請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/10059完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 張瑞峰 | |
| dc.contributor.author | Wei-Wen Hsu | en |
| dc.contributor.author | 徐位文 | zh_TW |
| dc.date.accessioned | 2021-05-20T20:59:01Z | - |
| dc.date.available | 2016-08-01 | |
| dc.date.available | 2021-05-20T20:59:01Z | - |
| dc.date.copyright | 2011-07-29 | |
| dc.date.issued | 2011 | |
| dc.date.submitted | 2011-07-26 | |
| dc.identifier.citation | [1]N. Howlader, et al., SEER Cancer Statistics Review, 1975-2008: National Cancer Institute, 2011.
[2]A. Jemal, et al., 'Global cancer statistics,' CA: A Cancer Journal for Clinicians,vol.61, pp.69-90,2011. [3]B. O. Anderson, et al., 'Breast cancer in limited-resource countries: an overview of the Breast Health Global Initiative 2005 guidelines,' Breast J,vol.12 Suppl 1, pp.S3-15,Jan-Feb 2006. [4]T. E. Wilson, et al., 'Breast cancer in the elderly patient: early detection with mammography,' Radiology, vol. 190, pp. 203-207,01 1994. [5]M. A. Roubidoux, et al., 'Bilateral breast cancer: early detection with mammography,' Radiology, vol. 196, pp. 427-431, 08 1995. [6]S. Buseman, et al., 'Mammography screening matters for young women with breast carcinoma: evidence of downstaging among 42-49-year-old women with a history of previous mammography screening,' Cancer, vol. 97, pp.352-8,Jan 15 2003. [7]E. A. Sickles, et al., 'Benign breast lesions: ultrasound detection and diagnosis,' Radiology, vol. 151, pp. 467-470, 05 1984. [8]T. M. Kolb, et al., 'Comparison of the performance of screening mammography, physical examination, and breast US and evaluation of factors that influence them: an analysis of 27,825 patient evaluations,' Radiology, vol.225, pp. 165-175, 10 2002. [9]N. F. Boyd, et al., 'Heritability of mammographic density, a risk factor for breast cancer,' N.Engl.J.Med., vol. 347, pp. 886-894, 09/19/ 2002. [10]P. Crystal, et al., 'Using sonography to screen women with mammographically dense breasts,' AJR Am.J.Roentgenol., vol. 181, pp. 177-182, 07 2003. [11]K. M. Kelly, et al., 'Breast cancer detection using automated whole breast ultrasound and mammography in radiographically dense breasts,' European Radiology, vol. 20, pp. 734-742, 2010. [12]K. Flobbe, et al., 'The role of ultrasonography as an adjunct to mammography in the detection of breast cancer. a systematic review,' Eur.J.Cancer, vol. 38, pp. 1044-1050, 05 2002. [13]W. K. Moon, et al., 'Multifocal, multicentric, and contralateral breast cancers: bilateral whole-breast US in the preoperative evaluation of patients,' Radiology, vol. 224, pp. 569-576, 08 2002. [14]K. J. Taylor, et al., 'Ultrasound as a complement to mammography and breast examination to characterize breast masses,' Ultrasound Med.Biol., vol. 28, pp.19-26, 01 2002. [15]R.-F. Chang, et al., 'Whole breast computer-aided screening using free-hand ultrasound,' International Congress Series, vol. 1281, pp. 1075-1080, 2005. [16]E. Wenkel, et al., 'Automated breast ultrasound: lesion detection and BI-RADS classification--a pilot study,' Rofo, vol. 180, pp. 804-8, Sep 2008. [17]C. Yi-Hong, et al., 'Automated Full-field Breast Ultrasonography: The Past and The Present,' Journal of Medical Ultrasound, vol. 15, pp. 31-44, 2007. [18]M. A. Helvie, et al., 'Sensitivity of noncommercial computer-aided detection system for mammographic breast cancer detection: Pilot clinical trial,' Radiology, vol. 231, pp. 208-214, Apr 2004. [19]L. A. Khoo, et al., 'Computer-aided detection in the United Kingdom National Breast Screening Programme: prospective study,' Radiology, vol. 237, pp.444-9, Nov 2005. [20]K. V. Mogatadakala, et al., 'Detection of breast lesion regions in ultrasound images using wavelets and order statistics,' Medical Physics, vol. 33, pp. 840-849, 2006. [21]K. Drukker, et al., 'Computerized lesion detection on breast ultrasound,' Medical Physics, vol. 29, pp. 1438-1446, 2002. [22]K. Drukker, et al., 'Computerized detection and classification of cancer on breast ultrasound1,' Academic Radiology, vol. 11, pp. 526-535, 2004. [23]Y. Ikedo, et al., 'Development of a fully automatic scheme for detection of masses in whole breast ultrasound images,' Medical Physics, vol. 34, pp.4378-4388, 2007. [24]R.