces. Agricultural and Biological Chemistry, 49, 3151-3164.
Takeda, M., R. Kurane, J. Koizumi & I. Nakamura (1991) A protein bioflocculant produced by Rhodococcus erythropolis. Agricultural and Biological Chemistry, 55, 2663-2664.
Teixeira, P., M. Castro, F. Malcata & R. Kirby (1995) Survival of Lactobacillus delbrueckii ssp. bulgaricus following spray-drying. Journal of Dairy Science, 78, 1025-1031.
Tezuka, Y. (1969) Cation-dependent flocculation in a Flavobacterium species predominant in activated sludge. Applied and Environmental Microbiology, 17, 222-226.
Ulrici, W. (2000) Contaminated soil areas, different countries and contaminants, monitoring of contaminants. Environmental Process II. Soil Decontamination Biotechnology, 11, 5-42.
Van Beilen, J., Z. Li, W. Duetz, T. Smits & B. Witholt (2003) Diversity of alkane hydroxylase systems in the environment. Oil & Gas Science and Technology, 58, 427-440.
Van Beilen, J. B. & E. G. Funhoff (2007) Alkane hydroxylases involved in microbial alkane degradation. Applied Microbiology and Biotechnology, 74, 13-21.
Van Hamme, J. D., A. Singh & O. P. Ward (2003) Recent advances in petroleum microbiology. Microbiology and Molecular Biology Reviews, 67, 503–549.
Van Stempvoort, D. & K. Biggar (2008) Potential for bioremediation of petroleum hydrocarbons in groundwater under cold climate conditions: A review. Cold Regions Science and Technology, 53, 16-41.
Vidali, M. (2001) Bioremediation. An overview. Pure and Applied Chemistry, 73, 1163-1172.
Vik, E., P. Bardos, J. Brogan, D. Edwards, F. Gondi, T. Henrysson, B. Jensen, C. Jorge, C. Mariotti & P. Nathanail (2001) Towards a framework for selecting remediation technologies for contaminated sites. Land Contamination and Reclamation, 9, 119-127.
Volkering, F., A. Breure & W. Rulkens (1997) Microbiological aspects of surfactant use for biological soil remediation. Biodegradation, 8, 401-417.
Watkinson, R. J. & P. Morgan (1990) Physiology of aliphatic hydrocarbon-degrading microorganisms. Biodegradation, 1, 79-92.
Wentzel, A., T. E. Ellingsen, H. K. Kotlar, S. B. Zotchev & M. Throne-Holst (2007) Bacterial metabolism of long-chain n-alkanes. Applied Microbiology and Biotechnology, 76, 1209-1221.
Whyte, L., S. Slagman, F. Pietrantonio, L. Bourbonniere, S. Koval, J. Lawrence, W. Inniss & C. Greer (1999) Physiological adaptations involved in alkane assimilation at a low temperature by Rhodococcus sp. strain Q15. Applied and Environmental Microbiology, 65, 2961–2968.
Whyte, L. G., J. Hawari, E. Zhou, L. Bourbonniere, W. E. Inniss & C. W. Greer (1998) Biodegradation of variable-chain-length alkanes at low temperatures by a psychrotrophic Rhodococcus sp. Applied and Environmental Microbiology, 64, 2578-2584.
Wiacek, A. E. (2007) Electrokinetic properties of n-tetradecane/lecithin solution emulsions. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 293, 20-27.
Yang, N. & W. Sandine (1979) Acid-producing activity of lyophilized lactic streptococcal cheese starter concentrates. Journal of Dairy Science, 62, 908-915.
Zhao, G. & G. Zhang (2005) Effect of protective agents, freezing temperature, rehydration media on viability of malolactic bacteria subjected to freeze drying. Journal of Applied Microbiology, 99, 333-338.
方鴻源. 1999. 環境微生物學 第六章. 中華民國環境工程學會.
徐致遠, 劉榮, 郭本恒 & 李保國 (2006) 保護劑在乳酸菌凍乾過程中的應用. 乳業科學與技術, 119, 155-165.