-F. Chang, et al., 'Rapid image stitching and computer-aided detection for multipass automated breast ultrasound,' Medical Physics, vol. 37, 2010. [25]G. F. Dominguez, et al., 'Fast 3D mean shift filter for CT images,' in Image Analysis, Proceedings, Halmstad, Sweden, 2003, pp. 438-445. [26]J. C. Bezdek, et al., 'Fcm - the Fuzzy C-Means Clustering-Algorithm,' Computers & Geosciences, vol. 10, pp. 191-203, 1984. [27]D. G. R. Bradski and A. Kaehler, Learning opencv, 1st edition: O'Reilly Media, Inc., 2008. [28]Y. Z. Cheng, 'Mean Shift, Mode Seeking, and Clustering,' IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 17, pp. 790-799, Aug 1995. [29]D. Comaniciu and P. Meer, 'Mean shift: A robust approach toward feature space analysis,' IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 24, pp. 603-619, May 2002. [30]E. Parzen, 'On Estimation of a Probability Density Function and Mode,' The Annals of Mathematical Statistics, vol. 33, pp. 1065-1076, 1962. [31]D. W. Scott, 'Multivariate Density Estimation,' ed: John Wiley & Sons, Inc., 1992. [32]D. Comaniciu and P. Meer, 'Mean shift analysis and applications,' in Computer Vision, 1999. The Proceedings of the Seventh IEEE International Conference on, 1999, pp.1197-1203 vol.2. [33]M. J. Sabin, 'Convergence and Consistency of Fuzzy C-Means Isodata Algorithms,' IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 9, pp. 661-668, Sep 1987. [34]D. Hosmer and S. Lemeshow, Applied logistic regression (Wiley Series in probability and statistics): Wiley Interscience, 2000. [35]A. Field, Discovering Statistics Using SPSS, 2nd ed. ed. London: SAGE Publications, 2005. [36]J. S. Suri, Advances in diagnostic and therapeutic ultrasound imaging. Boston ; London: Artech House, 2008. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/10059 | - |
| dc.description.abstract | 乳癌近幾年來一直是女性癌症中的主要死因。然而,藉由早期的檢測及治療能大幅地降低乳癌的死亡率。在許多乳房檢測儀器中,乳房超音波與乳房X光攝影的結合能在檢查乳癌上有著互補的作用。近幾年來,自動的全乳房超音波已經有不少的論文研究,其在腫瘤的方位顯示和記錄上都有很好的表現。因為一個病例會有很龐大的三維影像資料,逐張檢查診斷會花費醫師許多時間。因此,此論文提出一個電腦輔助的乳房腫瘤偵測系統偵測腫瘤可疑的區域,以協助醫生做診斷。本論文採用的腫瘤偵測系統是以區域為基礎做運算處理。首先,fast 3-D mean shift方法將3維影像資料分割成區域並移除影像中的雜訊。接著,fuzzy c-means clustering會將這些區域依其灰階值來做分群。因為在超音波影像中,腫瘤一般會有較低的灰階值,所以這些被分到最暗的區域會被視為是腫瘤的可疑區域。之
後,在這些可疑的區域中,如果灰階值相差在門檻值內的區域會結合在一起呈現最後切割的結果。不僅如此,為了更進一步去區分腫瘤和非腫瘤,每個切割後腫瘤的可疑區域會取出七個特徵,結合這七個特徵去做分類,以減少非腫瘤被誤判為腫瘤情況的發生。在這個實驗中,大部份的腫瘤都能被找到。在平均每個病例有4.92個非腫瘤被誤判為腫瘤的情況下,系統的腫瘤偵測準確率是89.04%(130/146),其中惡性腫瘤的偵測準確率更可達到94.03%(63/67)。希望在醫師診斷的輔助上能有所幫助。 | zh_TW |
| dc.description.abstract | Breast cancer has been the major cause of death for women among all kinds of cancers in recent years. Nonetheless, the early detection and improved treatment can significantly reduce the mortality of breast cancer. Breast ultrasound (US) is a very important complementary imaging modality with mammography in breast cancer detection. Recently, the automatic whole breast ultrasound (ABUS) system has been developed to provide the proper orientation and documentation of breast lesions.Because a large three dimension (3-D) volume image is obtained for each case, the
physician needs to spend a lot of time in reviewing all slice images. Therefore, a computer-aided tumor detection system is proposed to find the suspicious regions of tumors and assist the physician in diagnosis. The region-based ABUS tumor detection method is adopted in this study. At first, the 3-D volume image is segmented into regions and the speckle noise is removed by the fast 3-D mean shift method. Subsequently, the fuzzy c-means(FCM) clustering classifies these regions into different classes according to their intensities. Because tumors are usually darker than normal tissues in US, the regions classified into the darkest cluster by the FCM are regarded as the suspicious tumor regions in this study. After FCM, these suspicious regions are merged within a merging threshold to present the segmented results. Moreover, in order to discriminate the real tumors from the other non-tumor regions, seven features are extracted from the suspicious tumor regions and the classification method is adopted with 10-fold validation to reduce the false-positives. By experimental results, almost all the tumors can be found by this system and the sensitivity is 89.04% (130/146) with 4.92 FPs per case. Furthermore, the detection rate for malignant tumors is up to 94.03% (63/67). The proposed tumor detection system is useful for the diagnosis of doctors. | en |
| dc.description.provenance | Made available in DSpace on 2021-05-20T20:59:01Z (GMT). No. of bitstreams: 1 ntu-100-R98922081-1.pdf: 1547183 bytes, checksum: 23e0d879444912f5dcf659375cfcb5a1 (MD5) Previous issue date: 2011 | en |
| dc.description.tableofcontents | 口試委員會審定書......................................................................................................... i
ACKNOWLEDGEMENTS ........................................................................................ ii 論文摘要 .......................................................................................................................iii ABSTRACT ................................................................................................................. iv Table of Contents ......................................................................................................... v List of Figures .............................................................................................................. vi List of Tables ..............................................................................................................viii Chapter 1 Introduction ................................................................................................ 1 Chapter 2 Materials ..................................................................................................... 4 Chapter 3 Region-based ABUS Tumor Detection ..................................................... 6 3.1 Region segmentation using fast 3-D mean shift method ................................. 7 3.2 Region classification using fuzzy c-means clustering ................................... 10 3.3 False-positive reduction ................................................................................. 13 Chapter 4 Experimental Results and Discussion .................................................... 17 4.1 Experimental Results ..................................................................................... 17 4.2 Discussion ...................................................................................................... 35 Chapter 5 Conclusion and Future Works ................................................................ 38 References ................................................................................................................... 39 | |
| dc.language.iso | en | |
| dc.title | 全乳房自動超音波影像之腫瘤偵測 | zh_TW |
| dc.title | Tumor Detection for Automated Whole Breast
Ultrasound Image | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 99-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 黃俊升,張允中 | |
| dc.subject.keyword | 腫瘤偵測, | zh_TW |
| dc.subject.keyword | Tumor Detection, | en |
| dc.relation.page | 41 | |
| dc.rights.note | 同意授權(全球公開) | |
| dc.date.accepted | 2011-07-26 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 資訊工程學研究所 | zh_TW |
| 顯示於系所單位: | 資訊工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-100-1.pdf | 1.51 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