張玉華, 凌沛學, 籍保平 & 張天民 (2006) 糖類在生物活性物質冷凍乾燥的保護作用及其作用機制. 中國生化藥物雜誌, 27, 247-249.
張緯農. 2003. 利用混合菌株(TN-4)處理異十九烷之研究. In 化學工程研究所. 國立台灣大學.
---. 2009. 利用 Rhodococcus erythropolis 進行碳氫化合物生物降解與細胞聚集現象之研究. In 化學工程研究所. 國立台灣大學.
張蘭英, 劉娜 & 孫立波. 2007. 現代環境微生物技術 清華大學出版社.
梁茂實. 2007. 微生物生物復育時細胞聚集與氫離子釋放的應用. In 化學工程研究所. 國立台灣大學.
華苟根 & 郭堅華 (2003) 紅球菌屬的分類及應用研究發展. 微生物學通報, 30, 107-111.
黃武良. 1999. 石油-大自然孕育千萬年的珍藏. In 地球科學園地. 地球科學文教基金會.
劉志文. 2007. 微生物生物復育過程中細胞聚集現象之研究. In 化學工程研究所. 國立台灣大學.
盧至人. 2002. 現地生物復育技術. In 台灣土壤及地下水環境保護協會簡訊, 3-5.
盧曉鳳. 2000. 油品之生物分解--煉油廠廢水之實際應用. In 化學工程研究所. 國立台灣大學.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/10087-
dc.description.abstract本研究目的主要在於探討如何提升及應用R. erythropolis NTU-1的細胞聚集現象,使長鏈烷類在短時間內能大量移除。
研究結果發現,在培養錐形瓶中加入篩網可幫助迴旋式培養下NTU-1與正十六烷的接觸機會及形式,因而NTU-1在44小時內即能形成結塊,配合物理撈除的方式可將2000 ppmv正十六烷移除掉95%以上。
利用冷凍乾燥的方式來保存以NB培養的NTU-1細胞,實驗結果發現使用麥芽糖溶液作為冷凍乾燥保護劑,並存放於-20℃的環境下,乾燥的NTU-1在經過30天存放後仍具有很高的存活率且其生理特性並不會受到影響。同樣利用冷凍乾燥的方式來乾燥以正十六烷培養而得的NTU-1細菌結塊,然而實驗結果顯示乾燥後的NTU-1結塊活性很低,無法再降解烷類,但其再形成結塊包覆烷類的能力並不會受到影響,1 ~ 2小時內即能再次形成聚集體,第12小時以物理撈除的方式可移除80 ~ 90%濃度為2000 ppmv的正十六烷。
接著以烘乾的方式取代成本高及費時的冷凍乾燥法來乾燥NTU-1結塊。實驗中選擇烘乾溫度為80℃,其乾燥所需時間約15小時且乾燥後的NTU-1結塊具有良好形成聚集包覆烷類的效果。這個部分換算出利用1g/L的NTU-1結塊密度來處理10000 ppmv的正十六烷較佳。另外,若以兩段式添加乾燥NTU-1結塊的方法,可使正十六烷的移除效率在12小時內由90%提升至將近100%。
乾燥後NTU-1結塊再形成聚集將烷類包覆的原因與其細胞表面疏水性及完整性有關,此兩項特性需同時存在,乾燥NTU-1結塊才能貼附烷類且以堆疊的方式形成大顆粒結塊。
由此可知,將NTU-1結塊冷凍乾燥或烘乾後保存,利用乾燥NTU-1結塊的高度包覆烷類能力,配合物理撈除的方式,使烷類能在12小時內大量移除,此項成果無疑的為將來石油污染物移除提供了一個相當具競爭性及發展性的方法。
zh_TW
dc.description.abstractRhodococcus erythropolis NTU-1 is a strain which can not only degrade hydrocarbons but also traps alkanes in biofloccules during bioremediation process. In this study, we focused on how to accelerate biofloccules formation and to apply NTU-1 biofloccules for n-hexadecane (n-C16) removal.
Results showed that sieves in Erlenmeyer flasks increased the n-C16 agitation efficiency under orbital shaking and assisted NTU-1 to utilize n-C16. NTU-1 formed biofloccules and trapped most residual n-C16 within 44 hr. At this time, more than 95% n-C16 was removed.
NTU-1 cells (cultured by Nutrient Broth) by freeze-drying preserved most viability with maltose as the protectant. However, freeze-dried NTU-1 biofloccules (cultured by n-C16) resulted in low cell viability. Dried NTU-1 biofloccules did not degrade n-C16 but they still re-formed biofloccules and re-trapped most of n-C16. With these freeze-dried biofloccules, n-C16 removal efficiency achieved 80 ~ 90% within 12 hr.
Heat-dried biofloccules were further evaluated because of its simplicity in comparison with freeze-drying method. It proved a good method and we found 1g/L dried cell vs. 10000 ppmv n-C16 was an optimal ratio. Moreover, with two-step addition of dried NTU-1 biofloccules, near 100% of n-C16 was removed in 12 hr.
The mechanism of re-forming biofloccules was found to relate to the cell hydrophobicity and integrity. With these two characteristics, dried NTU-1 biofloccules adhered to n-C16, and n-C16 worked as the linker to form cell pellets in a short time. These dried biofloccules provided a feasible and potential method for remediation of hydrocarbon pollutants.
en
dc.description.provenanceMade available in DSpace on 2021-05-20T21:00:58Z (GMT). No. of bitstreams: 1
ntu-100-R98524034-1.pdf: 9627761 bytes, checksum: 2828efb151749663b733aed6ee47fed0 (MD5)
Previous issue date: 2011
en
dc.description.tableofcontents目錄
致謝 I
中文摘要 II
Abstract III
目錄 IV
圖目錄 VII
表目錄 XIV
照片目錄 XV
第一章 緖論 1
1.1 前言 1
1.2 研究目的及論文綱要 2
第二章 文獻回顧 3
2.1 石油碳氫化合物簡介及其對環境和人類之影響 3
2.2 處理石油碳氫化合物污染之方法 5
2.3 生物處理石油碳氫化合物 9
2.3.1 生物復育簡介 9
2.3.2 微生物攝取碳氫化合物之模式 14
2.3.3 微生物分解碳氫化合物之方式 20
2.4 微生物降解碳氫化合物之代謝途徑 23
2.4.1 直鏈烷之氧化機制 23
2.4.2 支鏈烷之氧化機制 26
2.4.3 烯烴類及環烷類之氧化機制 31
2.5 實驗菌株Rhodococcus erythropolis之介紹 34
2.5.1 Rhodococcus菌屬簡介 34
2.5.2 Rhodococcus erythropolis之特性及應用 37
2.6 微生物之細胞聚集現象 42
2.7 微生物乾燥技術及應用 45
2.7.1 冷凍乾燥 (Freeze-drying) 45
2.7.1.1 冷凍乾燥對菌株的影響 46
2.7.1.2 冷凍乾燥時保護劑的添加 48
2.7.1.3 冷凍乾燥後菌株貯存之安定性 51
2.7.2 烘乾之原理及應用 52
第三章 實驗材料與方法 53
3.1 實驗菌株 53
3.2 培養基組成與配製 55
3.2.1 液態礦物培養基 55
3.2.2 菌株保存培養基 58
3.2.3 菌株活化培養基 59
3.2.4 計數平板培養基 59
3.3 實驗方法 60
3.3.1 菌株的活化及生長曲線 60
3.3.2 礦物培養基菌液製作 61
3.3.3 正十六烷之生物降解與生物復育實驗 62
3.3.4 以NB培養的NTU-1進行冷凍乾燥及其存活率測試 65
3.3.5 以正十六烷培養的NTU-1細菌結塊進行冷凍乾燥 67
3.3.6 烘乾以正十六烷培養的NTU-1細菌結塊 68
3.3.7 乾燥後NTU-1細菌結塊對於正十六烷的包覆與移除 69
3.3.8 不同條件乾燥下NTU-1細菌結塊之細胞表面疏水性測定 70
3.4 實驗藥品與器材 71
3.4.1 實驗藥品 71
3.4.2 實驗儀器 72
第四章 實驗結果與討論 73
4.1 不同搖晃培養對於NTU-1生物降解及包覆正十六烷能力的影響及改進方法 74
4.1.1 比較往復式及迴旋式培養下NUT-1對正十六烷生物復育的效果 74
4.1.2 迴旋式培養下錐形瓶中加入篩網時正十六烷生物復育的效果 81
4.1.2.1 篩網孔徑大小為10 mesh 81
4.1.2.2 篩網孔徑大小為20 mesh 89
4.1.2.3 不同孔徑大小但相同折角 (45度) 篩網之比較 95
4.1.3 討論 98
4.2 以NB培養的NTU-1冷凍乾燥後細胞存活率及降解包覆能力探討 101
4.2.1 利用NB培養的NTU-1經過冷凍乾燥後之存活率探討 101
4.2.2 以NB培養的NTU-1經過冷凍乾燥後對於正十六烷降解及包覆能力探討 109
4.2.3 討論 113
4.3 利用正十六烷培養的NTU-1細菌結塊冷凍乾燥後其存活率及降解包覆能力探討 114
4.3.1 NTU-1細菌結塊降解及包覆正十六烷的能力 (未經冷凍乾燥) 114
4.3.2 NTU-1細菌結塊在冷凍乾燥後降解及包覆正十六烷的能力 120
4.3.3 超音波震碎NTU-1結塊並進行冷凍乾燥後之應用 144
4.3.4 討論 146
4.4 利用正十六烷培養的NTU-1細菌結塊經烘乾後再聚集包覆烷類之能力探討 149
4.4.1 烘乾NTU-1結塊時溫度與時間的選擇 149
4.4.2 不同條件乾燥下NTU-1結塊表面疏水性測定 156
4.4.3 烘乾後的NTU-1結塊存放溫度與時間之探討 159
4.4.4 烘乾後NTU-1結塊於培養過程12小時間的細胞聚集情形 162
4.4.5 以不同量之乾燥NTU-1結塊處理2000 ppmv正十六烷 166
4.4.6 以固定量之乾燥NTU-1結塊處理不同濃度的正十六烷 171
4.4.7 提高乾燥NTU-1結塊移除正十六烷效率的方法 177
4.4.8 乾燥NTU-1結塊再形成聚集體包覆正十六烷之機制 181
4.4.9 討論 184
第五章 結論 187
參考文獻 190
附錄1 NB培養的NTU-1及正十六烷培養的NTU-1結塊經冷凍乾燥後的結合應用 201
附錄2 不同條件乾燥後NTU-1結塊之細胞粒徑大小 207
dc.language.isozh-TW
dc.title利用 Rhodococcus erythropolis NTU-1 細胞聚集現象移除正十六烷zh_TW
dc.titleRhodococcus erythropolis NTU-1 Biofloccules for
n-Hexadecane Removal
en
dc.typeThesis
dc.date.schoolyear99-2
dc.description.degree碩士
dc.contributor.oralexamcommittee許駿發(Chun-Fa Hsu),李振綱(Cheng-Kang Lee),王孟菊(Meng-Jiy Wang)
dc.subject.keyword細胞聚集現象,正十六烷,冷凍乾燥,烘乾,zh_TW
dc.subject.keywordRhodococcus erythropolis NTU-1,biofloccules,freeze-drying,heat-drying,n-hexadecane removal,en
dc.relation.page210
dc.rights.note同意授權(全球公開)
dc.date.accepted2011-07-20
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept化學工程學研究所zh_TW
顯示於系所單位:化學工程學系

文件中的檔案:
檔案 大小格式 
ntu-100-1.pdf9.4 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved